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Abstract. We study entire functions of exponential type which are eigenfunctions of the
Laplacian. We represent them by an integral on the complex light cone. The integral
formula is closely related to the Fourier-Borel transformation for analytic functionals on
the complex sphere.

Introduction.

Let A, = (0*/0z} +0%/0z3 + -+ 0%/dz%,;) be the complex Laplacian on E =
C"'. n>2. We denote the Lie norm and the dual Lie norm by L(z) and L*(z)
(for the definition, see Section 1). ((B(R)) denotes the space of holomorphic functions
on the open Lie ball B(R) = {z € E;L(z) < R} with the topology of uniform conver-

gence on compact sets. It is an FS (Fréchet-Schwartz) space. Put
0, 2(B(R)) = {f € O(B(R)); 4./ (2) = *f(2)},

0, ,»(BIR)) = ind lim{¢, :(B(R"));R' > R}.

Since @, ,»(B(R)) is a closed subspace of O(B(R)), it is an FS space and ¢, ,2(B[R]) is
a DFS (dual Fréchet-Schwartz) space (for FS spaces and DFS spaces see, for example,
[3]). We denote the spaces of entire eigenfunctions of exponential type (R) and [R] by

Exp, (E;(R))={fe0, (E); forall R" >R we have

sup{|/(z)|exp(~R'L*(2));z € E} < w0}, |2/ <R,

Exp, 2(E;[R]) ={f €0, (E); thereis R" <R such that

sup{|/(z)|exp(~R'L"(2));z € E} < w0}, |2 <R.

Then Exp, ,2(E;(R)) is an FS space and Exp, ,.(E;[R]) is a DFS space.

Let S;={weE;w}+---+w2, =2} be the complex sphere. A holomorphic
function on §; is called an entire function on S,. Similarly, we denote by Exp(S;; (R))
and Exp(S;;[R]) the spaces of entire functions on S; of exponential type (R) and [R].
Put O(S;(R)) = @<B(R))|S} and O(S;[R]) = @(B[R])\S}. (0'(X) and Exp’(X) mean the
dual spaces of O(X) and Exp(X).
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In [6], we gave integral representations for Exp(So; (R)) and Exp (E; (R)), and using
the integral kernels, we constructed the mappings .#z and &y (see also [9]). g is
related to the Poisson transformation #x and &r to the Cauchy transformation %y
through the Fourier-Borel transformation %, and the conical Fourier-Borel trans-
formation #°; that is, in [6], we proved that the following diagrams are commutative
and all the mappings in them are topological linear isomorphisms:

j,/—O ~

Oy(BIR]) ——  Exp(So; (R))

P V (1)

O4(B(R) —— Exp'(S:[R)).
where 2! is given by an integral on Sz = Sg N R™"! and .#%' is given by an integral
on Sp; and

Exp,(E;[R) —Z— O(Sy(R))

% k @)

~ 7

Exp,(E;(R)) «— O'(S[R]),

where %' is given by an integral on the boundary of Sy(R) = SN B(R) and &3! is
given by an integral on R""!.

In this paper, we shall generalize the above results in [6] according to the following
plan.

First, we give an integral representation for Exp, ,:(E;(R)), |A| < R. Then the
integral representation gives the inverse mapping of the restriction mapping

By Exp,_2(E;(R)) — Exp(So; (R)),
which was proved to be a topological linear isomorphism in (see which

is our main theorem in this paper).
By using the integral kernel for Exp, ,.(E;(R)), we construct the mapping & r
such that the following diagram is commutative

iR
Expi'_;?(E; [R]) —— Exp, ;2(E;(R))

Tﬂi‘ Jm

Exp/(So; [Rl)  —=*  Exp(So; (R)),

where all the mappings are topological linear isomorphisms and f; is the adjoint
mapping of f; (Corollary 2.4).

Second, we define the integral kernel for ¢/, ,»(B(R)) and using it we define the
/-Cauchy transformation %, r for (OL_AZ(B[R]). Then, in [Proposition 3.2, we have
the following commutative diagram
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~ € R ~

@; 2(B[R]) —— Afﬁ(B(R))

Tﬁf Jﬁi

O'(So[R]) —=-  O(Sy(R)),

where all the mappings are topological linear isomorphisms.
Third, we can define the spherical Fourier-Borel transformation Z#* for Te
Exp),_,.(E;[R]) by

F* T F'T(w) = T.,exp(z-w)>, weS;(R).

