J. Math. Soc. Japan
Vol. 51, No. 1, 1999

On the Seifert form at infinity associated with polynomial maps

By Andras NEMETHI

(Received Jan. 29, 1996)
(Revised Feb. 18, 1997)

Abstract. If a polynomial map f : C" — C has a nice behaviour at infinity (e.g. it is a
“good polynomial”), then the Milnor fibration at infinity exists; in particular, one can
define the Seifert form at infinity I'(f) associated with f. In this paper we prove a
Sebastiani-Thom type formula. Namely, if f: C" — C and g: C" — C are “good”
polynomials, and we define h=f g¢:C"" — C by h(x,y)= f(x)+g(y), then
r'(h)=(-1)"I(f) TI(g). This is the global analogue of the local result, proved
independently by K. Sakamoto and P. Deligne for isolated hypersurface singularities.

The Seifert forms are unimodular bilinear forms (over Z) associated with some
geometrical objects: the spinnable structures.

A spinnable structure (or open book decomposition) on a closed manifold M is a
triple & = {F,m, g} such that F is a compact manifold (with boundary), m : F — F is a
diffeomorphism such that m|,, = identity, and g : T(F,m) — M is a diffeomorphism,
where T'(F,m) is a closed manifold defined as follows. It is obtained from F x [0, 1] by
identifying (x,1) with (m(x),0) for all x e F, and (x,7) with (x,¢’) for all x € dF and
t,t" €]0,1]. The spinnable structure ¥ is called simple if F is a handle-body obtained
from a ball by attaching handles of index < [dim M /2].

A closed, oriented (2n — 1)-manifold is called Alexander manifold, if H,(M,Z) =
H, (M,Z)=0. Ifit has a simple spinnable structure, then H,_(F,Z) is torsion free.

At the homological level, the geometry of a spinnable structure is coded in its Seifert
form. Let ¥ = {F,m,g} be a simple spinnable structure on an Alexander manifold
M?-1_ Then the bilinear form H, |(F)® H,_|(F) — Z, given by (a,f) = linking
number (gx (o x 0),g94(f x 1/2)) is called the Seifert form of ..

The power of the Seifert form can be emphasized by the following result of M. Kato
[4], and (independently) A. Durfee [3]: there is a one-to-one correspondence of iso-
morphism classes of simple spinnable structures on a 1-connected Alexander manifold
M?~1 with congruence classes of unimodular matrices via Seifert matrices (provided
that n > 4).

We recall the following fundamental example. If f : (C",0) — (C,0) is the germ
of an analytic function, which defines an isolated singularity, then by a result of J.
Milnor [6], for any (2n — 1)-dimensional sphere S2"~! (centered at the origin, and with
sufficiently small radius &), the map f/|f]: S>~"\f~'(0) — S! is a C* locally trivial
fibration with fiber F. Moreover, this fibration is equivalent to the fibration f :
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' @b)n B! — 0D,, where D, is a disc centered at the origin with radius r (0 < r < ¢),
and B} is the open ball centered at the origin with radius e.

The advantage of the first (Milnor) fibration is that it provides a simple spinnable
structure of the (21 — 1)-dimensional sphere S?"~!. The associated Seifert form is
denoted by I'(f), and it is (maybe) the most powerful topological invariant of f. In
general, there is no algorithm to determine it, and even in special cases its computation
can be very difficult. For this reason, the following result of K. Sakamoto (or
equivalently, the result of P. Deligne, which solves the problem at the variation map
level) is crucial:

THEOREM. (16, 17]. Assume that ¢:(C™,0) — (C,0) and h:(C",0) — (C,0)
define isolated singularities. Define f :(C"™™ 0) — (C,0) by f(x,y)=g(x)+h(p).
Then

I(f)=(=0)"I(g) @I (h).

Actually, the Milnor fiber F of f can be identified with the join G * H of the Milnor
fibers G and H of g and & respectively, therefore H,, . 1(F) = H,_ (G )®Hn 1(H),
hence the above formula makes sense by this identification.

The goal of this paper is to present a similar result for global polynomial maps
f:C"— C.

We say that the Milnor fibration at infinity of the polynomial map f: C" — C
exists, if for R sufficiently big

SIf1:SENTH0) — 8!
is a C* locally trivial fibration (Sz'~! = dB%).

The main difficulty is that, in general, the Milnor fibration at infinity does not exist
(see, for example, [13, 14, 12]). On the other hand, in the last years, a large number of
families of polynomial maps were constructed with nice behaviour at infinity.

