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Introduction.

Let W be the space of continuous functions W defined in R and vanishing
at the origin. Let P be the Wiener measure on W, namely, the probability
measure on W such that {W({), =0, P} and {W(—t), t=0, P} are independent
one-dimensional Brownian motions. Let £2=C[0, ) and denote by w(¢) the
value of a function w (%) at time ¢. Given a sample function W (€ W) and
a nonnegative constant £ we consider a probability measure P% on £ such that
{w(t), t=0, P#} is a diffusion process with generator

_l WE(J)L ~W (%) d . dx dx
(1) Ly = e T (e dx ) " mw(dx) dSw(x)

starting from x, where

(2) W) = W(x)— gz,

(3) Sw(x) = S:ew‘(y’d% mw(dx) = 2™ dx.

It is well-known that a version of {w(f), =0, P&} can be constructed from a
Brownian motion by a scale-change and a time-change. When W is considered
random, {ow(f), t=0} is regarded as a process defined on the probability space
(Wx 2, %) where P@*(dWdw)=P(dW)P%(dw). We thus have a process X*=
{o(), t=0, ®*} which, in this paper, is called a diffusion process in a Brownian
environment with drift. The following intuitive description may suggest the
name. The process X* is obtained as a formal solution of the symbolic
equation

(4) dX(t) = dB(t)—%WL(X(t))dt,

* This work was partially supported by Grant-in Aid for Science (No. 07454034),
Ministry of Education of Japan.
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where B(t) is a Brownian motion independent of W(-) (however, note that (4)
has no rigorous meaning).

When £>0 X° may be regarded as a diffusion model of a random walk in
a random environment discussed by Kozlov [14], Solomon and Kesten-
Kozlov-Spitzer [10]. When £=0 X° is a diffusion model of Sinai’s random
walk in a random environment ([17]). The asymptotic behavior of {w(t), 2}
as t— oo when £=0 was discussed by Schumacher and Brox [1]. They
showed that {w(?), ¢°} exhibits the same asymptotic behavior as Sinai’s random
walk, namely, that the limiting distribution of (log ¢)"’w(t) as t— oo exists (see
also [2], 8], [11], for related works). When £>0 (in particular when
0<k<1) it was an open problem to obtain results for X° which are (or at least
expected to be) similar to those of Kesten-Kozlov-Spitzer [10]. The purpose of
the present paper is to give some answer to this problem.

Let T,=inf{t>0: w(@®)=x}, @¢)=max {w(s) : 0<s<t} and w(t)=inf {w(s) : s=t}.
Then our result in the case >0 is the following.

THEOREM 1. (i) If 0<k<1, then
(5) lim @*{x T, <t} = F(f), t>0,

(6) Eim P o) <x} = 1im Pt < x}
=lim P {t @) <x} = 1-F.(x7Y%), x>0,

{00

where F, is the distribution function of a one-sided stable distribution with Laplace
transform exp(—cA*); the constant ¢ is given by

c= {21"‘]’(1:)800 dx }_l

o u(x)?

where u(x) is the solution of

d d e
Y fg;-u—-Zu, w0 =1, u'{0)=0,
the function M(x) being given in [Lemma 1.

(i) If k=1, then

(7) (xlogx)*T, converges to 4 in probability with respect to P° as x— oo ;

(8) each of t™'(logt)w(t), t™'(log t)w(t) and t7'(log t)w(t) converges to 1/4
in probability with respect to P° as t— oo,

(iti) If k>1, then

. 4 .
(9) il_rg T./x = PR P-a.s.,
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(10) lima(t)/t = £

P-a.s..
{00 4 ’

The assertion (i) can be slightly strengthened as follows.

THEOREM 2. Let 0<&<1.

(i) The process {A"Y* T, x=0, P° converges to {L(x), x=0} as A— oo in
the sense of convergence of finite dimenstonal distributions, where {L(x), x=0}
is an increasing stable process with Laplace transform

E{exp(—§L (1)} =exp(—c&F), £=0.

(i) The process {2 *w(At), t=0, P°} converges to {L7'(t), t=0} as A— o in
the sense of convergence of finite dimensional distributions, where

L™Yt) = inf{x>0: L(x)>t}.

In the case of random walks, results similar to (5) and (6) were obtained by
Kesten-Kozlov-Spitzer and results similar to (7), (8), (9) and by Solomon
[18]. Our method of proving (9) and is similar to that of but as for
(5), (6), (7) and (8) our method is different from either of and ; it is
based on Kotani’s formula (see § 1) which reduces our problem to the study of
limiting behavior of another diffusion process described by a certain stochastic
differential equation with non-random coefficients. In proving (5) and (6) we
must also use Kasahara’s continuity theorem ([7]) concerning Krein’s corre-
spondence ([6]) between the m-measure and the spectral measure (or more
precisely the h-function) of a one-dimensional diffusion operator.

