Complex bordism of the dihedral group

By Nobuaki YAGITA

(Received Aug. 3, 1993) (Revised Apr. 28, 1994)

Introduction.

Let G be a finite group. By a G-U-manifold we mean a weakly complex manifold with a free G-action preserving its weakly complex structure. The group of bordism classes of closed G-U-manifolds is isomorphic to the complex bordism group $MU_*(BG)$ of the classifying space BG [C-F]. If S is a Sylow p-subgroup of G, the inclusion map induces a splitting epimorphism $MU_*(BS)_{(p)} \rightarrow MU_*(BG)_{(p)}$. Hence we need to know first $MU_*(BG)$ for p-groups G. Moreover the Quillen isomorphism $MU_*(-)_{(p)} \cong MU_{*(p)} \otimes_{BP*} BP_*(-)$ shows that we need to know only $BP_*(BG)$.

When G is a cyclic or quaternion group, the graded module associated to the dimensional filtration $\operatorname{gr} BP_*(BG)$ is isomorphic to $BP_*\otimes H_*(BG)$ since $H_{even}(BG)\cong 0$ [M]. By Johnson-Wilson [J-W], $\operatorname{gr} BP_*(BG)$ is given for an elementary abelian p-group using arguments to generalize Künneth formula. In this paper we determine BP_* -module structure of $BP_*(BG) \operatorname{mod}(p, v_1, \cdots)^2$ for nonabelian groups of the order p^3 . For p=2, the new group is the dihedral group D_4 . The bordism group $BP_*(BD_{2q})$, q: $\operatorname{prime} \neq 2$, was studied by Kamata-Minami [K-M] in early seventies.

Recall the Milnor primitive operation $Q_0 = \beta$, $Q_1 = p^1 \beta - \beta p^1$ (= $Sq^2 Sq^1 - Sq^1 Sq^2$ for p=2). For the above groups, we can extend the operation Q_1 on $H^*(BG)$ so that $Q_1 | H^{even}(BG) = 0$. Let us write by $H(-; Q_1)$ the homology with the differential Q_1 . Then we know (compare [T-Y])

$$\operatorname{gr} BP^*(BG) \cong BP^* \otimes H(H^*(BG); Q_1) \oplus BP^*/(p, v_1) \otimes \operatorname{Im} Q_1$$

since $d_{2p-1}=v_1\otimes Q_1$ is the only non zero differential in the Atiyah-Hirzebruch spectral sequence. The similar fact occurs for the BP_* -homology

$$\operatorname{gr} BP_*(BG) \cong BP_*s^{-1}H(H^*(BG); Q_1) \oplus BP_*/(p, v_1)s^{-1}H^{odd}(BG)$$

where s^{-1} is the shift map which decreases degree by one. Here we use the spectral sequence $E_2^{***}=\operatorname{Ext}_{BP*}(BP*(BG), BP*)\Rightarrow BP_*(BG)$. In particular, generators and relations are given explicitly for $BP_*(BD_4)$ in the last section.

N. Yagita

The author thanks his brother Summio Yagita who gave him hearty encouragement and other support during the time of this work.

§ 1. Bordism and cobordism.

Assume always G is a p-group. Let us write by H^* (resp. HZ/p^* , H^{even} , H^{odd}) for the cohomology $H^*(BG)$ (resp. $H^*(BG; Z/p)$, $H^{even}(BG)$, $H^{odd}(BG)$). Recall that $Q_{n+1} = Q_n p^{p^n} - p^{p^n} Q_n$ ($= Q_n Sq^{2^{n+1}} + Sq^{2^{n+1}}Q_n$ for p=2). In this section we consider only groups which satisfy the following assumption.

ASSUMPTION 1.1. (i) $p \cdot HZ^{odd} = 0$, hence $H^{odd} \subset HZ/p^{odd}$. So we may define Q_n on H^{odd} .

- (ii) $Q_n \mid H^{odd}$ is injective for each $n \ge 1$,
- (iii) $Q_n(H^{odd}) \subset Q_1(H^{odd})$ for each $n \ge 1$.

Define $Q_n | H^{even} = 0$ such that $Q_n^2 = 0$.

LEMMA 1.2. gr $BP*(BG) \cong BP* \otimes H(H^*; Q_1) \oplus BP*/(p, v_1) \otimes \text{Im } Q_1$.

