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Introduction.

Let G be a finite group. By a G-U-manifold we mean a weakly complex
manifold with a free G-action preserving its weakly complex structure. The
group of bordism classes of closed G-U-manifolds is isomorphic to the complex
bordism group MU.(BG) of the classifying space BG [C-F]. If S is a Sylow
p-subgroup of G, the inclusion map induces a splitting epimorphism MU(BS) )
—MU4«(BG)y. Hence we need to know first MU4«(BG) for p-groups G. More-
over the Quillen isomorphism MU(—)p Z MU QppxBPy«(—) shows that we
need to know only BP«(BG).

When G is a cyclic or quaternion group, the graded module associated to the
dimensional filtration gr BP«(BG) is isomorphic to BPxQHx(BG) since Hpen(BG)
=0 [M]. By Johnson-Wilson [J-W], gr BP«(BG) is given for an elementary
abelian p-group using arguments to generalize Kiinneth formula. In this paper
we determine BP,-module structure of BPy«(BG)mod (p, vy, --+)* for nonabelian
groups of the order p®. For p=2, the new group is the dihedral group D..
The bordism group BPy(BD,,), ¢:prime+#2, was studied by Kamata-Minami
in early seventies.

Recall the Milnor primitive operation Q,=8, Q,=p'f—Bp' (=S¢*S¢'—Sq'Sq*
for p=2). For the above groups, we can extend the operation Q,; on H*(BG)
so that @Q,|H®**(BG)=0. Let us write by H(— ; @, the homology with the
differential Q,. Then we know (compare [T-Y])

gr BP¥(BG) = BP*QH(H*(BG); QUDBP*/(p, v)QIm @,

since d;p_=v,QQ,; is the only non zero differential in the Atiyah-Hirzebruch
spectral sequence. The similar fact occurs for the BPi-homology

gr BP«(BG) = BPys'H(H*(BG) ; Q1)DBPy/(p, vi)s ' H***(BG)

where s7! is the shift map which decreases degree by one. Here we use the
spectral sequence E,**=ExXtgpBP*(BG), BP*)=BPy«(BG). In particular, gen-
erators and relations are given explicitely for BPy(BD,) in the last section.
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§1. Bordism and cobordism.

Assume always G is a p-group. Let us write by H* (resp. HZ/p*, He*",
H°¢%) for the cohomology H*(BG) (resp. H¥(BG ; Z/p), H®*"(BG), H°**(BG)).
Recall that Q,,,=Q,p?"—p?"Q, (=Q,S¢*""'+S¢*""'Q, for p=2). In this sec-
tion we consider only groups which satisfy the following assumption.

ASSUMPTION 1.1. (i) p-HZ°%?=0, hence H°**CHZ/p°**. So we may de-
fine Q, on F°¢d,

(i) Q.|H°%? is injective for each n=1,

(ili) Qn(H°*H)CQ,(H°??) for each n=>1.

Define Q,|H®**=0 such that @Q,*=0.

LEMMA 1.2. gr BP¥BG)=BP*QH(H*; Q,)PBP*/(p, v,)QIm Q,.

ProoF. Consider the Atiyah-Hirzebruch spectral sequence
Ex* =~ H¥BG ; BP*) = BP*XH* — BP*(BG).
The first nonzero differential is di,_,(x)=v,QQ,(x) for x= H°?¢ since it is so
for H/p*. For xeH®*", d,,_,(x)=0 otherwise d.,_,*(x)=0 from the injectivity
of dip-1|H°?%. Hence we get that E,, is isomorphic to the right hand side of

the module in the lemma. Since Ker Q,=Im Q. SH(H*; Q,) is even dimen-
sionally generated, and so is F,,**. Therefore E,,~F.. q.e.d.

Given Z ,-module A, let us write by FA the Z,)-free module generated
by Z»-module generators of A. Let F(x) be a generator which corresponds x
in A.

THEOREM 1.3. There ts a BP*-module isomorphism
BP*BG) = BP*QFH(H*; Q)PFIm @,)/R
where R is generated, modulo (p, vi, ---)%, by Dueo Vo F(Q,Q: ' (x))=0 for i=0, 1,

and x=Ker Q,.

