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1. Introduction.

Let us consider the principal fibre bundle

(1.1) $(P, q, B, G)$

with structure group G. $G$ acts on $P$ freely.
Then one can consider the space of (unbased) $G$ -equivariant self-homotopy

equivalences of $P$, which we denote

(1.2) $aut_{G}(P)$ .

We define

(1.3) $\mathscr{F}_{G}(P)=\pi_{0}(aut_{G}(P))$ .

We call this group the group of $G$-equivariant self-equivalences of the
principal fibre bundle (1.1) (cf. [4, 5]).

Also one can consider the space of (unbased) self-homotopy-equivalences of
$P$, which we denote

(1.4) $aut(P)$ .

We define

(1.5) $\mathscr{F}(P)=\pi_{0}(aut(P))$ .

We call this group the group of self-equivalences of the space $P$.
We have a natural homomorphism from (1.3) to (1.5) forgetting the G-action

(1.6) $\mathscr{F}_{G}(P)=\pi_{0}(aut_{G}(P))arrow\pi_{0}(aut(P))=\mathscr{F}(P)$ ,

induced by the inclusion $aut_{G}(P)arrow aut(P)$ .
In [3, Problem 13, p. 206] the author has raised the following problem in

1988: when is the homomorphism (1.6) a monomorphism.
At this point no examples are known, where this homomorphism is not a

monomorphism.
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In this note we give an example where this forgetting homomorphism (1.6)

is not a monomorphism.

2. Example.

Let $G$ be a compact connected Lie group which is not a torus, and let $T$

be a maximal torus of $G$ . We have the following principal fibre bundle with
structure group $G$ :

(2.1) $Garrow G/Tarrow BT$ .

We have the following homotopy commutative dlagram

(2.2) $G/T-EGBTBG\downarrow_{\underline{Bi}}\downarrow$

,

where $i:T\subset G$ is an inclusion.
We show that for the principal fibre bundle (2.1), the natural homomorphism

(2.3) $\mathscr{F}_{G}(G/T)arrow \mathscr{F}(G/T)$

cannot be a monomorphism.

EXAMPLE 1. The natural $map\mathscr{F}_{G}(G/T)arrow \mathscr{F}(G/T)$ is not a monomorphism.

PROOF. First we show that

$\pi_{1}(map(BT, BG),$ $Bi)$

is an uncountable group.
By D. Notbohm [1, pp. 156-157, 163],

(2.4) $\pi_{1}(map(BT, BG),$ $Bi) \cong\prod_{n\geq 1}H^{n}(BT, \pi_{n+1}(G)\otimes Z^{\wedge}/Z)$ ,

where $Z^{\wedge}$ is the completion of the integer $Z$ .
Since $Z^{\wedge}/Z$ is a rational vector space of uncountable dimension,

$\pi_{1}(map(BT, BG),$ $Bi)$ is an uncountable group.
We consider the Serre fibration induced by the principal fibre bundle (2.1)

$aut_{G}(G/T)arrow aut(BT)$ .

Since $\pi_{1}(autBT, 1)=0$ , we have the following exact sequence by [4, Theorem
1.5], which is induced by the homotopy exact sequence of this fibration

(2.5) $0arrow\pi_{1}(map(BT, BG),$ $Bi)arrow \mathscr{F}_{G}(G/T)arrow \mathscr{F}(BT)$ .

By (2.4) $\mathscr{F}_{G}(G/T)$ is uncountable.
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Next we consider tbe group $\mathscr{F}(G/T)$ . By S. Papadima [2, Proposition],
$\mathscr{F}(G/T)$ is a finite group.

Therefore, the maP $\mathscr{F}_{G}(G/T)arrow \mathscr{F}(G/T)$ cannot be a monomorphism.

REMARK. One may think that the map (2.3) may be a surjection. Consider
the following principal fibre bundle of the form (2.1)

$S^{3}arrow S^{3}/S^{1}arrow BS^{1}$ .
$\mathscr{F}_{Sa}(S^{3}/S^{1})$ is isomorphic to the group of based $G$ -equivariant self equi-

valences $sS3(S^{3}/S^{l})$ , since $\pi_{1}(S^{3}/S^{1})=\pi_{1}(S^{2})=0$ . Hence any $S^{3}$-equivariant self-
equivalences on the total space $S^{3}/S^{1}=S^{2}$ induces an identity map on the fibre $S^{3}$ .

Therefore
$\mathscr{F}_{S3}(S^{2})arrow \mathscr{F}(S^{2})$

is not surjective.
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