This is well-defined since (4. — A%)exp(z-w) =0 for we S;. By using the diagram (1),
we prove that the spherical Fourier-Borel transformation

7' Exp!,_2(E;[R]) = O(S;(R))

is a topological linear isomorphism (Theorem 5.2). A different proof is found in [8].
Like (2), a relation between the Fourier-Borel transformation %, and the spherical
Fourier-Borel transformation #* is given by the diagram

~ g ~
Exp/, .(E;[R]) ——— O(Si(R))
I&?LIR l(aio?/,goocﬂ*)]

~ ,07/1 ~

Exp, (E;(R) «“— C'(S;[R),

where o, is the restriction mapping o; : ¢, ,2(B(R)) — O(S;(R)), and o} is the adjoint

mapping of o, (Corollary 5.3). Note that this diagram for 1 =0 is different from (2).
Fourth, by using the diagram (2), we prove that the spherical Fourier-Borel

transformation
F*: 0, 2(B[R]) = Exp(S;; (R)) (3)
is a topological linear isomorphism (Theorem 5.4). A different proof is found in [7].

We also have

A

' s(BR) —Z— Exp(S;(R))

T%&IR l(ak‘oé’Roa;)l

0, »(B(R) <Z— Exp'($;[R),

where all the mappings are topological linear isomorphisms (Corollary 5.5). Note that
this diagram for A =0 is different from (1).

In this paper, we mainly treat for FS spaces but all the results also hold for DFS
spaces: For example, we also have the topological linear isomorphism like (3);

740 (B(R) > Exp($5: [R)).
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1. Eigenspaces of the Laplacian.

Let ||x|| be the Euclidean norm on E = R"™', n>2. The cross norm L(z) on
E = C""! corresponding to ||x|| is the Lie norm defined by

L(z) = {Jlzl* + (21" = 2712y,

2 _ )
where z-w=ziw; +zwy+ -+ Zy Way1, 22 =z-z and ||z||"=2z-Z. The dual Lie
norm L*(z) is given by

L*(z) = sup{|z - {; L) < 1} = {([l21> + |22 /23 2.
The open and the closed Lie balls of radius R with center at 0 are defined by
B(R)={ze€E;L(z) <R}, 0<R< o,
BR|={zeE;L(z) <R}, 0<R< 0.

Note that B[0] = {0} and B(c0) = E. We denote by ¢(B(R)) the space of holomorphic
functions on B(R) with the topology of uniform convergence on compact sets. Let
A€ C and put

0, 2(B(R)) = {f € O(B(R)); (4: — %) f(z) = 0},
where 4 is the complex Laplacian;
A.f(z) = (8%)0z3 + 0% )0z + -+ 82 /022, ) f ().
For 0 < R < o0 we put
O(B[R]) = ind lim{O(B(R')); R’ > R},
0,_,»(B[R]) = ind lim{©, ,»(B(R')); R' > R}.

We denote by (9;712(3(R)) (resp. (9;712(3[R])) the dual space of O, ,2(B(R)) (resp.
0, ,2(B[R])).
For 0 < R < o we denote by

Exp(E; [R]) = {f € O(E); thereis R’ < R such that
sup{|f (z)| exp(~R'L"(2));z € E} < o0}

the space of entire functions on E of exponential type [R] with respect to the dual Lie
norm L*(z). Similarly, for 0 < R < o

Exp(E;(R)) = {f € O(E); forall R" >R we have
sup{|/(z)|exp(—R'L"(2));z € E} < 0}
denotes the space of entire functions on E of exponential type (R). Put
Exp,_, (E;[R]) = Exp(E; [R]) N (QA—;?(E)’

Exp,_(E: (R)) = Exp(E: (R) N0, ,:(E).

yE
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Let Py ,(f) be the Legendre polynomial of degree k and of dimension n+ 1. The
coefficient of the highest power of Py ,(f) is given by

_ Tk+(n+1)/2)2%
e = N, ) T ((n+ 1)/2)k!”

where N (k,n) is the dimension of the space of k-homogeneous harmonic polynomials of
n+ 1 variables; N(k,n) = 2k +n—1)(k+n—2)!/(k!(n— 1)) = O(k"1).
We put

N z W
P (z,w) = V) (Vw2 kPkn(—~—).

a(zw) = (Vz22) " (Vw?) Py, N
Then Isk,n(z, w) is a symmetric homogeneous polynomial of degree k in z and in w,
satisfies A.Py ,(z,w) = 4, Py ,(z,w) = 0 and is estimated as |Py,(z, w)| < L(z)*L(w)".
Further we have the following orthogonal relation;

N(k, l’l) JS Pk,n(z, CO)PLH(CO, W)dd) = 5k1Pk,n (Z, W), (4)

where da is the normalized O(n + 1)-invariant measure on the n-dimensional unit
sphere S.