ACKNOWLEDGMENT. The authors wish to thank S. Kotani for valuable
discussions on the subject and for permitting us to contain his formula
here.

§1. Kotani’s formula.

The following formula was obtained by S. Kotani in 1988 in his study of
the limiting distribution of (log?)~%w(¢) in the case £=0 (unpublished).

Koranr’'s ForRMULA, Let 2>0. Then for t=0
t
(L.1) EY{e 3Ty :exp{—SoU;(s)ds}, Pas.,

where U ,(t) is the unique stationary positive solution of

1

(1.2) dU () = Uz(t)dW(tH—{Z,H— ;” U;(t)—U;(t)z}dt.
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PROOF. Taking an arbitrary but fixed a >0 we put for 0<{<a

u(t) = 1/E¥{e™*Tt}, v(t) = Effe Ta},
Then

Efyle™*Ta) = By {e™™1) Efy {e*0)
=uv)/ul), P-a.s..
Since Lyv()=2A(t), t<a, u(?) also satisfies Lypu(t)=2Au(t), t>0, or equivalently
(1.3) d{e O/ (p) = 20e VO updt, 1> 0. a
If we put U,;@®)={logu®}' =u'(t)/u?), then U,(t)>0, P-a.s.. Since u(t) and U ()

are adapted to the filtration generated by {W(¢)}, we can apply It6’s formula to
compute the stochastic differential dU;(f). Using we have

dU (&) = d(u'(Ou@®™)
=desOu e s Dult)™)
= e"eOyut) e VO u' (1))
+e ey Ou) 'de” e —e We®y (1)e" e Dy () 2d u(l)

= 2Adt+u'Ou@) T dW (O+27w Gu) dt— {u' (Qu) "} 2dt

— U;(t)dW(t)+{22+’ 1'2"“

For h>0 we can write u(t+h)=u(t)fi(h) where

Uz(t)—’Ul(z‘)z}dt.

i(h) = 1/Efy{e™*Teen} £ u(h);
in the above “Z£” means the equality in distribution. Therefore

U, () = u'®u@)t = ;Li?g_ﬁ(ﬁh,)_—_l

£ 1L
Rrio

= w' (0)u(0)™ = U,(0).

=u'(0)

This implies that U;(¢) is a stationary solution of [1.2). The uniqueness of such
a solution follows from Theorem 18 of It6-Nisio [5].

§2. Kasahara’s continuity theorem for Krein’s correspondence.

Krein’s theory of strings ([6]) has many applications to diffusion processes
(e.g., see [12],[13],[20]). In this section we do not give the general theory
but list some of the results of Kasahara on Krein’s correspondence that
will be useful for our later discussions. For a general statement of Krein’s
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correspondence theory it is convenient to consider inextensible measures (e.g.,
see [20]). From the view point of its application to the present paper, however,
it is enough to consider simply Radon measures in [0, o). Thus suppose we
are given a Radon measure m(dx) in [0, o). We exclude the trivial case where
m(dx)=0. The associated function M(x) is defined by M(x)=m([0, x)) for x>0
and M(0)=0. Consider the generalized differential operator .L=d/m(dx)-d/dx
and let ¢(x, @) and ¢(x, a) be the solutions of Lu=au with the initial condi-
tions

2.1) u0 =1, u'0)=0,
2.2) u@0 =0, uw©=1,

respectively. For x>0 ¢(x, a) and ¢(x, a) satisfy

2.3) o, 0 =Lt+al| ot amdady,

0=z

2.4) o(x, @) = x+a§§0§z<y<x¢(z, aym(dz)dy .

The pair {p(x, @), ¢(x, a)} is called the system of fundamental solutions asso-
ciated with m(dx). It is known that for a>0

o dx

(25) h(a) = }:I[;gb(i(, a)/§0<x, a) = SOW

exists. The function A(a) is called the characteristic function of m(dx) or of
M(x). The following (2.6), (2.7) and (2.8) are also known.

(2.6) The correspondence between m(dx) and h(a) is one to one
([6], see also [137]).
2.7 a"'h(ca) is the characteristic function of acM(ax) for arbitrary

positive constants a¢ and ¢ ([7]).

Assume that <o is not regular for £, namely,
that at least one of the integrals

I mtnax, [ dymx
(2.8 0<Y<ELee 0L Y < TLo0
diverges. Then for each a>0 a positive decreasing solution

u of Lu=au with «(0)=1 is unique and expressed

as u(x)=oe(x, a)—¢(x, a)/h(a) ([4D).

