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Introduction.

The purpose of the present paper is to introduce a notion of geodesic flows—
simple integrability. In a word, a simply integrable geodesic flow is a geodesic
flow which can be integrated by a single quadratic function. A remarkable
property of simple integrability is the duality: To a Riemannian manifold with
simply integrable geodesic flow, there corresponds, through certain conformal
change of the metric, such another Riemannian manifold. To be more precise,
let (M, g) be an n-dimensional Riemannian manifold (n=2). For a tensor field
¢ of type (1,1) on M such that the determinant ¢,(¢) is positive on M, we
introduce tensor fields ¢, of type (1, 1) as follows:

p-1
tp = Gn(t)“”"”‘"'”gﬂ(—l)sas(t)z”'s, p=1, -, n.

Here we view ¢ as endomorphisms of tangent spaces, ¢?~° are the compositions
iterated p—s times, o,(¢)=1, and ¢,(¢) denote the elementary symmetric poly-
nomials of the eigenvalues of ¢, of degree s.

DEFINITION. We say that the geodesic flow of (M, g) is simply integrable
if there exists a symmetric tensor field ¢ of type (1, 1) with ¢,(¢)>0 such that
the n functions f, on T(M) defined by f,(X)=g(,(X), X), p=1, ---, n, form a
complete involutive set, i.e., are functionally independent and every Poisson
bracket {f,, f,} vanishes. We then call ¢ the generating tensor field. Note
that simple integrability implies complete integrability in Liouville’s sense, be-
cause f,(X)=(—-1"*"'g(X, X).

The Riemannian manifolds with simply integrable geodesic flows have the
following characteristic property.

MAIN THEOREM. Suppose that the geodesic flow of (M, g) is simply inte-
grable with generating tensor field ¢. Let §=0a,()" " Vg be the conformal
change of the metric. Then the geodesic flow of (M, §) is simply integrable, and
the generating tenmsor field is given”by ¢ .
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A typical example of Riemannian manifolds with simply integrable geodesic
flows is the base space of the Riemannian submersion :

(SO(n+1), g) —> (SO@NSO(n+1), ),

where g is a Mishchenko-Dikii-Manakov-Fomenko metric (a left invariant metric
on SO(n+1) giving completely integrable geodesic flows, see §4). Using the
fact that the base space (SO(n)\SO(n+1), §) is conformally equivalent to an
ellipsoid, by our main theorem we know

THEOREM 4.2. The geodesic flow of an ellipsoid with distinct axes is simply
integrable.

Hence, we obtain a geometric proof of the classical

THEOREM (Jacobi). The geodesic flow of an ellipsoid with distinct axes is
completely integrable in the sense of Liouville.

Indeed, the attempt to understand the relation between (SO(n)\SO(n-+1), g)
and the ellipsoid from the view point of complete integrability of geodesic flows
was the motivation leading to Main Theorem. The proof of Main Theorem (in
§3) is straightforward, i.e., is done through the local expressions for { }=0
(§1) and ¢, (§2) with respect to suitable orthonormal vector fields. In those
expressions, the key fact is that the n quadratic integrals f, are fiberwise
commutative, that is, can be written as the diagonal forms in the common
orthonormal frame. As applications of Main Theorem, in §4 we discuss some
Riemannian metrics on S® In Appendix, for convenience, after recalling some
notions of symplectic geometry, we give a Riemannian expression of Poisson
bracket.

We should mention the recent work of Kiyohara [K]. He studies Rieman-
nian manifolds whose geodesic flows have Poisson commutative, fiberwise com-
mutative quadratic integrals, and gives the classification of such manifolds.
Our Riemannian manifolds belong to Kiyohara’s Liouville manifolds. In our
class, the quadratic integrals are described explicitly by a single tensor field
(generating tensor field).

Through this paper all manifolds and tensor fields are assumed to be of
class C= unless otherwise stated. ‘

§1. Local expressions for Poisson commutativity.

Let p, v be symmetric tensor fields of type (1, 1) on M, and assume that g,
v are commutative at every point as endomorphisms of tangent spaces. Define
fuw Fo: TIM)—=R by [ (X)=g(uX), X), f(X)=g((X), X). Now suppose that
we can find orthonormal vector fields X, X,, .-, X, defined on an open set U
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of M such that each X, is the common eigenvector of y, v belonging to the
eigenvalues g, v;. Put d};=g(Vg,X; X:). The following lemma gives us the
expression for the Poisson commutativity {f,, f.} =0 (with respect to the sym-
plectic structure on T(M) determined by g).