Let ue C and J,() be the entire Bessel function defined by

. (=)' T(p+ 1) () -
- S (0 s ()

=0

Note that

For simplicity, we set

Je(0) = Ty 2 (1)
Lemma 1.1 (Lemma 7.3 in [2]). For z,we E, we have

1

i G V2V W) Py (2, w).
*kon

exp(z-w) = Z
k=0

Put
So={zeE;z>=0}, Sy ={zeSyL(z)=1}.
ProposiTION 1.2 (Corollary 2.3 in [11]). Let 2€ C and f e, >({0}). Define

fi(z) = 25N (k,n) jg Fpw)(z - w/p)ed, ze,

where p > 0 is sufficiently small and dw is the normalized O(n + 1)-invariant measure on
So1. Then f is expanded as follows:
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A IAE
k=0

where the convergence is in the sense of O, ,2({0}).

2. Integral representation.

In this section, we consider an integral representation for Exp, ,-(E;(R)), R > |A|.
Exp, ;2(E;(R)) is closely related to the space

Exp(So; (R)) = {f € O(Sy); forall R" >R we have

sup{/(2)| exp(~ R'L*(2)):z € S0} < w}.

That 1is, the integral representation will give the inverse mapping of the following
restriction mapping f; studied in [10];

B Eprf;vz(E; (R)) = Exp(S‘o; (R)), |4 <R< .

Ii defined a measure du on S, by

Jo r@ane =] | szt m

0

where p,(r) is a function of exponential type —1 and satisfies
0
J| P e = (V5,24 = Clon) 0

for k=0,1,2,... (see [1], or [6]).

Let e C. For ze E and we S, define

Note that
E*(z,-) e Exp(So; (0)), E*(-,w) € Exp,_,2(E; (|A])).

LEMMA 2.1. For /. #0, E*(z,w) has the following integral representation:

EXzw) = J exp(io - 2)exp(w - /A)dio, zeE, weS. (8)
S

Proor. By [Lemma I.1, (4), (5), (6) and (7), we have (8). O

For z,we Sy, E*(z,w) does not depend on 2, thus for z,w e Sy we denote E*(z,w)
by E(z, W) Note that Ej(z,w) = E°(z,w). Ej(z,w) is the integral kernel for

Exp(Sy; (R)) in [6]; that is, for f e Exp(Sp;(R)) and s> R/2, we have the following
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integral representation:

£(2) = J FO0)8)Ey (2, 57) du(w), =€ o ()

(Theorem 16 in [6]).
Using~ the kernel E*(z,w), we shall give an integral representation for
Exp,_:(E: (R)). R = |2].

THEOREM 2.2. Let f € Exp(So; (R)). For s> R/2, define F(z) by

F(z) = L F(w/$)E*(z,s) du(w), zeE. (10)

Then (4 — AF(z)=0 and Flg, =B, F=f. Further, if R=>I], then F(z)e
Exp, ;:(E; (R)). .
Conversely, let F(z) e Exp, 2(E;(R)),R>|A|. Then for s> R/2 we have

Fz) = JS Fw/s)E*(z, s%) du(w), e E: (11)

that is, the mapping f +— F in (10) is the inverse mapping of the restriction mapping f3,
and (11) is an integral representation for F € Exp, ;2(E;(R)), R > |i].

PRrOOF. Since (4. — A*)E*(z,w) = 0, the first half is clear by (9). Further, noting
that limy_ . [j;(¢)] = 1 for te C, we get F(z) e Exp, > (E (R)) by the growth conditions
of Exp, ,»(E;(R)) and Exp(Sp; (R)) (Theorem 12 in [5] and Theorem 16 in [4]).

Because E*(z,-) € Exp(So; (0)) and p, is of exponential type —1, the right-hand side
in is finite, and by [Proposition 1.2, (6) and (7) we have

L Flw/s)E*(z, 57) du(w)
0 0 A~k n
S D) o ACNE (RN

© Ak "
_ ; chzlikn) 2N 5 ) /3y J Fi(w/s)(sz - ) dp(w)

So

2 2N (k,n) - . Fi.(z
_ kz 7C(1£7 - ) 5 (V) Clleun) L ]\;‘((k?n)

fj (I Z2)F(z) = F(z), ze€E. O

Now, define a measure dup on So by

0

Lﬁ 700 dugo) = |

0

L F(w') dio'r p, (1) i,
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where dw’ is the normalized O(n + 1)-invariant measure on

So.r = {z € Sy; L(z) = R}.
Put
Exp(So; [R]) = {f € 0(Sy); thereis R’ < R such that

sup{ £ ()| exp(—R'L*(2));z € Sp} < o0}
For f € Exp(So; (R)) and g € Exp(So;[R]), we set

S50 = | S0)0() dag (o).