PROOF. Consider the Atiyah-Hirzebruch spectral sequence

$$E_2^{*.*} \cong H^*(BG; BP^*) \cong BP^* \otimes H^* \Longrightarrow BP^*(BG).$$

The first nonzero differential is $d_{2p-1}(x) = v_1 \otimes Q_1(x)$ for $x \in H^{odd}$ since it is so for H/p^* . For $x \in H^{even}$, $d_{2p-1}(x) = 0$ otherwise $d_{2p-1}^2(x) \neq 0$ from the injectivity of $d_{2p-1}|H^{odd}$. Hence we get that E_{2p} is isomorphic to the right hand side of the module in the lemma. Since $\ker Q_1 \cong \operatorname{Im} Q_1 \oplus H(H^*; Q_1)$ is even dimensionally generated, and so is E_{2p}^{***} . Therefore $E_{2p} \cong E_{\infty}$. q.e.d.

Given $Z_{(p)}$ -module A, let us write by FA the $Z_{(p)}$ -free module generated by $Z_{(p)}$ -module generators of A. Let F(x) be a generator which corresponds x in A.

THEOREM 1.3. There is a BP*-module isomorphism

$$BP*(BG) \cong BP*\otimes (FH(H^*; Q_1) \oplus F \operatorname{Im} Q_1)/R$$

where R is generated, modulo $(p, v_1, \cdots)^2$, by $\sum_{n=0} v_n F(Q_n Q_i^{-1}(x)) = 0$ for i=0, 1, and $x \in \text{Ker } Q_1$.

PROOF. If $x_1 \in \text{Im } Q_1$, then there is a relation $v_1\bar{x}_1 + v_2\bar{x}_2 + \cdots = 0$ from Lemma 1.2, for $\rho(\bar{x}_1) = x_1$ where $\rho: BP \to HZ_{(p)}$ is the Thom map. From Lemma 2.1 in [Y] there is y in HZ/p^* such that $Q_n(y) = \rho(\bar{x}_n)$, and $y = Q_1^{-1}x_1$. Since $BP^*(BG) \otimes_{BP^*} Z_{(p)} \cong H^{even}$ we have the relation in the lemma. For $x_0 \in \text{Im } Q_0$, we also have the relation by the same arguments. q.e.d.

Now we consider the bordism theory. We also write by H_* the homology $H_*(BG)$. Since H_* is a torsion module, there is an isomorphism

$$H_{*-1} \cong s^{-1}H^*$$
 for $* \ge 2$,

where s^{-1} is the operation decreasing degree by one. Note that if px=0, $s^{-1}x = Q_0^{-1}x$ for $x \in H^*$.

Consider the spectral sequence

$$(1.4) E^{2}_{*,*} \cong H_{*}(BG; BP_{*}) \Longrightarrow BP_{*}(BG).$$

LEMMA 1.5. $E^{2p}_{*} \cong BP_{*}s^{-1}H(H^{*}; Q_{1}) \oplus BP_{*}/(p, v_{1})s^{-1}H^{odd}$.

PROOF. First note $HZ/p_*=\text{Hom}\,(HZ/p^*\,;\,Z/p)$. Hence we can define the dual operation Q_{1*} in HZ/p_* . Since $Q_1Q_0=-Q_0Q_1$, we see easily

$$Q_{1*}s^{-1}(\text{Im }Q_1)=s^{-1}H^{odd}$$
.

The first nonzero differential in (1.4) is $d_{2p-1}=v_1\otimes Q_{1*}$. Hence we get the lemma. q.e.d.

We use here arguments by Ravenel and Johnson-Wilson [J-W]. Recall the universal coefficient spectral sequence

$$(1.6) E_2^{*,*} = \operatorname{Ext}_{BP*}(BP*(BG), BP*) \Longrightarrow BP_*(BG).$$

Given BP^* -filtration in $BP^*(BG)$, we can construct a spectral sequence

$$G_2^{*,*} = \operatorname{Ext}_{BP*}(\operatorname{gr} BP*(BG), BP*) \Longrightarrow E_2^{*,*}.$$