LEMMA 1.1. A necessary and sufficient condition for {f,, f,}=0 on T(U) is
that p;, v; and d%; satisfy

€D piXiw)—vXi(@) =0 for i=1, -+, n,
(C2) i X v) = X p)+2d(pvi—pav)) =0 for any i#], and
(C3)  dbi(vilpr— i) — prwr—v)+ dhslwr(pi— p) — pre(v;—vi))
+dhp—p)—psvi—ve) =0 for any i ]+ k4.
PROOF. Apply in Appendix.

Since the Hamiltonian vector field sgrad (1/2)g(X, X) is the geodesic flow,
taking y=Id, we have immediately the following.

COROLLARY 1.2. A necessary and sufficient condition that the function f, be
the first integral for the geodesic flow of (U, gly) is that the eigenvalues p;
satisfy

(Cl) Xl(#t) = O for 2:1, e,
€2 Xi(p)—2d%i(pj—p) =0 for any i+j, and
(C3) di(pn—p)+ dh(ps—p)+ djr(p—pe) =0 for any i+ j#k+i.

PROPOSITION 1.3. If f,, f. are the first integrals for the geodesic flow of
(U, gly) then the conditions (Cl), (C2) for {f,, fu}=0in Lemma 1.1 are satisfied.

ProoF. From [CI), [C2) in [Corollary 1.2 we get [CI), in Lemma 1.7

§2. Basic properties of the derived tensor fields ¢,.

Let ¢ be a symmetric tensor field of type (1, 1) on M. Let o) denote the
elementary symmetric polynomials of the eigenvalues of ¢, of degree s, and put
g,(¢)=1. Assume that the determinant ¢,(¢)>0. Denote by ¢! the tensor field
defined by (¢7).=(¢;)™": T ;(M)—=T ,(M). The derived tensor fields ¢,, p=1, -, n,
of ¢ are defined to be the symmetric tensor fields of type (1, 1)

p-1
tp = ()PP T (~ 1) (e

We define ¢,=0 for convenience. Note that ¢;=¢, ¢,=(—1)"*"' Id, where Id de-
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notes the identity tensor field.

LEMMA 2.1. For each p=1, ---, n, the derived tensor field (™), of ¢! has
the following two expressions:

(‘_1)1) - (_l)n+lln+1—p°l—l s
(D = (=) e tn_p+(=1)* P> P%g,_,(c) Id),

where e*=(a,())"/ b,
PROOF. By definition we have
(D) = (@) @IS (1t (.
Using the fact g(¢c)=0c,_(¢)/0.(¢), and replacing s by t=n—s we have
(= (=g @1 F (— Do et
Hence by the Cayley-Hamilton theorem we obtain

() = (=D g, (P10 53 (— 1) (e

n-p-1
= (=1, @ (" F (1P (1) P, y(0)1d).
Thus the definitions of ¢,_p, ¢n,1_p, yield our desired formulas.

PROPOSITION 2.2. Let X,, -+, X, be orthonormal vector fields on an open set
U of M such that «X;)=¢;X; for each i=1, ---, n, where ¢,: U—R. Then each
X, is simultaneously the eigenvector field for ¢p, (¢)p, p=1, -+, n, and if we
denote by €p,i, &p.: the eigenvalues of ¢,, (¢™), to which X; belongs, respectively,
then we have two expressions for &, ;;

ED Epi = (=D lensipiti,

(E2) Epe = ()" He™enp, i H(=1D)"P* "0 G, _p(0)),
and hence

(E3) Epi—&p ;= (=1)""1e®(en_p i —€n-p.j)»

where e*=(0,(¢))" /™D,

PROOF. Immediate from Lemma 2.1l
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§3. Proof of Main Theorem.

We prepare two lemmas. The first allows us to apply assertions in §1,
and the second tells us how d%’s are transformed by a conformal change of
the metric.

LEMMA 3.1. Let a symmetric tensor field u of type (1,1) be given on M.
Then there exists an open dense subset M, of M such that any point of M, has
a neighborhood on which p is diagonalized.

PrOOF. Elementary.