So
Put
Ef(z,w) = E*(z,R*w), zeE, wel,.

If z,we Sy, E*(z,w) does not depend on A. Thus we denote
Er(z,w) = E*(z, R>w) = E*(Rz, Rw), z,we Sp.
In [6], we defined a transformation .#y for T € Exp’ (So; [R]) by
Mp:Tv— MRT(w) =T, Eg(w,z))

and proved that the transformation .#y establishes the following topological linear
isomorphism:

Mg Exp'(So; [R]) = Exp(So; (R)).
Further, for T e Exp’(Sy;[R]) and f e Exp(Sp; [R]), we have
<T7f> = <<f7’%RT>>S‘O71/R7

which gives .43
Now, we define a transformation .#% for Exp’(So; [R]) and a transformation & for
EXPL,_;NZ (Ea [R]) by

My T MRT(2) = (T, Eg(z,w)y, T € Exp'(So; [R]),
Ex: T — ExT(w) = (T, Eq(z,w)), T eExp), .(E;[R)).
Then we have the following proposition:

ProprosiTION 2.3.  The following diagram is commutative and all the mappings in it
are topological linear isomorphisms:

o

Exp, »(E;(R) 2 Exp’(So; [R])

—1 . * £\ —1
5, H 5, Y P H ()

Exp(So; (R)  —%—  Exp,_.(E;[R)),

where [ is the adjoint mapping of f;.
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Since we have .#/3' and ﬁ;l explicitly, we also have (.# ;lz)_l and ((50;3)_1 explicitly.
ProOOF. We have only to show that the mappings are given by
My =P oy, Ex=Mro (). (12)
E;

Since the integral representation for F e Exp, ;2(E;(R)) is rewritten by

Fz) = JS F(w)Eh(z, m)dpy p(w), zeE,
and

L ER(C,w)Eg(2,0) dpy g(0) = L ER(C,w)Ex(z,0) dpy j(0)

:E;i(z, w), zeE,we S,
we have (12). U

Furthermore, by composing f5;' and &%, there is another topological linear iso-
morphism

6,r=p;' 064 Exp/_.(E;[R]) = Exp,_;:(E;(R)).
Then for TeExp;_xz(E; [R]), &, r is given by
Er: T &, rT(2) =Ty, Ej r(z,W)),

where

Ein(ew) = | EHEOER . a0, zweE:
So
Therefore, we have the following corollary:

COROLLARY 2.4. The following diagram is commutative and all the mappings in it
are topological linear isomorphisms:

Exp, (E;[R) —2% Exp, .(E;(R))

Tﬂi‘ lm

Exp/(So; [Rl)  —=*  Exp(So; (R)).

Since we have ,/%;1 explicitly, we also have (5;1R explicitly.

3. A-Cauchy transformation.

In this section, first, we consider an integral representation for ¢, Zz(B(R)). The
integral representation will give the inverse mapping of the following restriction mapping

B

B;:0,_(B(R) — O(So(R)), 0<R<
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see [T1]). For z,we E with L(z)L(w) < R? define
(

0

Ky r(zow) =Y 2%y Nk, n) i (i2V22) ji(i2V/'W2) P (z/ R, W/ R).
k=0
Note that (4 — DK r(z,w) = (4, — A2)K; r(z,w) = 0.
If z,w e Sy with L(z) (w) < R?, then K; g(z,w) does not depend on 4 and reduces
to the Cauchy kernel Kp(z,w) on Sy introduced in

N(k,n)(2z-w/R*)* = (1 +2z-w/R*)/(1 = 2z-w/R*)"

Il
MS

Klg(z, W)

»
Il

0

JOO J exp(z - r0) exp(rl - w)dir"™'p, (r)dr, z,we S
0 JSik

= JE exp(z - x) exp(x - w) dEj jg(x),

where d{ is the normalized O(n + 1)-invariant measure on S, /- Note that Ko g(z,w) =
K3(z,w) if z or we S,.