It is easily seen

LEMMA 1.8. ([**J-W**] Lemma 6.5.)
$$\operatorname{Ext}_{BP*}(BP*/(p^k), BP*) \cong s^{-1}BP_*/(p^k),$$
 $\operatorname{Ext}_{BP*}(BP*/(p, v_1), BP*) \cong s^{-2p}BP_*/(p, v_1).$

Therefore from Lemma 1.2, Lemma 1.5 and Lemma 1.8, we know

$$\text{Ext}_{BP*}(\text{gr }BP*(EG), BP*) \cong (E^{2p}_{*,*} \text{ in Lemma 1.5}).$$

Since $G_2^{i,*}=0$ for $i \neq 1$, 2, so $E_2^{i,*}=0$ for $i \neq 1$, 2. Hence $d_r=0$ for $r \geq 2$ in $E_r^{*,*}$. Therefore if we can prove

$$(1.9) G_2^{*,*} \cong G_\infty^{*,*},$$

then we get

$$(E^{2p}_{*,*})$$
 in Lemma 1.5) $\cong G_2^{*,*} \cong \operatorname{gr} E_2^{*,*} \cong \operatorname{gr} E_{\infty}^{*,*} \cong \operatorname{gr} BP_*(BG)$.

Thus we can show

THEOREM 1.10. There is a BP*-module isomorphism

$$BP_*(BG) \cong BP_* \otimes Fs^{-1}(H(H^*; Q_1) \oplus H^{odd})/R$$

N. Yagita

where the relation R is generated, modulo $(p, v_1, \cdots)^2$, by

$$\sum v_n F(Q_{n*}Q_{i*}^{-1}s^{-1}(x))=0$$
 for $i=0, 1, x \in (H(H^*; Q_1) \oplus H^{odd})$.

PROOF OF (1.9). Since $G_2^{1,*}$ is v_1 -torsion free but $G_2^{2,*}$ is v_1 -torsion, we only need to prove that each element in $G_2^{1,*}$ is permanent. By the map induced from the inclusion $BP_*(BG^r) \rightarrow BP_*(BG)$, we may prove the above facts for the BP-homology of an r-skeleton BG^r .

Let us write a BP^* -free resolution of $BP^*(BG^r)$

$$0 \longleftarrow BP^*(BG^r) \longleftarrow \bigoplus BP^*b_i \bigoplus BP^*b_j$$

$$\stackrel{d_1}{\longleftarrow} \bigoplus BP^*r_i \bigoplus BP^*r_j \bigoplus BP^*s_j \stackrel{d_2}{\longleftarrow} \bigoplus BP^*$$

where b_j (resp. b_i) are $Z_{(p)}$ -basis for Im Q_1 (resp. $H(H^*, Q_1)$), and

$$d_1(r_t) = R_t = pb_t + \cdots$$
 $t=i \text{ or } j$
 $d_1(s_j) = S_j = v_1b_j + \cdots$.

Let $|b_N| = \max(|b_i|, |b_j|)$ and $b_N \in H(H^*, Q_1)$. We will prove that we can take new base s_j' , r_j' , r_i' such that $BP^*r_N' \cap \text{Image } d_2 = 0$. Then the dual base $r_N'^*$ is a cocycle because $\delta(r_N'^*(c)) = r_N'^*(d_2(c)) = 0$ for all $c \in \oplus BP^*$. Hence by induction we can see that all the elements in $G_2^{1,*}$ are permanent.

Suppose that there is a relation in $\bigoplus BP*b_i \bigoplus BP*b_j$

$$(1.11) pS_n + v_1 R_n + \sum a_i S_i + a_i' R_i = c R_N$$

with $a, c \in BP^*$ and $|b_n| \le |b_j| \le |b_N|$, $n \ne j$. If $c = pc' + v_1c''$, then put $S_n' = S_n - c'R_N$ and $R_n' = R_n - c''R_N$; hence the relation (1.11) is reduced to a relation without R_N . Therefore $BP^*r_N \cap \text{Im } d_2 = 0$ in this case.