LEMMA 3.2, Let X, X,, -+, X» be the orthonormal vector fields defined on
an open set U in M. Let g=e® g be a conformal change of g, and put Xi—_—
e X, i=1, -, n. Let dby=g(x,X; X4), and J’{,zg(ﬁj’i)?j, X.), where V de-
notes the covariant derivative with respect to §. Then we have

dl; = e"(di;—X4u))  for any i+J, and
di;=etdt;  for any i%j#k#i.
Proor. This is a direct consequence of the formula
g(VxY, Z)=g(VxY, Z)+Xw)g(Y, Z)+Y ()9 X, Z)—gX, Y)Z(u),
for X, Y, ZeT(M) (see [Be]).

The heart of the proof of Main theorem is the following proposition. To
state this, let ¢ be a symmetric tensor field of type (1, 1) with ¢,()>0, and ¢,
the derived tensor fields of ¢. Define f,: T(M)—R by fp,(X)=g(,X), X), p=
1, -, n. Put =0, " g. Denote by {}~ the Poisson bracket with respect
to the symplectic structure on T'(M) determined by §. Define f,: T(M)—R by
FoX)=((c™1,(X), X), p=1, -+, n, where (¢c™)), denote the derived tensor fields
of ¢,

ProOPOSITION 3.3. Fix p, q=1, -, n. If

{fly fn} = {fn+1—py fn} = {fn—py fn} =0,

then we have

{fp; fn}~ =0.
If in addition

{fn+1—q, fn} = {fn—qy fn} = {fn—p» fn—q} =0,

then we have
{fp F~=0.

PrROOF. Let X, ---, X, be orthonormal vector fields defined on an open set
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U such that ¢(X,)=¢;X; for each /=1, ---, n, where ¢;: U—-R. By
it suffices to prove that our formulas hold on T(U). For this purpose, we de-
note by e, &.; the eigenvalues of ¢, (¢™'), to which X; belongs respectively,
as in [Proposition 2.2l Moreover, put )?i:e‘“Xi, i=1, -, n, where e¢*=
(@)™ 1, and let d4=g(Vz,X;, Xi) as in Now, by Corollary
1.2, in order to prove the former part of our proposition it suffices to verify

(1) Xip)=0 for i=1, -, n,
() Xi(ep.0)—2d3:(5p.;—8.0) =0  for any i#J, and
(63) d}ij(ép, k—ép,j)_l_d’";i(ép_j_ép,i)—l_d‘;;k(ép,i—'ép, k) =0 for any ii].¢k¢i.

First we shall verify . From the assumption {f:, fz}={fn+1-p, f2}=0 and
[CI) in [Corollary 1.2 it follows that X;(e;)=X;(en_1-p.:)=0. Hence using
of Proposition 2.9 we get X;(é, )=0. Next, to prove it suffices to prove
X;log(ép. ;—,.)=—2d4%;, which can be written as X;l0g((—1)**'e*(¢n_p. j—En-p,1))
=—2di; by [E3) of [Proposition 2.2, On the other hand, from for
{fn-p, f2}=0 in we have X;log (¢n_p j—€n-p.:)=—2d}. Con-
sequently, the relation dj;=e *(d’%;—X;(u)) gives us . Similarly, using
of Proposition 2.2, (C3) for {fs_p, f2}=0 in [Corollary 1.2 and the relation d%;=
e *d% in we obtain (C3). Thus the former part is proved.

We proceed to the latter part. We already know that {f,, 7.} =1{F, fa}~
=(0. Hence by Lemma 1.1l and [Proposition 1.3| it suffices to prove:

€C3)  @j(eq (Ep s—8p )—Ep.i(eq s —Eq ) Thi3e 1(Gp.i—Ep.)—Ep, #(Eq i—Eq 1))
+die(Eg (Epi—Ep a)—Ep s(Bqi—Eqs) =0  for any 7 j=k#i.