Proor. If x,=Im @Q,, then there is a relation v, %, +v.%:+ --- =0 from
1.2, for p(%,)=x, where p: BP—HZ,, is the Thom map. From Lemma 2.1 in
[Y] there is y in HZ/p* such that Q,(y)=p(X,), and y=Q,'x,. Since
BP*BG)Qpp«Z (py = H**" we have the relation in the lemma. For x,EIm Q,,
we also have the relation by the same arguments. g.e.d.

Now we consider the bordism theory. We also write by Hyx the homology
H«(BG). Since Hy is a torsion module, there is an isomorphism
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Hy = s7'H*  for =2,

where s7' is the operation decreasing degree by one. Note that if px=0, s™'x
=Q, 'x for x= H*.
Consider the spectral sequence

(1.4) E? « = Hx(BG ; BPy) == BPy(BG).

LEMMA 1.5. E®"y = BPys 'H(H*; Q,)PBPy/(p, vi)s *H%C,

Proor. First note HZ/px=Hom (HZ/p*; Z/p). Hence we can define the
dual operation Q,x in HZ/px. Since Q,Q,=—Q,Q,, we see easily

Qus'(Im Q) = s H?? .,

The first nonzero differential in [(1.4) is d.p.,=v:Q@x. Hence we get the
lemma. g.e.d.

We use here arguments by Ravenel and Johnson-Wilson [J-W]. Recall the
universal coefficient spectral sequence

(1.6) E** = Extgpl( BP¥BG), BP*) == BPy«(BG).
Given BP*-filtration in BP*(BG), we can construct a spectral sequence
(1.7) Go* * = Extgps(gr BP¥(BG), BP*) == E,**.
It is easily seen
LEMMA 1.8. ([J-W] Lemma 6.5.) Extgp{BP*/(p*), BP*)=s 'BPy/(p*),
Extpp« BP*/(p, v1), BP*) = s *?BP,/(p, v1).
Therefore from Lemma 1.2, [Lemma 1.5 and Lemma 1.8, we know
Extgps(gr BP¥(EG), BP*) = (E**y 4 in .

Since G,**=0 for 71, 2, so E,**=0 for 71, 2. Hence d,=0 for »=2 in E,**.
Therefore if we can prove

(1_"9) Go¥* = Go**
then we get
(E®?y & in Lemma 1.5) = G,** = gr E,** = gr E.** = gr BP«(BG).
Thus we can show
THEOREM 1.10. There is a BPy-module isomorphism

BPy«(BG) = BPxQFs™(H(H*; Q)PH***)/R
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where the relation R is generated, modulo (p, v, ---)%, by
D0 F(QnaQix's7H(x))=0  for i=0, 1, xe(H(H*; Q)PDH*?).

ProoF OF [1.9). Since G,"* is v,-torsion free but G,** is v,-torsion, we
only need to prove that each element in G,“* is permanent. By the map in-
duced from the inclusion BPy(BG")—BP«(BG), we may prove the above facts
for the BP-homology of an r-skeleton BGT.

Let us write a BP*-free resolution of BP*(BG")

0 «<— BP*(BG") «<— DBP*b; DBP*b;

d d
< ®BP*rOBP*;DBP*s; —— @BP*

where b; (resp. b;) are Z ) -basis for Im Q, (resp. H(H*, @,)), and
di(ry) = Re = pbi+ -+ t=i or j
dl(Sj) = Sj = Ulbj"*— ter .

Let |by|=max(|b;|, |b;|) and by H(H*, Q,). We will prove that we can
take new base s,, ;/, »;/ such that BP*ry’"NImage d,=0. Then the dual base
ry'* 1s a cocycle because o(ry'*(¢))=rx"*(dy{c))=0 for all ceBBP*. Hence by
induction we can see that all the elements in G,"* are permanent.

Suppose that there is a relation in BP*b,(DBP*b;

(111) pSn-}_len—i‘Z aij+aj/Rj: CRN

with a, ceBP* and |b,|Z\b;1=Z by, nxj. U c=pc’+v,c”, then put S,'=
S,—¢’'Ry and R,’=R,—c”Ry ; hence the relation (1.11) is reduced to a relation
without Ry. Therefore BP*ryMIm d,=0 in this case.