We now state
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KASAHARA’s CONTINUITY THEOREM ([T]). Let m,(dx), n=0, 1, ---, be Radon
measures tn [0, o) with associated functions M,(x), characteristic functions h,(a)
and systems of fundamental solutions {@p.(x, @), ¢n(x, @)}. Then the following
statements are equivalent to each other.

(1) M,(x)— Myx) as n— oo at each continuity point x of M,(-).

(ii) For x=0 and a>0 ¢n(x, a)— @o(x, a) as n— o,

(iii) For a>0 h,(a)— h(a) as n-— oo,

§3. Proof of Theorem 1 in the case 0<k<1.

Let U;(t) be the diffusion process appearing in Kotani’s formula and put

Vi) = o7 Us0).

Since V;(?) satisfies the stochastic differential equation

1—k

2

4V = Vi@dW O+ (1+=5 2V 20 —23V 27t

the generator of the diffusion process V(f) is L ,=d/mi(dx)-d/dS(x) where

E 2
J— -1
3.1) S(x) = Sl y exp(—y +4Xy>dy ,
2
— -£—1 —_
3.2) maldx) =2x exp( 5 —4,2x)dx.
We also put

720 = VA2 @), Ya@) =SV,

where A7!(t) is the inverse function of Ag(s):S:V;(u)du. The generators of

V1) and Y ;(¢) are denoted by T, and LY respectively. .£$ is then given by
Li=d/mYydx)-d/dx with
3.3) miy(dx) = 201(x)'““exp{-——flA—&wz(x)}dx ,

0:(x)
where 6;(x) is the inverse function of S;(-). The path space representations
of the diffusion processes with generators .£;, £; and .£} are denoted by
{w(®), t=0, P$}, {w(), t=0, P}} and {w(?), t=0, P} *}, respectively. The expecta-
tions with respect to Pf, P{ and P$® will be denoted by E%, Ef and E%?,
respectively. We begin by proving the following lemma.

LEMMA 1. For any x>0
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(3.4) l}frol ATEMRATx) = M(x),
where M;(x) is the associated function of m%(dx) and

M(x) = 2r(p™'(x)),

x

y) = yeendy,

o Y(x) is the inverse function of p(x)= S:y”“le‘ydy.

PrROOF. By an easy computation we have for x>21

Sa(A71x) = A7Fpa(x),
where

pa(x) = S:y“‘exp(%iw%y)dy.

It is also easy to see that p;(x)— p(x) as 4|0 and hence S;(A7'x)~ 27%p(x) as
210. Therefore for any e=(0, x) S:(A7(x—¢))<A *p(x) holds for all sufficiently
small 4>0. In other words

(3.5) AN (x—e) < 0247 %p(x)) for all sufficiently small 2 > 0.
Similarly
(3.6) AN (x4¢) > 0:(A"p(x)) for all sufficiently small 2 > 0.

Next we note that

Mi(x) = 25

0 2(x)
1

z exp(——%—SZz)Si(z)dz ,
and hence

M4 p(x)) = 2

SGR(X“"‘O(J))
1

z*‘exp(~-§——422>dz.
This combined with (3.5) and (3.6) yields

A~ l(z-o) 2
3.7 251 2 rexp( —=—4z)dz < Mi@*p(x)

Sl‘l(r+e)

<2 z“exp(—%—lllz)dz

for all sufficiently smail 4>0. Since
A=le —K 2 J— k=1
251 z exp( p; —42z>dz =24, (%)

where

1(0) = S;y'”exp(—gyi—fly)dy,
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yields
7(x—e) < My p(x))/ @A) < 7a(x+e),

which again yields
lim M (A% 0(x))/ @A) = y(x),

because y,(x)—y(x) as 1] 0. Taking p7'(x) instead of x we obtain
lzigl M(A7*x)/RATY = (07 (%)),

which proves Lemma 1.

By virtue of Kasahara’s continuity theorem and (2.7) yields the
following lemma concerning the characteristic functions 4 ;(a) and h(a) of M;(x)
and M(x) respectively.

LEMMA 2. lzir}ll‘h;(ka):h(a), a>0.
0

 Let r=inf{t>0: w@®=1}. Then for x>0 and a=0
(3.8) Ef{{exp(——alS:w(s)ds)} = E3{e~a%) = EYSu@ fgmaio}

where o=inf{{>0: w{)=0}. For a given a>0 determine a,(>1) by S;(a;)=a.
Also let

x 2
—— £—1 y
S(x) = Sly exp(y)dy,
and determine ao(>1) by S(a,)=a. Then a; 1 a, as A|0.

LEMMA 3. If 0<k <1, then for a>0

(3.9) 1—E§”{exp(-ax§:w<s>ds)} ~ c(a, @)X as 210,
where
(3.10) c(a, @) = a/ha).