Denote by L the left hand side of (C3), and put Gp=(—1)" P2 g, (¢) for
simplicity of notation. Then by [(EZ) in [Proposition 2.2 we have &, ;=(—1)**!.
(e*eq_p. s+ @p). Using the relations d%=e *d%;, we see that

("'Dnﬂ@uL = ’iej((ezuen-q, i+¢q)(§p, k"ép,j)—(ezuen—p,i+¢p)(éq, k_éq, j))
Jr‘d'lfei((ezuen—q, k+¢q)(ép,j_" ép,i)"‘(ewen-p, k+¢p)(éq,j—'§q, 1))
+d}:k((32usn—q, j+¢q)(§p, i_ép, k)—(ezuen-p,j‘*'gbp)(éq,i—‘éq, k))

This can be written as

(__1)n+1euL — 02"S1+¢qsz—¢psa,

where
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Sy = dij(en_q,iEp =85 )~ np.1(Eq 1 —Eq,)
+dfi(en_q sGp i—Ep ) —En-p 1(Eq1—Eq 1)
+djr(en-q.iEpi—Ep, 1) —€n_p. G010 1)),

Se = d¥(Ep. e —Ep. )+ AL 1= Ep, )+ d5(Ep.i—Ep v),

Se=d¥(8qg s —8q )+ dhi(8q j—8q i)+ dir(Eq i —Eq 1)

First we contend that S;=0. In fact, by [E3) of Proposition 2.2 we have

(_1)n+le_2usl = dli]‘(sn—q,i@‘n—p, k_en—p.j)_an—p.i(en-q, r—€n_gq, ]))
"l"'dii(en-q, k(sn—p,j—‘en—p.i)_sn—p, k(en_q,j'—En—q.i))
+d§'k(5n—q, j(sn-p,i_sn—p, k)—en—p,j(sn—q,i_sn—q, k).

Then (C3) in for the assumption {f._,, fa_ot =0 shows that each
term of the last formula vanishes. Hence S;=0. Next we contend S,=0.
Indeed, the relations d%;=e *d%, and the condition (C3) for {f,, f.}~=0 in
give S,=0. Similarly S,=0. This completes the proof of L=0.
Proposition 3.3 is proved.

PROOF OF MAIN THEOREM. Suppose that the geodesic flow of (M, g) is
simply integrable with generating tensor field ¢. We shall prove that the geodesic
flow of (M, &), g=0.,.(c)""/* Vg, is simply integrable with the generating tensor
field ¢'. From [Proposition 3.3 it follows that the n functions f,: T(M)—R,
Fo(X)=F((c™),(X), X), are Poisson commutative (with respect to the symplectic
structure determined by §). It remains to prove the functional independence
of fp, p=1, -, n. In other words, we have to prove that the set consisting
of XeT(M) such that the rank of

(Fa)x: Tx(T(M)) —> Troxn(R™)
is less than n has no interior point, where Fy denotes the induced mapping of
F=(fy, Fo -+, Fa): T(M) — R™.

Owing to Lemma 3.1, it suffices to prove that any open set U where ¢ is dia-
gonalized, the set of XeT(U) such that the rank of

(Fox: Tx(TWU) —> Ticx)(R™)

is less than 7n has no interior point. As before, let X, X,, .-, X, be the ortho-
normal vector fields (with respect to g) on U such that «X;)=¢;X; with
g.: U-R, i=1, ---, n. We may assume that &, -+, €,>0, €n,1, -+, £€.<<0 for
some m. Let ¢, ; denote the eigenvalues of ¢,. Then by of Proposition
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2.2, we have
FolX) = (—1)"1aa() 1D Sen,ip 7' for X= 3 z2.X,eTO).
i=1 i=1
Define g,: UXR"—R by
le:(x)]
Bl 21,y 20) = Benate Tz,

We contend that g,, g», '+, g» are functionally independent. This will prove
the functional independence of f,, -, f»: T(U)—R, because we have the relation

P°ﬁ‘°¢(X) - (_1)n+l(gl(x; 21y "ty Zn)) gz(X, 21y Zn); Tty gn(X, 21y 't Zn))

for X=3%, z;X;T(U), where ¢: T(U)—T{U), p: R"—R" are diffeomorphisms
defined by

¢(§ZiXi) = an(l)llz(n_l) é '\/mziXi: P(wl; Wy, *+, wn)z(wn; Waoyy o0y wl)'
Note that f,: T(M)—R, f,(X)=g(xX), X), can be written on UXR*"=TU) as

n
fp(x’ 21y "ty Zn) = E; ap,i(x)z% .
i=
Hence

go(x, 2) = fp(x, 2*), where z=(zy, -+, zn), 2*=(21, ***, Zm, 1Zm+1, ***, EZn).