Thus we may assume $c=\lambda v_2{}^s \mod (v_3, v_4, \cdots)$. Let $b_n=Q_1b$ and $b_q=Q_2b \neq 0$ from Assumption 1.1 (ii). Moreover from the Assumption 1.1 (iii), $b_q \in \operatorname{Im} Q_1$, so $b_q \neq b_N \in H(H^*, Q_1)$. Then with the modulo (v_1, v_3, v_4, \cdots) the relation (1.11) is written

$$p(v_2b_q + \cdots) + \sum a_j S_j + a_j' R_j = \lambda v_2^s R_N.$$

Hence $a_j{'}R_j$ contains the term $-v_2R_q$. Take $R_q{'}=(R_q-\lambda v_2{}^{s-1}R_N)$ and we can deduce the case $c=0 \mod (v_3, \cdots)$. Continue these arguments and by dimensional reasons we get the relation $pS_n{'}+v_1R_n{'}+\cdots=0$ which does not contain R_N . q. e. d.

$\S 2$. Q_n -operation.

We give examples 2.1-2.3 satisfying Assumption 1.1.

2.1. $G=Z/p\times Z/p$. The cohomology $H^{even}=Z/p[y_1, y_2]$ and $H^{odd}=H^{even}e$

where $|y_i|=2$, |e|=3 and $Q_n e=y_1^{p^n}y_2-y_1y_2^{p^n}$.

- 2.2. G is a non abelian p-group of the order p^3 . Then G is isomorphic to one of D, Q, E, M; the dihedral group, the quaternion group, the p exponent group for odd prime and the metacyclic group for odd prime (see Lewis [L] or [T-Y]). The cohomology H^{even} is generated by elements $c_1, \dots, c_p, y_1, y_2$, and H^{odd} is generated as a H^{even} -module by e (resp. 0, d_1 and d_2 , e) for D (resp. Q, E, M). Then we can take ring generators such that the Q_n -operation is given by $Q_n e = c_2 y_2^{2^{n-1}} \mod (c_2^2 y_2^2)$ (resp. 0, $Q_n d_i = c_p y_i^{p^{n-1}} \mod (c_p^2 y_i)$, $Q_n e = c_p y_2^{p^{n-1}} \mod (c_p^2 y_2)$). Hence we can prove that Assumption 1.1 is satisfied for these cases.
- 2.3. The semi-dihedral groups SD_2 . $H\mathbb{Z}/2^*$ is detected by (D, Q) (see **[E-P]**). Hence we get the assumption.

§ 3. Relation to other theories.

Recall that $BP\langle n\rangle_*(-)$ is the homology theory with the coefficient $BP\langle n\rangle_*$ = $Z_{(p)}[v_1, \dots, v_n]$. Then similar arguments work for this theory.

PROPOSITION 3.1. If Assumption 1.1 holds, then for $n \ge 1$,

$$BP\langle n\rangle_*(BG)\cong BP\langle n\rangle_*\bigotimes_{BP^*}BP_*(BG)$$
 and we get (see [J-W 2]) homdim_{BP*} $BP_*(BG)=2$.

Let us write by $\widetilde{P}(n)_*(-)$ the homology theory with the coefficient $\widetilde{P}(n)_* \cong BP_*/(v_1, \dots, v_{n-1}) \cong Z_{(p)}[v_n, \dots].$

PROPOSITION 3.2. For groups in § 2,

$$\widetilde{P}(n)_*(BG) \cong \widetilde{P}(n)_*Fs^{-1}(H(H^*; Q_n) \oplus H^{odd})/R$$

where R is the same relation in Theorem 1.10.

Recall that $\widetilde{P}(n)_*(-)$ is the bordism theory of manifolds with singularities of type (v_1, \dots, v_{n-1}) and there is the natural map $\rho : \widetilde{P}(n-1)_*(-) \to \widetilde{P}(n)_*(-)$. Hence $H(H^*; Q_{n-1}) \subset H(H^*; Q_n)$ and each element in

$$s^{-1}(H(H^*; Q_n) - H(H^*; Q_{n-1})) = s^{-1}(\operatorname{Im} Q_{n-1}/\operatorname{Im} Q_n)$$

is represented by a manifold with singularities of type (v_1, \dots, v_{n-1}) but not of type (v_1, \dots, v_{n-2}) .

§ 4. Explicit description of $BP_*(BD)$.