PROOF. Since oo is not regular for .9, (2.8) implies that for each a>0 a
positive decreasing solution u;(-, @) of L%u=au with u(0)=1 is unique and
expressed as

3.11) u(x, @) = @a(x, a)—Pa(x, a)/hy(a),

where the pair {p:(x, a), ¢i(x, @)} is the system of fundamental solutions asso-
ciated with mj(dx). By we have

(3.12) E?‘{exp(~—al§2m(s)ds)} = ux(a, ad).
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By making use of and with m(dz) replaced by m3(dz) we can easily
prove that

01z

a ) - 2
(3.13) 01(a, ad)—1 = 2a2§0 dxg y’”exp(—?ﬂélly)dy—l*o(l),

1

(3.14) $i(a, ad) = a+0(A),

as 410. Denoting by 6(x) the inverse function of S(-), we have

. pai(a, ad)—1 (e (0 2 .
(3.15) lzlgl———*‘hz _Zgodxgl y exp( y)dy—const..

From [3.12) and [3.11)] we have

1- EgHfexp(—ad| w(s)ds)} = 1-ga(a, a+¢ata, ad/haad),

which combined with [3.15), 3.14) and finally implies (3.9).
The idea of the proof of (5) of is as follows. We want to
compute
1}3} e {exp(—AT z3-x,)}

which, by virtue of Kotani’s formula, equals
ATk
(3.16) lim E{exp(-so Ui()ds)}
-
0

= 21:101 E{exp(—ZlS EtVl(s)ds)}

Il

lim E4» {exp(—zzgjww(sw s

{0

where E4%2 denotes the expectation with respect to Pﬁ‘isgy;(dx)Pf, ¢z being
the invariant probability measure of the diffusion process with generator .[;.
We first compute

. " 15

lim £ ‘{exp(—ZlS w(s)ds)},

230 0

with the starting point a; defined by S;(a;)=a, by showing that S tw(s)ds
0

can be approximated by ES w(s)ds where o, and 7, are defined as follows:

Tk
Op~-1

6o=0, tp=inf{{>0,:0t)=1}, k=1,

oy =inf{{>7,: 0()=a,}, k=1

Note that ¢.—0c:_:, #=1, are i.i.d. random variables.
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LEMMA 4. (i) mi=E*{a,)=am;(R") <o, A=0, where R*=(0, ).
(i) For any £¢>0 and A=0

3.17) P}”{ gn'i—mzl>e}~ 0 as n— oo,

and the convergence is uniform in A<[0, 1].

PrOOF. For 5>0 and x>0 let I=(x, b) and J=(0, y) or I=(b, x) and J=
(v, =) according as 0<x<b or 0<b<x. Let o=inf{t>0:w()=>b}. Then it is
well-known that

(3.18) Ei{o} = a5: matd2)

holds (note that —S;(0)=S;(0)=cc is also taken into account in deriving the
above formula). By virtue of we can easily compute m;=E7*{t;}+
E3*{g,—7,}, obtaining (i). The assertion (3.17) is nothing but the law of
large numbers for i.i.d. random wvariables. Only the uniform convergence
needs proof for which it is enough to verify the uniform integrability of
{o,, P}* 0<2A<1}, namely,

(3.19) lim sup S ¢, dPH =0,
(‘71>N)

N-ooo 0sisl

We use the fact that the diffusion process {w(f), t=0, P74 can also be realized
as a solution of the stochastic differential equation

(3.20) dVt) = V(t)dW(t)+{1+—1I2‘~"-V<t)—zzv<t>2}dt

with V(0)=a,;. Then a comparison theorem in stochastic differential equations
implies that the solution of lies below the solution of [3.20) with A=0.
From this observation we see that

3.21) Pz, >N} < Pi°{r,>N},
and by a similar argument
(3.22) Pi*{e,—7,>N} < Pi{e>N},

where ¢=inf{t>0: w(t)=a,}. Thus follows from [3.21) and [3.22). The
proof of the lemma is finished.

We are now in the final stage of the proof of in the case 0<x<1.
For fixed t>0 and small ¢>0 we put

ny(A) = [A7t(L—e)/my], ny(d) = [A7*t(1+¢)/m,].