Then we see that any minor of the Jacobian matrix a(g;, «--, g.)/0(xy, -, Xq,
z1, -, 2n) is equal to (7)* times the corresponding minor of a(fy, -+, fn)/
O(xy, ) Xnu, 21, -+, Zn) at (x, z¥) for some ». Therefore the functional inde-
pendence of f;, ---, f, implies the functional independence of g,, ---, g». This

completes the proof of Main Theorem.

§4. Examples.

We shall give a family of Riemannian metrics on the n-sphere S™ whose
geodesic flows are simply integrable. We need to prepare some notations. Let
SO(n+1) be the special orthogonal group of degree n+1, and for 1<i#7<n+1,
let e;; denote the (n+1)X(n-+1) matrix whose (7, j) component is 1, (J, 7) com-
ponent is —1, and others are 0. Let ¢;; denote the zero matrix, for convenience.
As usual, we regard e¢;; as the tangent vectors of SO(n-1) at the unit element.
Let g, be the bi-invariant metric on SO(n+1) defined so that ¢;;, 1<i<j<n+1,
are orthonormal. In order to define a left invariant metric on SO(n+1), let A
be an (n+1)x(n+1) diagonal matrix with positive and distinct diagonal ele-
ments @i, Gy, -, Gny, and put E;; = (1/+/a;a;)e;;, The Mishchenko - Dikii-
Manakov-Fomenko metric (MDMF metric) on SO(n+1) is defined to be the left
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invariant metric g such that the left translations of E;;, 1<i<j<n+1, are
orthonormal vector fields on SO(n+1). It is useful to introduce a symmetric
linear mapping A: so(n+1) — so(n+1), A(e;;) = a;a;e;;, of the Lie algebra of
SO(n+1). We regard A as a left invariant symmetric tensor field of type
(1, 1) on SO(n+1). Clearly, g(x, x)=g,(A(*), *). Now, let M" denote the space
SO(M)\SO(n+1) of right cosets. Let g be the Riemannian metric on M" de-
fined by the requirement that the natural mapping z:SO(n+1)—M" is a Rie-
mannian submersion of (SO(n-+1), g) (see [0]). Let A be the tensor field of
type (1, 1) on M defined by

AX) = proju(AX))  for XeT(M),

where proj4 denotes the projection to the horizontal subspaces, which are
identified with the tangent spaces of M, and X denotes any horizontal lift of
X. Obviously, the tensor field A is well defined and symmetric. We are ready
to state our theorem:.

THEOREM 4.1. The geodesic flow of (M™, &) is simply integrable with the
generating tensor field /.

Using the fact that (M?™, cr,,(/vl)‘”‘”“’ﬁ) is isometric to the ellipsoid E»
(Proposition 4.7) and applying our main theorem, we get at once the following.

THEOREM 4.2. The geodesic flow of the ellipsoid E™ is simply integrable,
and hence in particular completely integrable in Liouville’s sense.

The complete integrability of the geodesic flow of E™ is classical since
Jacobi, and another proof is known by [Moe].

In order to prove [Theorem 4.1, we first recall Mishchenko-Dikii-Manakov-
Fomenko’s theorem. For p=1, ---, n, let A, be the left invariant symmetric
tensor field of type (1, 1) on SO(n+1) defined by

a;aja;?—a;® ..
Aple;) = —— ’_fz : - ] >ei,-, 1<i<j<n+1.
17 Wy

Clearly, Aq,=A. Define f: T(SO(n+1))—R by
f(p)(Z) = g(A(p)(Z)’ Z), ZeT(SO0(n+1)).

THEOREM (Mishchenko-Dikii-Manakov-Fomenko). The n functions fp, on
the tangent bundle T(SO(n+1)) of the Riemannian manifold (SO(n+1), g), p=
1, .-+, n, are Poisson commutative.

REMARK. Among A,’s and the identity tensor field Id there is the fol-
lowing relation :
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(=1)*"'a, . (A)1d
- A(n)_o'l(A)A(n—l)"‘ +(_1)sas(A)A(n—s)+ +(—'l)n"10‘n—1(14)/1(1),

where o,(A) denote the elementary symmetric polynomials of a,, a,, -, @n,;.
Hence, we have

(=D e (A I
= fiy—01(A) f -t - +(—=1)*0(A)fn_y+ - +(—=D* 0 _1(A) f ),

where | ||* denotes the function on T(SO(n-1)) defined by |Z|*=g(Z, Z)
The derived tensor fields (A), of A are related to A, as follows.