Thus we may assume c=2v,’ mod (vs, vy, ). Let b,=Q.,b and b,=Q,bx0
from Assumption 1.1 (ii). Moreover from the Assumption 1.1 (iii), b,=Im Q,, so
b,xbysH(H*, @Q;). Then with the modulo (v, vs, vy, ---) the relation is
written

j)(vzbq—{— )+E aij“l‘ a,-’Rj = /ZUZSRN.

Hence a;'R; contains the term —v,R,. Take R,/=(R,—Av,*"'Ry) and we can
deduce the case c=0mod (vs, ---). Continue these arguments and by dimensional
reasons we get the relation S, +v,R,’+ --- =0 which does not contain Ry.
g.e.d.

§2. @,-operation.

We give examples 2.1-2.3 satisfying Assumption 1.1.
2.1. G=Z/pxZ/p. The cohomology H®"=Z/p[v,, y.] and Ho%¢=Heve"g
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where |y;|=2, le|=3 and Q.e=y,""y,—y.y."".

2.2. G is a non abelian p-group of the order p°. Then G is isomorphic to
one of D, Q, E, M; the dihedral group, the quaternion group, the p exponent
group for odd prime and the metacyclic group for odd prime (see Lewis or
[T-Y]). The cohomology H®*" is generated by elements c,, ---, ¢p, ¥1, ¥s, and
He¢e is generated as a H*®*"-module by e (resp. 0, 4, and d,, e¢) for D (resp.
Q, E, M). Then we can take ring generators such that the @,-operation is
given by Qne=c;y,*" ' mod (c,’y,?) (resp. 0, Qnd;=c,y:*" ' mod (¢;*y:), Qne=
cpy2"" ' mod (¢,%y,)). Hence we can prove that Assumption 1.1 is satisfied for
these cases.

2.3. The semi-dihedral groups SD,. HZ/2* is detected by (D, Q) (see
L E-P]). Hence we get the assumption.

§ 3. Relation to other theories.

Recall that BP{n)>x(—) is the homology theory with the coefficient BP{(n)«
=Z vy, -+, vo]. Then similar arguments work for this theory.

PROPOSITION 3.1. [f Assumption 1.1 holds, then for nz=1,

BP{n>«(BG)= BP{n)>+Qpp«BPx(BG) and we get (see [J-W 2])
homdimgp:BP(BG) = 2.

Let us write by ﬁ(n)*(——) the homology theory with the coefficient ﬁ(n)*s
BP*/(UI; Tty Un—l);Z(p)[Un) '”]'

PROPOSITION 3.2. For groups in §2,
P(n)«(BG) = B(n)x Fs (H(H* ; Q.)BH*%)/R
where R is the same relation in Theorem 1.10.

Recall that f’(n)*(—) is the bordism theory of manifolds with singularities
of type (v, -+, va_;) and there is the natural map p:P(n~l)*(—)~+ﬁ(n)*(-—).
Hence H(H*; @Q,.,)CH(H*; @,) and each element in

sTHH(H*; Qn)—H(H*; Qr-1)) = s7/(Im Qn-y/Im Qr)

is represented by a manifold with singularities of type (v, -*+, v,.1) but not of
type (vly Tt vn—2>-

§4. Explicit description of BP«(BD).

In this section we write down BP«(BD) more explicitely. Recall D=
<a, bla*=b*=1, [a, b]=a’). The cohomology is given ([E], [L], [T-Y])
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4.1) He" = Z[y1, ¥3, €1/ (02 + D103 291, 292, 4¢0)
He = (Z/2[y1, o, ¢21/(¥:°+Y190))e
HZ 2% = Z/2[x,, x4, ul/(x,2+x,%,)

where x;*=y;, c,=u® and e=x,u in HZ/2*.
Since Q,u=ux, and Q,e=y.c,, we get

(4.2) H(H*, Q) = He*"/(Ideal (ys¢,))
= Z{1}BZ/2{y.", yot, y:16:t i =1} DZ/4{c.t iz}

where Z/a{b,, ---, bs} is the free Z/a-module generated by b, -+, bs.
From Lemma 1.5 and [Theorem [.10, we have

(4.3)  gr BP«(BD) = BPy {1} @BPy/2s7 {y.%, ¥.', y16:%}
PBP/4s e,y BB P«/(2, vi)s H{y.*cle, y.*cle|(k, 7)#(0, 0)}.