In this section we write down $BP_*(BD)$ more explicitely. Recall $D = \langle a, b | a^4 = b^2 = 1, [a, b] = a^2 \rangle$. The cohomology is given ([E], [L], [T-Y])

200 N. YAGITA

$$(4.1) H^{even} = Z[y_1, y_2, c_2]/(y_1^2 + y_1y_2, 2y_1, 2y_2, 4c_2)$$

$$H^{odd} = (Z/2[y_1, y_2, c_2]/(y_1^2 + y_1y_2))e$$

$$HZ/2^* = Z/2[x_1, x_2, u]/(x_1^2 + x_1x_2)$$

where $x_i^2 = y_i$, $c_2 = u^2$ and $e = x_2 u$ in $HZ/2^*$. Since $Q_0 u = u x_2$ and $Q_1 e = y_2 c_2$, we get

$$(4.2) H(H^*; Q_1) \cong H^{even}/(\operatorname{Ideal}(y_2c_2))$$

$$\cong Z\{1\} \bigoplus Z/2\{y_1^i, y_2^i, y_1c_2^i|i \geq 1\} \bigoplus Z/4\{c_2^i|i \geq 1\}$$

where $Z/a \{b_1, \dots, b_s\}$ is the free Z/a-module generated by b_1, \dots, b_s . From Lemma 1.5 and Theorem 1.10, we have

$$(4.3) gr BP_*(BD) \cong BP_*\{1\} \bigoplus BP_*/2s^{-1}\{y_1^i, y_2^i, y_1c_2^i\}$$

$$\bigoplus BP/4s^{-1}\{c_2^i\} \bigoplus BP_*/(2, v_1)s^{-1}\{y_1^kc_2^je, y_2^kc_2^je|(k, j)\neq (0, 0)\}.$$

We will construct D-U-manifolds which represent elements in (4.3). Before doing this, we see how these generators in HZ_* are defined. Consider the extension

$$(4.4) 0 \longrightarrow \langle a \rangle = Z/4 \longrightarrow D \longrightarrow \langle b \rangle = Z/2 \longrightarrow 0$$

and the induced spectral sequence (see Lewis p. 510 [L])

(4.5)
$$E^{2}_{**} = H_{*}(Z/2, H_{*}(Z/4)) \Longrightarrow H_{*}(D).$$

The action b^* on $H^*(BZ/4)\cong Z[u]/(4u)$ is given by $b^*u=3u=-u$. Let us write $T=(1-b^*)$ and $N=(1+b^*)$. Then if i|2, $b^*u^i=u^i$ and T=0 and N=2, otherwise T=2 and N=0. Thus we get

$$(4.6) (i) \text{ for } *=odd>0 \begin{cases} E^{2}_{0,*} \cong H_{*}(BZ/4)/\operatorname{Im} T \cong \begin{cases} Z/4\{s^{-1}u^{i}\} & \text{if } i \mid 2 \\ Z/2\{s^{-1}u^{i}\} & \text{otherwise} \end{cases}$$

$$E^{2}_{2j+1,*} \cong \operatorname{Ker} T/\operatorname{Im} N \cong \begin{cases} Z/2\{s^{-1}u^{i}\} & \text{if } i \mid 2 \\ Z/2\{s^{-1}2u^{i}\} & \text{otherwise} \end{cases}$$

$$E^{2}_{2j+2,*} \cong \operatorname{Ker} N/\operatorname{Im} T \cong \begin{cases} Z/2\{s^{-1}2u^{i}\} & \text{if } i \mid 2 \\ Z/2\{s^{-1}u^{i}\} & \text{otherwise} \end{cases}$$

for * = even > 0 and all j, $E^{2}_{j,*} \cong 0$.

(ii)
$$E^{2}_{2i+1,0} \cong \mathbb{Z}/2\{1\}, E^{2}_{even,0} \cong 0.$$

By the universal coefficient theorem and (4.1) this spectral sequence collapses (compare Lewis p. 510). The elements $s^{-1}u$, $s^{-1}u^2$ in $E^2_{0,*}$ correspond to $s^{-1}y_1$, $s^{-1}c_2$, the element $s^{-1}2u \in E^2_{1,1}$ corresponds to $s^{-1}e$, and $s^{-1}u \in E^2_{2j-1,2}$ corresponds to

sponds to $s^{-1}(y_1y_2^j)$. Moreover $1 \in E^2_{2j-1,0}$ corresponds to $s^{-1}y_2^j$.