Then the uniform convergence of (3.17) implies
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lim P%*{‘i’%‘)—’—mz l Smee} =0, i=1,2

Since m; —my as A0 we have

s paaf| Tngy
(3.23) lim P; {l e —m,

and in particular
lim P3H{o s, <mi(Dmo(l+e)} = 1.
But n,(A)my(1+¢)<A™* for all sufficiently small 2>>0 and hence
(3.24) lim P§1{0n1(1)<2—"t} =1,
A0
Similarly we have

(3.25) lim P}”{onz(z>>2"‘t} =1.
Ad0
Next we put

Y, :S”’ w(s)ds, Z,,:S"”w@)ds, h=1.
Ip~1 Tk
Then on the event Ai= {0, <A *t<0n,w)}
ny(d) 21—kt N9 (D)
= (a2 < SO ws)ds < 2 (Va+2Zy)

holds and hence
E}”{exp(—Zln:Z]:(Yk—i—Zk)) ; A;}
< E;‘z{exp(—ﬂg:—”w(s)ds); A}

ny(A)

< Efexp(—220 T (V4+20); Ai},

where the notation E7*{X; A} stands for the integral of X over A with respect
to P3*. Since P3*{A;}—1 by [3.24] and [3.25),

le(l)

(3.26) Egexp(—22 £ (Va+Z0)}
< E%k{exp(—sz:_"w@)ds)}+o(1)

nl(l)

< E}”{exp(~22 2 <Y,,+Z.))}+o<1),

where o(1) indicates a term which tends to 0 as 2] 0. We now compute
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n; ()
N
lim E54exp(—24 2 (V4+20)}
= lim E3*{exp(—24Y )} - Ef{exp(—24Z,)} "D,
+0
By we have
(3.27) lim[ Ef*{exp(—22Y )} 1 = lim {1—c(a, 22"
30

= exp{—c(a, 2){(1—¢)/mo}.
Similarly we have

ng(d)

(3.28) lim E;‘l{exp(—zz 5 Yk)} — exp{—c(a, 2)(1+e)/mo}.

A0 k=1
On the other hand, we have

n;(4)

20 5 Zx <240;00,0 < 20,27 1 +Emg o n, 1/ ni(4)

which tends to 0 in probability as 2| 0 by virtue of 0<<«k<1 and (3.23). Therefore
7 ()
H az —_

(3.29) lim £ «{exp(vZZ 3 Zk>} =1.
From [3.26), [3.27), [3.28) and [3.29)] we have for any ¢>0

A
0

exp{—c(a, 21(1+¢)/mq} = lim inf E?‘{exp(—Z,{S "w(s)ds)}

< lirr;ﬁup E?*{exp(—ZlS:_”w(s)dS»
= exp{—c(a, 2)i(1—¢e)/m,},
which implies
-
0

(3.30) lim Ei”{exp(—ZZS ”w(sms)} — exp{—c(a, 2t/ma}.

LEMMA 5. For any t>0

Ak

(3.31) lim E{exp(—So tUg(S)dS)} = exp{—c(a, 2t/ma}.

PrOOF. Note that by the left hand side of equals

Ak
0

lxia;l E/,fl{exp(——?,lg Ew(s)d s)}» )

Let g,=inf{{>0: w(t)=a;} and put I",;: {e,<u}. Then using the strong Markov
property we see that ‘
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E’,{*{exp(—%g:_xzw(s)ds) T

is bounded from below by
7 @ Akt
Eﬁ'z{exp(—ﬂgoow(s)ds) : Fu}-Eﬁ{exp(—ﬂgo cu(s)ds)}
and is bounded from above by

ATE(—2ku)

E;‘*{exp(-zzs w()ds)}

0

Taking into account of the fact that P5*{/",} —1 as u— co uniformly in 2€(0, 1)
and also of [3.30), we first left 41| 0 and then u | . As a result we obtain [3.31).

The proof of (5) in Theorem 1 is now completed as follows, By Kotani’s
formula we have for £>0

Eexp(—E&T,/xMr)} = E{exp(—S:Ufrxu(s)ds)}

= E{exp(~S:_K£Uz(S>dS)},

where we put t=&* and A=&x7'/*. Letting x —co (so 4] 0) we obtain
lim&® {exp(—&T,/x"%)} = exp{—c(a, 2)t/m,} = e ¢ = ¢~ ¢,

where ¢={2'"*]"(k)h(2)} 7!, because c(a, 2)=a/h(2) and

oo

my = amy(R*) = ZaS x ey = 224 (k)a

0

by and (i) of
Finally we prove (6). Clearly we see that for any #>0, y>0 and >0

(Tuzt) C BO=1) C lo®)=u} C {abO<u}
C {Tury 2t inf a(9)—(u+5)= -3},
2Lty

We notice that

3.32)  lim gw{ inf @(s)—(uty)=<— y} — lim _CP“{infw(s)_S_ _ y} —0
Yoo Yoo $20

SZTU‘I—y
since w(s) — oo as s ] oo, P%a.s.. Therefore we have for all x>0
(3.33) PUT ezt < P o) <trx} < Po@)Strx}

< POtU £ S {Tiey 2t +2{info(9= -}
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For any sufficiently large fixed y, the result (5) ensures
Hm PUT e, =t} = Hm P{T iry, , 21}
t—co {-s00

= lim @ o Ty 2515} = 1—Fy(x %),

V-0

which combined with (3.32) and proves (6).