In this paper, we will assume that our polynomials f : C" — C satisfy the following
condition:

(C) (Regularity at infinity)

For any t e C, the fiber f _1(t) is either smooth or has only isolated singularities,

and there exists a sufficiently small neighbourhood D, of ¢, and a sufficiently large
R(t) > 0 such that for any R > R(¢)

[ (U D\BR, S (D) NSFY) — D,
1s a trivial fibration over D,.

If a polynomial f satisfies the condition (C), then it has the following properties as
well:

(P1) The bifurcation set of f is exactly the set Xy of critical values, i.e.
f|C"\f Cn\f (Zf) — C\2y

is a C® locally trivial fibration, with a (smooth) fiber F which has the homotopy type
of a bouquet v S"! of (n— 1)-dimensional spheres. (For the proof of (Pl), see the
corresponding arguments in [1, 7, 8, 12, 11].)
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(P2) For any disc D with the property 2y < D, there exists Ry > 0 such that for
any R > Ry

(o) f:(f 1 (6D)N By, ' (@D)NSF") — oD

is a locally trivial fibration of pair of spaces, such that its restriction on f~'(dD)N SZ"~!
is trivial, and actually it can be extended to a trivial fibration f/~'(D)NSZ"! — D.
(The proof is easy.)

The fibration f~'(dD) — 0D is called the fibration of f at infinity, and it is
equivalent to the fibration f~'(8D)N By — aD.

(P3) The Milnor fibration f/|f|: 8% '\f~'(0) — S' exists and it is equivalent
to the fibration of f at infinity. In particular, the fiber of f/|f| is diffeomorphic to the
generic fiber f 71(l) of f (See the corresponding proofs in [14, 13| for n = 2, and notice
that the dimension is not important; see also [12].)

Polynomial maps which satisfy the condition (C) provide simple spinnable structures
of S}Q”‘l via their Milnor fibration at infinity.

ExamprLes. 1. In the case of plane curves (i.e. for n =2) Neumann and Rudolf
[14] and Neumann studied the Milnor fibration at infinity of “good curves” (i.e.
polynomials with condition (C)) proving among others that the link of a generic fiber
at infinity is fiberable if and only if f is “good”. (In general, it is not true that the
existence of the Milnor fibration at infinity implies the condition (C), see for example the
case of “semi-tame” polynomials [12]; or the example f(x,y)=x(xy—1).)

2. Broughton introduced in his ‘“tame” polynomials, and proved that they
satisfy the condition (C), and he proved properties (P1-P2) for them. The author
generalized Broughton’s results for the larger class of ‘“quasitame” polynomials [7,
8]. Moreover, A. Zaharia and the author extended all these results for the larger class
of “M-tame” polynomials, and actually they proved also that the property (P3) is
satisfied even for a larger class of (the ‘“‘semi-tame”) polynomials [11, 12]. In the
interested reader can find some more examples and even some counter-examples.

3. Let f=f;+f;_1+ - be the decomposition of f in its homogeneous parts.
Assume that f satisfies:

{0faf0x1 =+ =0fq/0xn = fq_1 =0} ={0}.
Then A. Dimca [2] proved that fis “quasitame”, in particular it satisfies (C, P1, P2, P3)
(via the results of [7, 8, 12]). For more properties of these polynomials (and more
motivation for the present paper), see [S] (and the forthcoming joint papers of R. Garcia
Lopez and the author).

The main result of this note is the following affine analogue of Sakamoto’s local
result:

THEOREM. Assume that the polynomials g : C" — C, h: C" — C and f: C""" —
C (f(x,y) =g(x) + h(y)) satisfy the condition (C). Assume that I'(g), I'(h) respectively
I'(f) denote their Seifert forms associated with their Milnor fibration at infinity. Then

r(f)=E=D"g) @ I'(h).
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RemARks. 1. In [9, 10] the author proved the following fact. For any poly-
nomial maps g and % (and f defined as above), the generic fiber F of f is the join space
F =Gx H, where G and H are the generic fibers of g and % respectively. (For the
quasi-homogeneous case, see [15].) Moreover, in [9, 10] a global Sebastiani-Thom type
result is proved for the monodromy operators at infinity. If the condition (C) is
satisfied, then H,,,_1(F)= H,_(G) ® H,_|(H), and these are the only interesting
homological groups of the fibers. The formula I'(f) = (—1)""I'(9) ® I'(h) must be
understood via this identification.