From the point of view of integral representations, Theorem 2.4 in may be
restated as follows;

PROPOSITION 3.1. Let A€ C and f e O(Sy(R)). For 0 < p < R, define F(z) by

P = | FpwKiG w/p) i ze Bip) (13)

Then F(z) e O, ,2(B(R)) and Flg, =B F=F.
Conversely, for F e (, ,>(B(R)) we have

P = [ PR w/pdi, ze B (14)

that is, the mapping [ +— F in (13) is the inverse mapping of the restriction mapping [,
and (14) is an integral representation for F € (, ,>(B(R)).

In [5], we defined the Cauchy transformation ¥y for T € O'(So[R]) by
Gr:T — GrT(z) =T, Kp(z,w)).

For f e O(Sy[R]) and g € O(Sy(R)) we set
s = | S0l

where p > 1 is sufficiently close to 1. Then we proved that the Cauchy transformation
% r establishes the following topological linear isomorphism (Theorem 9 in [5]):

Gr: O'(So[R]) = O(So(R)).

Moreover, for T e O0'(Sy[R]) and f e O(Sy[R]) we have
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<T7f>:<fa(gRT>S‘01R (15)

which gives %' (Theorem 11 in [6]).
Using the kernel K g(z,w), we define the A-Cauchy transformation for T e

1~ (BIR]) by ~

C.r:Tv— €, rT(z) =<T\, K, r(z,w)), z€B(R).
For the A-Cauchy transformation, we have

ProposiTION 3.2. Let T 6(9;_12(3[R]). Then the A-Cauchy transformation €, g
establishes the following topological linear isomorphism:

(g}.,R . @;,AZ(B[R]) ; 041—12 (E(R))
Further, for T € @;,Az(B[R]) and f e O, »(B[R]) we have

<T7f>:<f7(g/l,RT>§0‘R' (16)

PrOOF. Since K; z(z,w) = K3(z,w) for z,we S, and

J~ K/"L,R(Z7C)K)V,R(W7§) dé:K}qR(Z, W)u 27WEE7
So. R
we have the following commutative diagram:

J(BR) 2% 0, (B(R))

Pz; J/g (17)

O'(So[R)) —2~  O(Sy(R)).

/ AR
o

Because f;, and %r in are topological linear isomorphisms, % r is also topological
linear isomorphism. is clear by and [15). O
4. Poisson transformation.
Let
S}v = {Z € E;Z2 = /12}

be the complex sphere of radius 2e C. Put S;(R) = B(R)NS;,S;[R] = B[R]NS; and
S, R =0S)[R] ={z€S,;L(z) = R}. Further we put

Sg = S’MM = 65;[|/1H =AS = {/lx,x € S}.

We denote by ¢(S;(R)) the space of holomorphic functions on S;(R) with the topology
of uniform convergence on compact sets and put

Exp(S;; (R)) = {f € 0(S;); forall R > R we have

sup{|/(z)|exp(—~R'L"(2));z € §;} < o0}
We know the following theorem (Theorem 5.3 in and Theorem 3.1 in [12]):
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THEOREM 4.1. The restriction mapping o, establishes the following topological linear
isomorphisms:

(i) % : O4(B(R)) = O(S;(R)), |4 < R< oo,
(i) %3+ Exp(E; (R)) = Exp($y; (R)), 0<R< .
Note that oy = f§, and the inverse mappings of &, are given in or in

IProposition 3.1l.
Here, we review the Poisson transformation. For z,we E with L(z)L(w) < 1,

1 — 22?2

(1+z22w2 -2z w)("ﬂ)/2

o0
= N(k,n)Py(z,w) =
k=0

is the well-known Poisson kernel. Set Kg(z,w)= K;(z/R,w/R). Kg(z,w) has the
following integral representation (Lemma 14 in [6]):

Kr(z,w) = L exp(z - )exp(C - w) dpy l0)-

For T e ¢/,(B[R]), the Poisson transformation 2y is defined by
Pr: T PrT(z) =Ty, Kr(z,w)>, zeB(R)
and the following topological linear isomorphism is known;
Pr: O4(B[R]) = C4(B(R)).
Further, for T e ¢',(B[R]) and f € O4(B[R]), we have

(T, f> = JS F(pw)PrT(eo)p) di> = (f,PTs,,

where p > 1 is sufficiently close to 1 and dw is the normalized O(n + 1)-invariant
measure on Sg, which gives 2! (Theorem 5 in [6]).
Moreover, for f € 04(B(R)) we have the following integral representation:

[ (2) =S Kr(2,°)) s,
5. Spherical Fourier-Borel transformation.
We denote by ¢'(S;[R]) the dual space of
O(S;[R]) = ind lim{©(S;(R")); R' > R}.
Put
Exp(S;; [R]) = {f € O(S;); thereis R’ < R such that
sup{|f(z)|exp(—R'L*(z));z€ §;} < wo}.