PROPOSITION 4.3. We have
(Dp(X) = 0y (A) 2701070 5 (—1)27%,_(A) proja(Aw(X) for XET(M),

where projx, X are as in the definition of .
The proof will be given later in this section.

PROPOSITION 4.4, Let W be a Riemannian manifold, and suppose that a
compact Lie group G acts isometrically on W from the left. Suppose that for
each point x of W, the mapping G2g—gx =W is an imbedding. Let m#: W—G\W
be the Riemannian submersion to the quotient space. Let f, g be functions on
T(W) which are invariant by the induced action of G on T(W). Denote by f, g
the functions on T(G\W) defined naturally by f, g, vespectively. Then the flow
generated by the Hamiltonian vector field sgrad f keeps the horizontal subspaces
of T(W) invariant. Moreover, sgrad f is invariant under the induced action of
G on T(W), and hence gives a vector field on T(M), which coincides with sgrad f
Hence, if {f, g} =0, then {f, &}=0.

PrRoOOF. We shall prove only the invariance of the horizontal subspaces
and the coincidence sgrad f|horizontal subspaces=sgrad f, since the others are
obvious. Take orthonormal vector fields X, -+, Xp, Xp41, -+, Xpin defined on
an open subset U of W so that X, ---, X, are vertical, and X, ---, X,,, are
invariant under the action of G, where p=dim G, p+n=dimW. Then for any
integral curve c: (—e¢, e)—T(U) of sgrad f we have

d vin Of - .
—d-tg(c(t): XJ) = k%lﬁE;ijg(C(t)’ Xl)—XJ(f)’ J:]-) "ty ﬁ"l‘n,

with the notation in the proof of in Appendix. Since X, -+, Xp,n
are chosen G-invariant, we see that ¢};=0 if p+1<I<p+n, 1<;<p. Moreover
Xi(f)=0, j=1, ---, p. Then by the uniqueness theorem of differential equations
we conclude that if ¢(0) is horizontal, then c(¢) is horizontal for any ¢. Thus
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the invariance of the horizontal subspaces under the flow is proved. The later
part is now obvious, because if ¢(¢f) is horizontal, then the differential equation
for c(?) is

d pin @ - .
G0, X0 = "5 SLchgew, X0-Xu),  j=pr1, -, pn

which shows that c(¢) satisfies the differential equation of sgrad f.
4.4 is proved.

PROOF OF THEOREM 4.1. We have to prove that the n functions f, on
T(M), fp(X)zﬁ((Z)p(X), X), p=1, ---, n, are Poisson commutative. From Pro-
position 4.3 we see that each f, is expressed as a linear combination of f,,
fe -, fay, viewed as functions on T(M), with constant coefficients. Then
by MDMF’s theorem and [Proposition 4.4] we conclude that f,, p=1, ---, n, are
Poisson commutative.

The functional independence of f,, p=1, .-+, n, is verified as follows. Let
o=n(I)eM be the image of the unit element I of SO(n+1). We contend that
the restrictions f,|=f,|T (M) are functionally independent. This will prove the
functional independence of f,, because f, are analytic functions on T(M).
Note that wx(E;n.1), 1<i<n, constitute the orthonormal basis T,(M), because
E;n,,, 1<i<n are the orthonormal basis of the horizontal subspace of
T (SO(n+1)). Moreover mx;(E;,,,) are the eigenvectors of /j.,: TAM)—T (M)
with eigenvalues a;a,,,, respectively. Put @;=a:a,,,. Then, identifying T (M)

with R™ by means of the basis mx;(E;r.1), We have f,|(z1, =, 2p)=211 @p, 125,
where «, ; denote the eigenvalues of (A),,: To(M)—T(M). Hence, the deter-
minant of the Jacobian matrix o(f.|, -+, fx|)/0(zy, ==, z») is equal to 2"z,z, -+ 2z,

times the determinant of the matrix (@, :; 1=<p, i<n). Using the fact that «a,
are given by

»-1
@y, = €I Y (—1)'c,al ™
8=

with positive constants ¢, .-+, ¢,, We observe that det (a,,;) is equal to nonzero
constant times the Vandermonde determinant det (a?), which is nonzero because
of the assumption a;#a; ({#7). Thus the functional independence of f.|, -, f,l
is proved.