2. In general, the set of spinnable structures provided by the Milnor fibrations at
infinity of polynomial maps is different from the set of spinnable structures provided by
the local Milnor fibrations of isolated singularities. In the case n = 2, this was clarified
by W. Neumann using splice diagrams: the only spinnable structures which can be
represented by both local and global construction are exactly the spinnable structures
provided by quasi-homogeneous maps.

3. Sakamoto’s proof cannot be extended to the global situation. His proof is
based on the existence of a continuous map [0, 1] x (B:\{0}) — B, (r,z) — roz, with
the properties: 1oz=12z, 0oz=0, (rs)oz= ro(soz), f(roz)=rf(z), and |roz| is a
strictly increasing function of r. Since, in the global case we can have many singular
fibers with many singular points, a similar map as above does not exist. Our proof is
based on a similar construction as in [9, 10].

4. The following question appears naturally: what spinnable structures are
provided by Milnor fibration at infinity of polynomial maps?

Even in the local case, the corresponding question is still open, however some
restrictions provided by algebraic spinnable structures already appeared in the literature.
We think that the global problem is even more difficult.

The proof of the theorem.

Consider the polynomial maps g: C" — C and h: C" — C. Fix a closed disc
(centered at the origin) D, (respectively D;) such that X, c int(D,) (respectively X <
int(Dy)). Let Dy be another closed disc such that int(Ds) > Dy + D;. Obviously:
2p=2,+2)c int(Df).

Consider the map u:C" x C" — C x C, u(x,y) = (g9(x),h(y)). The line L, =
{(c,d) e Cx C:c+d=e} intersects D, x C (respectively C x Dj) in Dy(e) (respec-
tively in Dy(e)). If ee 0Dy, then Dy(e) N Dy(e) = F. Moreover, there exists r suffi-
ciently large such that for any eedD; the ball B> ={(c,d)e C*:|c|* +|d|* < r?}
satisfies Dy(e) U Dy(e) = L, N B2

Now, for e e dDy, by lemma 2.3 [9] one has:

u:u (L\(C x Z,UX, x C)) — L\(C x Z,UX, x C)

is a C* locally trivial fibration. Therefore, u~!(L,) can be identified with u~!(L, N B?).
Moreover, by (C), there exists R, » 0 (respectively R; > 0) such that:

(1) (wYL.NB?),u"(z)) (for 1€ L,N B?) has the homotopy type of
(w ' (LN B}) N (Bg, x Bg,),u ' (t) N (Bg, x Bg,)).
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2) w'(LeNBA\(C x 2,UX, x C))N(Bg, x Bg,) = L:NB\(C x Z,UX, x C)
is a locally trivial fibration with fiber
Gx H= (97" (c)NBg,) x (h"'(d)NBg,), ((c,d) generic).

(3) The restriction of the above fibration on d(Bg, X Bg,):
u (LN BI\(C x Z,UZX, x C))N(Bg, x Bg,) — L.NB\(C x £, U, x C)
can be extended to a trivial fibration

u ' (L.NB?)NO(Bg, x Bg,) — LN B,

with fiber 0(G x H).

By the above facts, for e € Dy, one can identify the fiber f~'(e) = u~!(L,) with
(u™'(L.NB?)) N (Bg, x Bg,). Actually, the (2n+ 2m — 2)-dimensional manifold with
boundary

(F,0F) = (f"'(e)N BR/.,f_l(e) N0Bg,) (for Ry > 0)
can be identified with the manifold (with corners and boundary):
(w '(L.NB)N (Bg, X Bg,),u " (L.NOB7)U[u~' (L. N B?) N 3(Bg, x Bg,))).

Fix ey e 0D;. Consider a diffeomorpfism v = v, : R* — L,, such that v='(D,(eg)) =
(—00,0) x R and v~ !(Dy(ep)) = (0,00) x R (cf. lemma 2.1. [9]). Take /:= ({0} x R)
N B2, this is the “segment” which separates D,(eg) and Dj(eo) in L, NB?. Set 4 =
v((—00,0] x R)NB? and # = v([0, 0) x R) N B?; therefore ¥NA# =1 and YU X =
L, NB?, Dy(eg) =% and Dy(ey) = H.

By lemma 2.3 [9] one has (= denotes a diffeomorphism):

(4) u'(9)N(Bg, x Br,) ~ Bg, x H
u'(#)N (Br, x Br,) G x By,
u ' (I)N (Bg, x Br,) ~ Gx H x .