We denote its dual space by Exp/(S;;[R]). For T €Exp’(S;;[R]) the Fourier-Borel
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transformation %, is defined by

F, T F,T) = (T.,exp((-2)), (eB(R)

and we have the following theorem (Theorems 18, 19 in [5], Theorem 3.1 in and
Theorem 3.1 in [10]):

THEOREM 5.1. The Fourier-Borel transformation F , establishes the following
topological linear isomorphisms:

() 7, Exp(8:[R) > 0, 2(B(R)), |il < R<w,
(i) T+ O'($i[R)) = Exp, (E; (R), |/ <R< .

If weS;(R), then exp(z-w)eExp, ,(E;[R]). Therefore, we can define the
spherical Fourier-Borel transformation F* for T e Exp/ . (E;[R]) by

F* T FAT(w) =(Toyexp(w-2)), weS;(R).

In [6], we denote 7 % by #4 and call it the conical Fourier-Borel transformation,
and we proved that the diagrams (1) and (2) are commutative and all the mappings in
them are topological linear isomorphisms. In (1), 2 is defined in Section 4 and .# ¢ in
Section 2. In (2), g is defined in Section 3 and &y is given as follows;

For T e Exp/(E;[R]) the mapping &y is defined by

Er: T — ErT(W) = (T., Er(w,2)),

where

Btz = [ exple- Qexp(Cw)dl = S Nbkon)/Clkum) R Pry(2).
0, R k=0

Further, for T e Exp/(E;[R]) and f e Exp,(E;[R]) we have

<7;f>:J F()ERT (X)dE &(x).

E
This duality formula gives 51’{1.

Moreover, for f e Exp,(E;(R)), beside the integral representation [I1)}, we can
represent it as follows (see Theorem 24 in [6]):

f(z) = JE f(x)Eg(z, x)dE /g(x).

First, we extend the topological linear isomorphism under Z° in (2) to Z*,

THEOREM 5.2. The spherical Fourier-Borel transformation F* establishes the fol-
lowing topological linear isomorphism:

F*Exp’,_(E;[R]) > O(S)(R)), |A]<R< .
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Proor. By the definition we have the following commutative diagram:

g;l ~

Exp/,_»(E;[R)) —— O(S)(R))

§ §

Exp/ (S0 [R)  —" O4(B(R)).

Because f;, % and o, are topological linear isomorphisms, 7 * is also a topological
linear isomorphism. L]

From (1) and |Corollary 2.4, we have the following corollary:
COROLLARY 5.3. Let |A| < R< oo. We have the following commutative diagram:

Exp' (E:[R) —Z— 0(S(R)

T{?LIR l(aio,@,{oa;)l

T

Exp, 2(E;(R) «—— C'(S;[R)),
where all the mappings in it are topological linear isomorphisms.

Especially for 2 =0 we have

~ 3470

Exp)(E;[R]) ——  0O(So(R))

T@@QIR l(ocooﬁ}Roag)l

~ T

Exp,(E; (R)) <~ CO'(S[R]).

Because o o Zg ooy and % are different mappings, this diagram is different from

(2).

At last, we extend the topological linear isomorphism under #° in (1) to Z*.

THEOREM 5.4. Let R>0. Then the spherical Fourier-Borel transformation F*
establishes the following topological linear isomorphism:

F*: 0", (B[R]) = Exp(S;; (R)).

Proor. By the definition we have the following commutative diagram:

T

o' (BR) —Z— Exp(S;(R))

Iﬁﬁ

O'(So[R))  —Z Exp,(E;(R)).

Because f;, 7 and o, are topological linear isomorphisms, 7 * is also a topological
linear isomorphism. ]

By (2) and [Proposition 3.2] we have the following corollary:
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COROLLARY 5.5. Let R > 0. Then we have the following commutative diagram and

all the mappings in it are topological linear isomorphisms:

T ~

' 2(B[R]) ——— Exp(S;(R))

Tf l(‘5>

P

0, »(B(R) «~“— Exp'(S;[R]).

Because %o r and 2 are different mappings, the above diagram for A =0 is

different from (1).

9]
[10]
[11]

[12]
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