It remains to prove [Proposifion 4.31 We prepare two lemmas. First, to

express the elementary symmetric polynomials as(/lv) of eigenvalues of /Y, we
introduce functions X, on SO(n+1) defined by

L) = S @, x=(x;) € SOm+1).

i=1

Clearly, X,=1. Moreover, the functions X, may be considered as functions on
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M*»=SO(n)\SO(n+1), and satisfy the relations
Xoni—0(AXn+ - H(=Dloy(AXnsrst - +(=1)"0,,1(A) =0,
Xon—0:(AXp 1+ - (=D 0 (A)+(—1)"" 07 1 (AX ;=0
with the elementary symmetric polynomials ¢,(A) of a,, a,, -+, @n,1.

LEMMA 4.5. Fix x=(x44;)€S0(n+1). The characteristic polynomial Py(R)
of /7, as an endomorphism of the tangent space Tp.,(M), is

Py(d) = A"+ X)) =0 (ANA" T+ (X)X — 01 (A + 0,(ANA" 2+ -
F+ X)) A= 01 (As 1+ (AW s — Oo(A)As g+ -+ +(—1)°0(A)A"°
+ o F (=DM TV 05(A),
where X;=X;(x).

PROOF. As a basis (not necessarily orthonormal) of the horizontal subspace
I, of T (SO(n+1)), take A *(adz-1€;n41), 1=1, -, n. Here ad;-1¢;4.,1 =
x"'e; n.x are viewed as the tangent vectors =7 ,(SO(n+1)) by left translation.
Then, for each p=1, :--, n, the linear mapping projueAp |« : H— 4, has the
following matrix expression :

(4 ' e A= 27— (e A (F AP 500103 15, TS ).
(In order to get this matrix, use the facts that
go(ad-12:5, €r)) = X e,y s g(ad-1e;5, ad-104:) = (XAX N e v
for 1<i<j<n+1, 1k<isn41l, xSO(n+1), where Q. jy 1y denote the

minors of degree 2 of matrix @, and

. 1 »n+1 .
projyu(ad;-1; ny1) = ¥ 21(xA“x"‘)n+1r adz-1e;, =1, -+, n.)
L

When p=1, in particular, the matrix expression of A at m(x) is
<—~~1—(xAx“),-,-; 1<, jén).
-1

From this matrix for A, using the fact that the elementary symmetric poly-
nomials of ay, -, a;_y, @41, -+, Gny1 are given by

0'3((11, Tty di} Ty an+1) = Tgo(_l)ro‘s—‘r(A)a;

we can get Py(4).
Next, we express the tensor field projgeA(p, restricted to the horizontal

subspaces in terms of A.
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LEMMA 4.6. For each s=1, ---, n we have
proju(Aw(X)= R ¥, 44X)

for any XeT(M) and any horizontal lift X.

PrROOF. Using the matrix expressions for projgeA ]« in the proof of
Lemma 4.5, we obtain the relation

projue Apsny o = X_1 Projue Ay oprojue Al su+X, projueAl « .

By induction we get the desired formula.

PROOF OF PROPOSITION 4.3. By we have
(=10, M) = @) 3 (—1)ta (AL,
t=0

In particular, an(/i’)z(x_l)“""’onH(A). Hence, recalling the definition of (AV),,
we get

(DpX) = G us(A) @D/ DQ Y2 5 (— 1) o (AU Lot APX).

0sssp—1
ostss

On the other hand, by and by introducing the indices u=p—t, v=
p—s, we see that the right-hand side of the desired formula can be written as
On(A)"P70/@AD 5 (—1)”'30;;-3(/1)75‘-‘1‘13_;/Y‘(X)-
p

=8
=t

IAIA
o

1
1
= 0y (A PDIADST (1Pa (AT Ny AP (X))

vsugp-1
0505 p—1

The last formula is equal to (/\Il)p(X) because of the fact {(s, 1)]|0<s<p—1, .
0=t<st={(u, v)lv=usp—1, 0<v<p—1}. [Proposition 4.3 is proved.