§4. Proof of Theorem 2.

For the proof of (i) it is enough to show that
@) lim@fexp(— 2 &4 (T oy~ Tin, )} = exp{—c 3 (ra— 208}

for any &, &, -+, £&,20 and 0=x,<x,< --- <x,. Take an ¢ such that 0<e<
min{xz—x,_,:1<k=<n} and let us prove first that

42 limefexp(— 3 &4 (Tacry-0—Tazyo))} = exp{—c 33 (xa—xsi— )i}

In what follows T,.,=T.(w) denotes the first passage time inf{{>0: w(t)=x}
where x may lie either to the right or to the left of w(0). If we put
Fl.k = Eéka—l {eXp(-'ng—l,xTX(rk—e)); T, (xk-s)<T2(zk_1-s)}»

Gax = EfFr-1{exp(—&:d " Trzy-0) 3 Tiwp-0 > Tazye -0}

then

(4.3) Eyfexp(— 3 627 (Tacep-0—Taz,2))}
= ,,li Efpr-1{exp(—&ed ™ T 1¢z -0}
= InI (F2,64+Ga.e).

k

1

Making use of a trivial inequality 0=TI7-1(@s+bs)—TIIi-1 @+ = 2% b Which holds
under the assumption that a,, ,=0 and a,+b:<1 (1<k<n), we have

4.4) 0

IA

{1 o—E{ 1

= é E{le} = élﬂ)lxk‘l{T,z(rk_5)>T1(xk_l_g)}

Alzp-e) Azrp-e)
{S ewcmdx/g ewr“’dx}
k=1 22— Az p_q-e)

x
it
—

Il
M=
o]
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n Arp-zp—1-8) Az p=2p—q-6)
— 2 E{S E=Tk-1 eWW/*”k-”a’y/S E~Tk-1 eWx(waxk_l)dy}

k=1 (] -2
n Ax =2 peq-8) Az -2 p—y-8)

=3 E{S E=Th-1 eWx‘y’dy/S k-Thr-1 eWx‘y)dy}
k=1 0 ~Ae

(since W, has stationary increments)
<ne{["mwdy /7 mwdr} -0, 21—,
0 -2

On the other hand it is easy to see that

(4.5) E{ILIIFL,,} =1 B{F3.4} ,
(4.6 lim E {Fy, s} = lim E{Fs s+ G .4}

= gi_l:l:é’o {eXp(—SM—”"Tx (zk-xk._l—s))}
= exp{—c(xs—xp_1— &)k},

the last equality being a consequence of (5). From (4.3)~ (4.6) we obtain (4.2).
To derive (4.1) from (4.2) it is enough to notice that

0= efexp(—~ 2 &A™ (Tacey-0—Tiz,)}
—&{exp(— X EedN(Tiry— Tz, )}

< 80{1—exp(— élskl'”‘(Tuk—Tz(zk_w))}

3

§ k=180{l_exp(_gkznllx(Tlxk—Tz(Ik—£)>)}
= 3 € {l—exp(—£4d T 10}

- ;‘::1 {l—exp(—ceéf)} as 2— oo

—0 ase]0.

The proof of (ii) can be done in a way similar to (6). In fact, as in
we have for any £, >0, x,>0 (1=<k=n) and y>0

PUT 160, 2 Ats, 1<k <n}
< P RAFOAL)E Xk, 1<k <0}

< P{Tinsyy 22, 1Sk S} +n{finfols) <~}
8z
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Letting A1 oo in the above we obtain
lximEP"{Z’”w(Ztk)éxk, 1£k<n}

= P{L(xp)=te, ISk=Zn} = P{L7 () S xs, 1Sk <n}.

§5. Proof of Theorem 1 in the case x=1.

Assume =1 and recall
t
G.1) EY {e~3T1) = exp{——Z,ZS Vl(s)ds}, a.s.,
1)

where V;(£)=(22)7'U;(t) is a stationary diffusion process with generator

d d

wherein
—_ z 2 —_ -2 2 -
Sa(x) = Soexp<—y +4zy)dy, ma(dx) = 2x exp(~~x —4,2x>dx .

Once the following proposition is proved, (7) of follows immediately
from [5.1).

PROPOSITION 1. For any A>0
(5.2) (x log x)'lg:V“x og m-i()dt — 2 in probability as x — co.
Before proving this proposition we prepare three lemmas. We put for £>0

ag = me(R+)“S:x me(dx),

Ue(x) = S:dSe(y)S:(z~ae)me(dz).

LEMMA 6. ag~ —2logé& as §0.