We define D-U-manifolds

(4.7) (i)
$$X(j, 0) = S^{2j-1} \times_{\langle a \rangle} D, \quad X(0, i) = D \times_{\langle b \rangle} S^{2i-1}$$

(ii)
$$X(2i, i) = S^{4j-1} \times S^{2i-1}$$
 for $ij > 0$

(iii)
$$X(2j-1, i) = (S^{4j-3} \times Z/2) \times S^{2i-1}$$
 for $ij > 0$.

Here the *D*-actions are given as follows. For (i) $a(z)=(\sqrt{-1}z)$ and b(z)=(-z) identifying $z\in S^{2k-1}\subset C^k$ for k=j, i respectively. In the case (ii), think of S^{2i-1} as a *D*-manifold by $a^tb(z)=(-z)$ for all t, and the *D*-action on S^{4j-1} is the induced representation $\operatorname{Ind}_{\langle a\rangle}{}^D(\eta)$ of the usual 1-dimensional representation η of $\langle a\rangle$, that is, $a(z_1, z_2)=(\sqrt{-1}z_1, -\sqrt{-1}z_2)$ and $b(z_1, z_2)=(z_2, z_1)$ in $C^j\times C^j=C^{2j}$. For case (iii), the *D*-action on S^{2i-1} is the same as (ii) and the *D*-action on $S^{4j-3}\times Z/2$ is the restriction of the induced representation $\operatorname{Ind}_{\langle a^2,b\rangle}(\eta')$ from the representation η' of $\langle a^2\rangle$, that is a(z,s)=(sz,-s) and b(z,s)=(z,-s) with $s\in\{1,-1\}\cong Z/2$.

It is immediate that X(i, j) is a D-U-manifold. Thus we get the map

$$(4.8) \xi: X(j,i)/D \longrightarrow BD.$$

First consider the case (ii) and the fibering

$$S^{4j-1}/\langle a \rangle \longrightarrow X(j, i)/D \longrightarrow S^{2i-1}/\langle b \rangle$$

which induces the spectral sequence

$$(4.9) H_*(S^{2i-1}/\langle b \rangle; H_*(S^{4j-1}/\langle a \rangle)) \Longrightarrow H_*(X(j,i)/D).$$

The map ξ in (4.8) induces the map of spectral sequences (4.9) to (4.5). The E_2 -term of the spectral sequence (4.9) is isomorphic to (4.5) for $E_{r,s}^2$ if $s \le 4j-1$ and r < 2i-1. But $E_{2i-1,*}^2 \cong \operatorname{Ker} T$ and $E_{r,s}^2 = 0$ if $t \ge 2i$ or $s \ge 4j$. Then the fundamental class of X(j,i) is the largest dimensional Z-generator and is represented in E_{∞} in (4.9) by the nonzero element of $E_{2i-1,4j-1}^2$. Hence we know $X(2j,i) = s^{-1}ec_2^{j-1}y_1y_2^{i-1} = s^{-1}ec_2^{j-1}y_1^i$.

Similarly but more easily we know that $X(2j, 0) = s^{-1}c^{j}$, $X(2j-1, 0) = s^{-1}y_{1}c_{2}^{j-1}$, and $X(0, i) = s^{-1}y_{2}^{i}$.

For the case (iii)

$$X(2j-1, i)/D = ((S^{4j-3} \times Z/2)/\langle a \rangle \times S^{2i-1})/\langle b \rangle$$

= $S^{4j-3}/\langle a^2 \rangle \times S^{2i-1}/\langle b \rangle$.

Thus we have trivial fibering

$$S^{4j-3}/\langle a^2 \rangle \longrightarrow X(2j-1, i)/D \longrightarrow S^{2i-1}/\langle b \rangle$$

202 N. Yagita

and ξ induces a map of spectral sequences from the above to (4.4). Let $H_*(S^{4j-3}/\langle a^2 \rangle) = s^{-1}Z[w]/(2w, w^{2j-1})$. Then $\xi_*s^{-1}w^k = 2s^{-1}u$. Hence $X(2j-1, i) = s^{-1}ec_2^{j-1}y_2^{i-1}$ because both elements correspond to $\{2s^{-1}u^{2j-1}\} \in E^2_{2i-1, 4j-1}$ in (4.5).