Let m,:(G,0G) — (G,0G) be a geometric monodromy at infinity of g (i.e. a
characteristic map of the fibration (c0) of ¢ at infinity) with m,|,,; = identity. Similarly
define my;. Then the following holds:

(5) A geometric monodromy of u: u~'(dD,(ey)) — 0Dy(ey) is given by m, x id; a
geometric monodromy of u: u~'(0Dy(e)) — 0Dy (ep) is given by id x my,.

By (P3), (i.e. by the identification of the fibration of f at infinity and the Milnor
fibration at infinity), and using Alexander duality, similarly as in the local case, the
Seifert form of f can be identified (modulo a sign) with the variation map

Varf : H,H_m_](F, 8F) — n+m—1(F)-

(Similarly for g and h.) Hence the theorem can be reformulated in terms of the
variation maps: Vary = +Vary, ® Var,. In the sequel, we verify this formula. For



68 A. NEMETHI

simlicity, we will assume that » > 2, m > 2. The case n=1 or m =1 can be proved
similarly (if we replace Hy by Hy).
In the sequel, we will identify the fiber F with:

u~'(LeNB}) N (Bg, X Bg,).

Consider its decomposition in #~'(4)NF and u~'(#)NF. Then, by (4), for g=n+m
—2 and g=n+m—1 one has: H,(u ' (9)NF)=H,(u'(#)NF)=0. Therefore,
by Mayer-Vietoris argument, the boundary map:

0 Hyim1(F) = Hypms(u ()N F)

is an isomorphism. Geometrically, 0 can be described as follows: if [y] € Hyipm—1(F)
and the cycle y is in generic position with respect to u~!(/), then d[y] = [yNu~1(])].

Let P el be an arbitrary point on /. Then by the local triviality of u over /, the
natural strong deformation retract / — P induces an isomorphism:

r: H,,+m_2(u_1(l) NF)— n+m—2(u_1<P) N (BR.., x Bg,))
= n+m—2(G X H) = Hm—l(G) ® Hn—l(H)-

Notice that = (/) N F is a manifold (with corners) of dimension (21 + 2m — 3), and with
boundary:

™' (a1 N (Br, X Bg,)|U ()N 0(Br, x Bg,)|,
and by duality:
Hyim 1 N(ONF, 0w (DNF)) = H™™ 2w (I)NF).

Then, by a duality argument, or by similar Mayer-Vietoris argument as above, one can
prove that the natural inclusion induces an isomorphism:

i Hym 1 (DNOF, 0 Y ()N F)) = Hypp1(F,0F).

We want to investigate the composition V' =rodo Varoi:

Hyp1(G,0G)® Hyy(H,0H)®@ Hy (1,01) = Hypom1 (= (DNF, 6(u~ ()NF)) 5 Hypsp_1 (F,0F)

lV lVW,

Hm—l(G) ®Hn—l(H) <’_ n+m—2(u_1<l) ﬂF) L n+m—l(F)

If my:(F,0F) — (F,0F) is the geometric monodromy of f at infinity (with
my|,r = identify) then the variation map, by its very definition, is Var[y| = [ms(y) — y].
Let [¢] € H,-1(G,0G) and [f] € H,_(H,0H) be the homology classes of the relative
cycles o, respectively . In order to find the map V, we wish to describe the intersection
of the geometric cycle my(ox B x 1) — (o x B x 1) with u=1(]).

Moving e along 0Dy, we can construct a continuous family v, : R?> — L, with similar
properties as v,, (cf. [9]). Then the monodromy action on the line /=1, is the
following:
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-~ \\\D/ U

Then the cycle y = my(a x ff x I) — (a x f x I) can be identified with the total space
of a fibering p with fiber o x f and base space the loop % in L,:

€

The intersection yNu~'(/) is the collection of the fibers of p over the (oriented)
intersection 4N/ =P — A+ B— C. Now, (5) and the retract ' : u~'(I) — u~'(P) give
the identifications:

P (P) =ax f, ' (4) = ax my(p),
r'(u_l(B)) = my(ot) x my(f), r’(u_l(C)) = my(at) X f.

Therefore:

This gives I'(f) = +1'(9) ® I'(h).

The sign + is a universal sign which depends only on n» and m, and can be
determined also by a careful study of the orientation of the cycles which are inter-
sected. But, this sign does not depend on the polynomials g and 4, therefore it is the
same as in the case of generic homogeneous polynomials. Since for homogeneous
polynomials the local and global theory agree, this sign is the same as in the local theory
(i.e. as in Sakamoto’s theorem) (provided that we use the same orientation conventions).

This ends the proof of the theorem.
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