PROOF. a; can be expressed as a,=2mg(R*)™*(I¢+4-1I;) where
N o
I = So xtexp{—2x7'—4&x}dx, Il= SNx“eXp{——Zx"—%x} dx .
For fixed N>0 I; remains bounded as & |0 and e "I} <[[,<II{ where

! — °° -1,-4&2 — ® -1,y ~Y —
II¢ SNx e %%dx vay e Vdy log &
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as § 0. Thus the lemma is proved since mg(R*)™'—1 as § 0.
LEMMA 7. sZS:ue(x)eme(dx)—»o as €1 0.

PrROOF. In what follows const. means a constant which is independent of
& but may vary from place to place. First we prove

5.3) 0 < —ug(x) < const. x Iog—;— for 0 < x < a;.

The restriction 0<x<a, implies
0 < —ug(x) = ZS:exp {2y 448y} d yS:(ae—z)z’zexp{—22“—452} dz
< 2a5S:exp {2y714+4&y} dyS:z‘zexp{——Zz“-%z} dz.

Since 0<y<x<ag~ —2logé§ as £ |0, we have 0<Ey<§a,—0 as §| 0. There-
fore

—ug(x) =< const. log-l—S:exp {2y~ dySZz”exp{—-Zz"} dz < const. x logi

§ §

as was to be proved. Next we prove

(5.4) 0 < —ug(x) < const. x logi-%-const.—l—logai for x > ag.
¢

& &

Since
y 00
—So (z—ag)me(dz) = Sy(z——ae)me(dz),
—ug(x) can be expressed as —ug(x)=2(/+1I), where

0<I= ZS:Eexp {2y 11489} d yS:(ae—z)z“zexp{—-22“——4&2} dz

< const. x log—é— (by ,

x

exp {2y +46y} d yS:(z~ae)z"2exp{—22"——4&2} dz
o

< ZS;exp 2y~ 448y} d yS:z"exp (—d&z) dz.

o<11¢2§

If we put g(y)zswz“e“f‘dz, then
v
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gly) = r uTle *du < (46y)7'e ™Y,
48y
and hence

1= 2] exp{2y™ 469} - (46y) e vy
ae‘
lcz dy 1 x
< const.——S —— = const.—log— .
§Jag vy £ %,
This proves [5.4). We can now complete the proof of as follows.
From [(5.3) and we have

SZS:ue(x)sz(d x) < const. (& 1og—1—)25;‘f exp{—2x~'—4€x}dx

3
1\2(=
—{—const.(&log—)g exp {—2x~'—4Ex} dx
E ag
« _JE_Z -2 Ay § -2 .
+const.5a$(log ae)x exp{—2x 4xtdx

< const,({-‘ logé—>25je—4ezdx

oo

+const.g (log(%)zxwdx

ae
const,
ag

= const. 5(1og%)2+ Sj(log ¥y y

-0 asé]0.

LEMMA 8. (1og-é)"5g';°|u@(x)lzxzmewx)—m as £ 10,

PrROOF. First we prove
(5.5) 0 < —ug(x) < const. logé for 0 < x < ag.

Under the restriction 0<x=<a, we have
0 < —ui(x) = 2exp 22 +4¢x} | (ee— )y 7exp(—2y7' 485} dy
< 2agexpi2x i +48x} |y texp =2y —agshdy
1 z 1
< const. loggems y 2 ¥Vdy = const. logg.
0

Next we prove
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(5.6) 0 < —uf(x) < const. e**=p(4éx) for x > ag,

where
o(x) = Smy“‘e"”dy.
In fact, if x>a; then

0 < —uf(x) =2exp {2x“+4§x}S:(y—ae)y“2exp{——2y“—4§y} dy

< const. e““&wy"e"fydy
x
= const. e***p(4€x).

Now the proof of Lemma 8 is completed as follows.

(1og-¢) ¥ 1utto xtme(n)

< const.SlogéS:‘eeXp{—Zx"‘—%x}dx (by (5.5)

< const.&log-l—-ae—e 0 as &0,

3
To estimate the integral over (ag oo) we notice that

e */x as x — co,

) ~ log—i— as x 0,

and hence e“¢(x)*< L0, o). Therefore

| (log—;—)_ISS; | ub(x) | 2xtme(d x)

< const, S(log%)—lng e**p(4&x)’dx (by (5.6))

:const.(log%)—lgz e*p(x)dx
4 ae

—0 as &£]0.