We will construct D-U-manifolds which represent elements in (4.3). Be-

fore doing this, we see how these generators in HZ are defined. Consider the
extension

4.4) 0—><a)=Z/4—>D—>b>=2/2—0
and the induced spectral sequence (see Lewis p. 510 [L])
4.5) E? = H«(Z/2, H{(Z /4)) = H«(D).

The action 6* on H¥BZ/4)=Z{ul/(4u) is given by b*u=3u=-—u. Let us write
T=(1—b*) and N=(1+b*). Then if /|2, b*u*=u’ and T=0 and N=2, otherwise
T=2 and N=0. Thus we get

Z/4{s7ut} if )2
E% v = H(BZ/4)/Im T = . _

Z/2{s"'u*} otherwise
Z/2{s7*ut} if 7|2
Z/2{s"2u*} otherwise
Z/2{s 2u*} if 7|2

Z/2{s"'u*} otherwise

(4.6) (i) for *=o0dd>0\ E%;j,, « = Ker T/ImNg{

E?yi0x = Ker N/Im T —3{

for * = even > 0 and all j, E? «+ = 0.

(i) E%i102 Z/2{1}, Ezeven,o = (.
By the universal coefficient theorem and this spectral sequence collapses
(compare Lewis p. 510). The elements s™'u, s™'u® in E?; « correspond to s~ 'y,
s7'c¢,, the element s '2ucsE?, corresponds to s”'¢, and s 'usFE?%;_,, corre-
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sponds to s”(y,y,’). Moreover 1€E?%;_, , corresponds to s~ !y,.
We define D-U-manifolds

4.7) (1) X(7,0)=5Y"Xw D, X(0,i)=DXqu S
(ii) X(27,4) = SY'x 8% for ij>0
(i) X(27—1, i) = (SY*X Z/2)xS** for ij>0.

Here the D-actions are given as follows. For (i) a(z)=(+/—1z) and b(z)=(—2)
identifying z&S?*'CC* for k=j, 7 respectively. In the case (ii), think of S*-*
as a D-manifold by a'b(z)=(—z) for all ¢, and the D-action on S*-! is the in-
duced representation Ind.,,”(y) of the usual 1-dimensional representation 7 of
{a), that is, a(z,, z,)=(~/—1z;, —/—12,) and b(z;, z5)=(2,, z;) in C?XC/=C¥,
For case (iii), the D-action on S?"! is the same as (ii) and the D-action on
S*72x Z/2 is the restriction of the induced representation Ind s, (') from the
representation ' of <(a®), that is a(z, s)=(sz, —s) and b(z, s)=(z, —s) with
sef{l, —-1}=Z/2.
It is immediate that X(7, j) is a D-U-manifold. Thus we get the map

(4.8) &:X(j,9/D—> BD.
First consider the case (ii) and the fibering
Sv1/Kay —> X(7, 6)/D —> S*71/<b)
which induces the spectral sequence
(4.9) Hy(SP71/<by 5 Ho(SY71/<a))) === Hx(X(J, )/ D).

The map ¢ in induces the map of spectral sequences to [4.5) The
E,-term of the spectral sequence is isomorphic to [4.5) for E?2,. , if s<4j—1
and r<2i—1. But E?%;, +=KerT and E? ;=0 if =2/ or s=4j. Then the
fundamental class of X(j, ¢) is the largest dimensional Z-generator and is repre-
sented in E. in by the nonzero element of E?%;_,,;.;. Hence we know
X(27, 1)=s""ec,’ 1y, vy, " I=s5"tec,’ 1yt

Similarly but more easily we know that X(27,0)=s"'¢/, X271, 0)=s"1y,c,/ 7},
and X(0, 2)=s"1y,"%

For the case (iii)

X(27j—1,0)/D = (SY°X Z/2)/<a)x S*7")/<b)
= S73/a’y X S /b .
Thus we have trivial fibering

S Katy —> X(27—1, 0)/D —> S¥71/<by
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and & induces a map of spectral sequences from the above to [4.4) Let
H(SY3/a*)=s"*Z[w]/QCw, w¥~'). Then s *w*=2s"'u. Hence X(2;—1,?)
=s"tec,’ 'y,""' because both elements correspond to {2s~'u*"!'}=E?%;_ ,,;_, in
(4.5).