The only element which is not presented by an X(j,i) is $s^{-1}y_1^j$ for $j \ge 2$. Note that there is an automorphism λ of D such that $\lambda: b \mapsto ab$, $\lambda: a \mapsto a^3$. Then $\lambda s^{-1}y_2 = s^{-1}y_2 + s^{-1}y_1$. Take $X'(0,i) = D \times_{\langle ab \rangle} S^{2i-1}$ and this manifold represents $s^{-1}y_1^i + s^{-1}y_2^i$. Thus we have known that X(j,i) and X'(0,i'), $i' \ge 2$ generates $BP_*(BD)$ as a BP_* -module from (4.3).

Next consider relations $\sum v_n Q_{n*} Q_{k*}^{-1}(x) = 0$. First consider the case x = X(0, i). Since $s^{-1}y_2 = Q_{0*}y_2$, we see $Q_{0*}^{-1}s^{-1}y_2^i = y_2^i$. The Q_{n*} -operation acts on HZ/p_* .

$$Q_{n*}y_2^i = \sum \langle y_2^i, Q_n x_2 y_2^k \rangle x_2 y_2^k$$
, where we recall $x_2^2 = y_2$
= $\sum \langle y_2^i, y_2^{2^n+k} \rangle x_2 y_2^k = x_2 y_2^{i-2^n}$.

Therefore we have

This relation is well known and is also given by the relation in $BP_*(BZ/2)$ and [2] the product of the formal group law in BP_* -theory (for example see [**J-W**], [**K-M**]).

When x=X(2j, 0), the fact $Q_{0*}^{-1}s^{-1}(c_2^j)=0$ induces only the trivial relation. As for x=X(2j-1, 0), the formula

$$Q_{n*}c_2{}^jy_1 = \sum_1 \langle c_2{}^jy_1, Q_nc_2{}^kx_1 \rangle c_2{}^kx_1 = 0$$
 for $n \ge 1$

follows the relation

$$(4.11) 2X(2j-1, 0) = 0.$$

At last we consider the case ij>0. Since $s^{-1}y_2{}^ic_2{}^je=c_2{}^jy_2{}^iu$ (see (4.1)), we get

$$(4.12) Q_{n*}c_{2}^{j}y_{2}^{i}e = \sum \langle c_{2}^{j}y_{2}^{i}e, Q_{n}c_{2}^{k}y_{2}^{l}u \rangle c_{2}^{k}y_{2}^{l}u$$

$$= \sum \langle c_{2}^{j}y_{2}^{i}e, c_{2}^{k}y_{2}^{l}Q_{n}u \rangle c_{2}^{k}y_{2}^{l}u$$

$$= \sum \langle c_{2}^{j-k}y_{2}^{i-l}e, Q_{n}u \rangle c_{2}^{k}y_{2}^{l}u .$$

LEMMA 4.13. Let $f_0=1$, $f_1=u+y_2$ and $f_{n+1}=uf_n^2+y_2f_n^2+f_{n-1}^4y_2u^2$. Then $Q_nu=x_2uf_n$.

PROOF. At first recall $Q_0u=ux_2$. The Q_1 -action is

$$Q_1 u = Sq^2 Q_0 u + Q_0 Sq^2 u = Sq^2 (u x_2) = u^2 x_2 + u x_2^3 = u x_2 (u + x_2^2).$$

By the induction on $n \ge 1$, we see

$$\begin{split} Q_{n+1}u &= (Sq^{2^{n+1}}Q_n + Q_nSq^{2^{n+1}})u \\ &= Sq^{2^{n+1}}Q_nu = Sq^{2^{n+1}}(x_2uf_n), \text{ where } |x_2uf_n| = 2^{n+1} + 1 \\ &= x_2u^2f_n^2 + x_2^3uf_n^2 + x_2^2u^2Sq^{|f_n| - 1}f_n \,. \end{split}$$

If $f_n = \sum \lambda_i u^i y_2^j$, then

$$Sq^{|f_n|-1}f_n = \sum \lambda_i i(ux_2)u^{2(i-1)}y_2^{2j} = ux_2(\partial f_n/\partial u)^2$$
.

Therefore $Q_{n+1}u = u x_2 (u f_n^2 + x_2^2 f_n^2 + x_2^2 u^2 (\partial f_n / \partial u)^2)$. q. e. d.