PrROPOSITION 4.7 (cf. [Br]). The Riemannian manifold (M™", To(A) 11 )

is isometric to the ellipsoid
nj&i:( 1 )ll(n—-l)}‘
S1a; \ay

PROOF. Define #;: SO(n+1)—R by

Er={x, -, za)eR™

/’l;(X): ‘\/a—ixn+1i

(@ @py)¥ 0"

Then h=(hy, -+, hny1): SO(n+1)— R™' gives a mapping /: M—R"*!, Using
the fact

g(proja(E;), proja(Ee) = Cau. jyeey
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where projo, denotes the projection to the vertical subspace of T .SO(n+1), and
Cu, jcx.1y denotes the minor of degree 2 of the n+41Xn-1 matrix

1 XnsriXnstg <; <
= Ipo— Tnrlie 1<, j<n+1),
C=1,4 X_x( Va.a, 1<, j<n )

we see that i gives the desired isometry.

Appendix A. Riemannian Expression of Poisson bracket.

We begin by recalling some notions of symplectic geometry (cf. [F]). The
symplectic structure w on T(M) is defined to be the 2-form w=2d# (the multi-
plier 2 is put, since we view d@ as the bilinear mappings on the tangent spaces
according to the definition of [KN]). Here @ is the canonical 1-form on T'(M),
i.e., 6 is defined by 0(X)=g(mx(X), X), XT x(T(M)) with the induced map-
ping 7wy : T x(T(M))—=Trx,(M) of the projection = : T(M)—M. For a function
f on T(M), the Hamiltonian vector field sgrad f on T(M) is defined by the
formula w(sgrad f, X)=—df(X), X&T(T(M)). The Poisson bracket of two
functions f, g: T(M)—R is the function {f, g} =w(sgrad f, sgrad g). The fol-
lowing lemma gives us the expression of the Poisson bracket of two quadratic

functions on 7(M) in terms of covariant derivative V of the Riemannian mani-
fold M.

LEMMA 1. Let p, v be symmetric tensor fields of type (1, 1) on M. Let
f, &: T(M)—R be the functions defined by f(X)=g(uX), X), gX)=gu(X), X).
Then we have

{f, H(X) = 2{g(V)(X ; p(X)), X)—g(Ve)(X ; v(X)), X)}, X€T(M).

Proor. It suffices to prove our formula on each sufficiently small open
subset of T(M). Take n orthonormal vector fields X;, X,, ---, X, defined on an
open set U of M. Put ct;=g([X;, X;], Xi). Then by means of the isomorphism
¢: TWU)=UXR", ¢X)=(x(X), gX, X)), -+, g(X, X»)), we have 2n linearly inde-
pendent vector fields X, -, Xn, 0/0p,, ---, 0/0p, on T(U) such that

Xi(Q(*; Xj)) =0, a/api(g(*, X)) = 51‘1, 77*()?1') = X,
n*(a/apl) = 0} Z” ]:11 ey, N
Then [X—L, Xj]zzk C?ij, [Xi, a/ap_,]:O, [a/ap“ a/apjjzo. With respect to
this frame field the symplectic structure @ has the following expression:
o(X;,0/0p;)=—0;, 0(0/0p;, 0/0p;)=0, o(X;, XJ‘):_Zk ctipr at pXa+ o+ paXa.

Using these formulas, for a function 2 on T(M) we can express sgrad h as
follows:
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Lo = dh , \ O
sgrad h= % 5. X~ ;(X,-(h)— b ‘ap—kc’”pl>a_;5} at pXi+ - + paXaeTU).
Now we can prove our lemma on T (U). For simplicity of notation, put p;;=
g(u(Xy), Xy), vi;=gu(X;), X;). Then {f, g} is expressed as

{f, gt = 2T§t(;(ﬂirXi("'xt)"“VirXi(#st))—‘zilzj C%jﬂjr”is)ﬁrﬁspc

at X=p, X+ - + 9, X, €TU). On the other hand, the usual tensor calculus
yields

gUTNX 5 pX), X) = 33 (3D pesXcvr) =2 5 pasovse ) prpap

28t

for any tangent vector X=p,X,+ - +p.X,, where df;=g(y,X;, X;). Thus
using the facts c¢%;=d%;—d*%, d%=—d},, we obtain the desired formula at X=
P1X1+ +ann-
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