We now proceed to the proof of [Proposition 1. Since Leug=x—ae an
application of It6’s formula yields

we(V () — ue(Ve(0)) = S;ug(Ve(s))Ve(s)a’W(s)JrS:(Ve(s)—ﬂf)ds.
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Putting t=x, §=4(x log x)”! and multiplying the both sides of the above by
(x log x)"! we have

6.7  (xlog x)“S:(VE(s)——ae)ds
= (x log x)™ {ug(Ve(x)) —ue(Ve(0))} —(x log X)“S:ué(Ve(S))Ve(S)dW(S) :
The distribution of V¢(s) is cgme(dx) where ¢ is the normalizing constant which

tends to a finite value as £] 0. Therefore the second moment of the left hand
side of is dominated by

const.(x log x)‘zg:ué(y)zme(d )+ const.(x log x)‘sz:I ug(y)12y*me(dy),
which tends to 0 as x — oo by virtue of and Lemma 8 because

2. A, = N
(x log x) -x 2(log ) & as x — oo,

This combined with

(x log x)"S:aeds —2 as x—

proves Proposition 11 -

The assertion of (7) of follows immediately from [Proposition 1.
The assertion (8 can be derived from (7) by a method similar to that used for
deriving (6) in §3.

§6. Proof of Theorem 1 in the case £ >1.

For any integer k=1 we put t,=Tr—T,_,. Then for any A, Ay, -+, 2,=0
we have

6.1 Biyfexp(— 2 4ua)} = 11 BW fexp(— Az}
=11 f(Ts W, 2),
where f(W, )=EW{exp(—AT,)} and I',: W—W (for fixed x) is defined by

(VY »)=W(x+y)—W(x) for any yeR. From and the ergodicity of {I",}
it follows that {r,, k=1, #° is stationary and ergodic. Therefore

6.2) lim—Lr = fjm S

n—o N n-+co n

= &%z}, Pa.s..
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The condition £>1 is equivalent to the finiteness of &°{r;} as will be seen
below. First we compute Ej {T,} ; the result is
1 . x
BTy} = [ aSw@|” mwidy).
Therefore

&' m} = E{Ww(T)}

- 25 :‘”S " EfexpWum)— W)} dy = ;%

Thus (9) follows from [6.2). Next we prove [(10). Clearly @()— o as t1
(#*a.s.) and for any ¢>0

Taw < t Taw +e
o) ~ @) w(f)

Letting ¢ 1 « in the above we obtain

t 4
lim— = ——, @®%a.s.,
Cmalt) | k-1

which means that the left hand side of equals (k—1)/4, a.s.. To prove that
the second and the third terms of equal (.—1)/4, a.s., we put 8(n)=(1—c¢)
-(k—1)n/4 for an integer n=1 and for 0<e<1. Then

.czw{ inf w(s)—e(n><—«/7}

$zT(n)

- E{P%">(§2§w(s)—0(n)<~ﬁ )}
— 90{25 o(s)<—'n } .

The last term in the above is a general term of a convergent series by the
result of [9]. Therefore an application of Borel-Cantelli’s lemma yields

(6.3) inf w(s)—0(n)=—+v'n

32Tg(n) v
for all sufficiently large n, @%a.s.. Since Tymy/n—1—e as n— o (P%a.s.),
(6.3) implies
(6.4) ix;fw(s)—()(n) > —a/n

for all sufficiently large n, ®%a.s.. For t>0 we now take n=n(f) such that
n<t<n+1. Then implies
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(6.5) f(n)—v'n < w(n) < o) < 0t) <o)

for all sufficiently large ¢, #%a.s.. Dividing by ¢ and then letting ¢ o
we finally see that the second and the third terms of equal (k—1)/4, P'-a.s..

§7. Remark to the case x=0.

A limit theorem concerning @(f)=max {w(s): 0<s<#} was obtained by Kotani
(1988), Ogura (1989) and Kawazu-Tanaka (1989) independently and by different
methods (proofs were unpublished). The result is as follows. Let >0 and put

W#(x) = W(x)~E min W, xR,

N0, TVO]
df = min{x>0: W#(x)=t}, V{= min W,
[o,dﬂ
dy = max{x<0: W#(x)=t}, Vy= min W,
[ez.0]
and define bf and b; by W(bf)=V§ (such bj are uniquely determined P-a.s. for
each fixed ¢>0)., Let

Mt =max W, Ji=Miv{Vi+1),
[o.57]
Mi=maxW, Ji=Miv{Vi+t),
Loz, 0]
and finally define b# by

e { min {x >0: W#x)=t} if J < ]Js,
T minx>0: Wx)=J7) if J¥> Jr

Then the process {A %@(e?t), t>>0, #°} converges to {b#, >0, P} as A— o in the
sense of convergence of finite dimensional distributions. In particular, (log?) *@(t)
converges in law to bf as t—co and

Efe®f) = SE ety dx, £20,

where E% and T, denote the expectation and the first hitting time to 1, respec-
tively, for the reflecting Brownian motion on [0, ) starting at x.

The corresponding result in the case of random walks on {0, 1, 2, ---} with
reflecting barrier at 0 was obtained by Golosov [2].
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