Let us write $f_n = \sum f_{n,i} u^i y^{2^{n-i-1}}$. Then we get

$$Q_{n*}c_2{}^jy_2{}^ie = \sum \langle c_2{}^ky_2{}^le, \sum f_{n,t}u^ty_2{}^{2^{n-1-t}}e \rangle c_2{}^{j-k}y_2{}^{i-l}u$$
$$= \sum f_{n,2t}c_2{}^{j-t}y_2{}^{i-(2^{n-1-2t})}u.$$

Hence we have the relation

$$(4.14) \qquad \sum_{n=0} v_n(\sum f_{n,2t}X(j-t, i+2t+1-2^n)) = 0.$$

Next consider the relation such that $v_1X(j, i) + \cdots = 0$. If $Q_{1*}w = c_2{}^jy_2{}^iu$, then

$$c_2{}^j y_2{}^i u = \sum \langle w, Q_1 c_2{}^k y_2{}^l u \rangle c_2{}^k y_2{}^l u$$

= $\sum \langle w, c_2{}^k y_2{}^l e(u+y_2) \rangle c_2{}^k y_2{}^l u$

shows $w=c_2{}^jy_2{}^{i+1}e$ or $w=c_2{}^jy_2{}^ieu$. Since $Q_{0*}c_2{}^jy_2{}^{i+1}e=c_2{}^jy_2{}^{i+1}u$, the case $w=c_2{}^jy_2{}^{i+1}e$ gives a relation such that $2X(j,i+1)+\cdots=0$, which is contained in (4.14). Hence we need only the case $w=c_2{}^jy_2{}^ieu$,

$$\begin{aligned} Q_{n*}w &= \sum \langle c_2{}^j y_2{}^i eu, \ Q_n c_2{}^k y_2{}^l u \rangle c_2{}^k y_2{}^l u \\ &= \sum \langle c_2{}^k y_2{}^l eu, \ \sum f_{n,t} u^t y_2{}^{2^{n-1-t}} e \rangle c_2{}^{j-k} y_2{}^{i-l} u \\ &= \sum f_{n,2t+1} c_2{}^{j-t} y_2{}^{i-(2^{n-1-2t-1})} u \ . \end{aligned}$$

Therefore we get

(4.15)
$$\sum_{n=1} v_n(\sum_{t=0} f_{n,2t+1} X(j-t, i-2^n+2t+2)) = 0$$

Theorem 4.16. There is a BP_* -module isomorphism

$$BP_*(BD) \cong BP_* \{X(j, i), X'(0, i') | j, i \ge 0, i' \ge 2\} / R$$

where $R = ((4.10), (4.11), (4.14), (4.15)) \mod (2, v_1, \cdots)^2$.

References

- [C-F] P. Conner and E. Floyd, Differentiable periodic maps, Springer-Verlag, 1964.
- [E] L. Evens, On the Chern classes of representations of finite groups, Trans. Amer. Math. Soc., 115 (1965), 180-193.
- [E-P] L. Evens and S. Priddy, The cohomology of the semi-dihedral group, Contemp. Math., 37 (1985), 61-72.
- [J-W] D. Johnson and S. Wilson, The Brown-Peterson homology of elementary p-groups, Amer. J. Math., 107 (1985), 427-453.
- [J-W2] D. Johnson and S. Wilson, Projective dimension and Brown-Peterson homology, Topology, 12 (1973), 327-353.
- [K-M] M. Kamata and H. Minami, Bordism groups of dihedral groups, J. Math. Soc. Japan, 25 (1973), 334-341.
- [L] G. Lewis, The integral cohomology rings of groups order p^3 , Trans. Amer. Math. Soc., 132 (1968), 501-529.
- [M] A. Mesnaoui, Unitary bordism of classifying spaces of quaternion groups, Pacific J. Math., 142 (1990), 49-67.
- [T-Y] M. Tezuka and N. Yagita, Cohomology of finite groups and Brown-Peterson cohomology, Lecture Notes in Math., 1370, Springer, 1989, pp. 396-408.
- [Y] N. Yagita, On relations between Brown-Peterson cohomology and the ordinary mod p cohomology, Kodai Math. J., 7 (1984), 273-285.

Nobuaki YAGITA Faculty of Education Ibaraki University Mito, Ibaraki Japan