The only element which is not presented by an X(J, 7) is s~y for j=2.
Note that there is an automorphism A of D such that A:b—ab, A: a—a® Then
As7ly,=s"'y,+s71y,. Take X'(0, ©)=DX (45, S*"' and this manifold represents
s7'y,*+s7'y,t. Thus we have known that X(j, 7) and X'(0, ¢’), i’=2 generates
BPy«(BD) as a BPy-module from (4.3).

Next consider relations Jv,@Q.x@:+ (x)=0. First consider the case x=
X(0, 7). Since s7'y,=Qoxys, We see Qo 's'y,'=y,". The Q,x-operation acts
on HZ/px.

Qrxy:t = <.t Qax2y.*>x.y,*, where we recall x.*=y,
= T 3O Xy = X,
Therefore we have
(4.10) Sv.X(0,i—2"+1)=0, v, X'(0,7i—2"+1)=0.

This relation is well known and is also given by the relation in BP«(BZ/2) and
[2] the product of the formal group law in BPs-theory (for example see [J-W],
[K-M]).

When x=X(27, 0), the fact Q.+ s !(¢,’)=0 induces only the trivial relation.
As for x=X(2j5—1, 0), the formula

Qnxcy, = ey, Qnco*xpcfx, =0 for n=>1
follows the relation
(4.11) 2X(27—1,00=0.

At last we consider the case ¢7>0. Since s™'y,'c./e=c/y,'u (see [4.1)), we
get

(4.12) Qn*czjyzie = 2<62jy2ie, anzky21u>czkyzlu
= 3<ed s e, ¢F Y Quudcstystu
= 2 Yt e, QrudetyLtu .

LEMMA 4.13. Let fo=1, fi=u+y, and foo=uf’+yefs >+ fu_i*veul. Then
Q.u=x,uf,.

PrROOF. At first recall Q,u=ux,. The Q,-action is

Qiu = Sg*Qou+QoSq’u = Sg*(ux,) = ulx,+ux,® = uxy(u+x,%).
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By the induction on n=1, we see
Quartt = (S¢" "' Q2 +Q:S¢*" Hu

= S¢®""'Qu = S¢®" N(xyufs), where |x,uf,|=2"*'+1

= XU XU+ 2 ulSq T,
If fo=2>2;u'y,’, then

Sqni o = S Ad(uxs)ut 0y, = uxy(0fn/0u) .
Therefore Q. iu=uxy(Ufr>+ X2 22+ 2:2u%0 fr/0u)?). g.e.d.
Let us write f,=3) fn u'y?" "1, Then we get
Quuta’yate = 3<cs* yote, 3 fu cutys™ 7> e TRy T
= ) fn aeCyl Tty i@y

Hence we have the relation
(4.14) Seo va(S fa, 2 X(G—1, i+241-2%) = 0.

Next consider the relation such that v, X(7, 9)+ - =0. If Quw=c,y,'u,
then

el yotu = 3<w, Q. ytudesFytu
= 2 <w, cFyte(utya)eytu

shows w=c,’y,*"'e or w=c,’y,’eu. Since QoxC’v.' 'e=c,’y,*"'u, the case w=
c’y," e gives a relation such that 2X(j, 7+1)+ --- =0, which is contained in
(4.14). Hence we need only the case w=cy y.'eu,

Qs = ey eu, QacFytude,tystu

= 2<eatyoleu, 2 fo. uty ot T ede Ty T

= 2 faarnn € Thy, ATy
Therefore we get
(4.15) D=1 Un(Xi=o fr.eea: X(G—2, i—2"+2t42)) = 0

THEOREM 4.16. There is a BPy-module isomorphism
BP«(BD) = BP{X(j, 1), X'(0,4")]7, 120, :'=2} /R

where R=((4.10), (4.11), (4.14), (4.15)) mod (2, v,, ---)%.



204

[C-F]
(E]

(E-P]
LJ-w]
[J-wz]
[K-M]
(L]
M]
[T-Y]
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