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Introduction.

The purpose of this paper is to study the mean value property and its ap-
plications to a certain class of degenerate elliptic operators. We shall treat the
operators L, defined by

(0.1) La(x, 0;) = —x,A—0a0., for x = (x’, x,) € R?,

where a is a real parameter and R? is the Euclidian halfspace defined by {x=
(x/, x)|x’€R" Y, x,>0}.
Let £ be a domain of R? and we set
2 = QU@OR2NORY),

02" = 0 oR? .

0.2)

By C%£) and C%&) we denote the sets of all continuous functions on £
and £ respectively.

With the operators L., we shall associate the modified mean value func-
tions M,, ,u(a) of usC'®) (resp. ucC%2)) at a point acf (resp. acf).
More precisely

DEFINITION 0.1. Let a=(a’, a,) be an arbitrary point in £ (resp. &), and
let @ and p be arbitrary positive numbers satisfying p<dist(a, 62) (resp. p<
dist(a, 32%). For usC%Q) (resp. uc C%£2)) we set

0.3 Ma ,u(a)

1
0

= C(a)p“”"’g {s(l—~s)}“/z‘ldsgaﬁxgu(x’-}—a', 7(Xp, Gn, $))AS;
o

where

This research was partially supported by Grant-in-Aid for Scientific Research (No.
04854005), Ministry of Education, Science and Culture.



150 T. Hor1UCHI

7(Xn, Gn, s)= '\/(xn—an)zs‘*“(xn‘*'an)z(l—s)v
0B; = {x = (x/, x.)ER"|| x| = p, x, > 0},
291zt [((n+a)/2)

I'(a/2) ’

and dS; is the (n—1)-dimensional Lebesgue measure.
Since it holds that

Cla) =

(0.4) [Xn—an| = 7(Xp, Gr, S) £ X+a,
and
Uosa§1UzeaB;(a,+x,, 7(Xn, an, 3)) S B;(d) = {x e R}: IX—(Z! = P},

it is easy to see that the modified mean value functions M, ,u(a) are
well defined. We introduce the following notions as a substantial extension of
the classical theory for the Laplacian in R™:

DEFINITION 0.2. Let £ be a domain of R? and u be of class C%&Q) (resp.

C%42)). Then u is said to be a-superharmonic in 2 (resp. a-superharmonic in
Q) if

(0.5) M., pu(a) < u(a)

for any a=Q (resp. a=£) and any p<(0, dist(a, 02)) (resp. p=(0, dist(a, 42Y)).
In case that —u is a-superharmonic, u is said to be a-subharmonic.

DEeFINITION 0.3. Let u be of class C%Q) (resp. C%&)). Then u is said to
be a-harmonic in 2 (resp. a-harmonic in £) if

0.6) M., ,u(a) = u(a)
for any acQ (resp. ac£) and any p<(0, dist(a, 62)) (resp. p=(0, dist(a, 32%)).

Then we shall establish the mean value theorems for the operator L, and
give a necessary and sufficient condition for the a-harmonicity. As corollaries
we shall make clear the structure of the a-harmonic functions which is deeply
connected to the degeneracy of the operators L, on the hyperplane {x<
R |x,=0}.

In order to see in advance the role of M, ,u(x) as well as what it means,
we shall trace the definition of M., ,u(x) to its origin assuming that 2=R} and
a is a positive integer in the rest of this subsection.

First we show:

LEMMA 0.1. Let a be an arbitrary positive integer, and let u be of class
CYRY. Then it holds that
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1
©.7) Mepulla) = —rear| | u(iznas,,
where
a= (aly gy ** aa+l> = Ra+1’ 2= (Zl, 2o, 2a+1) = Ra+1.

PROOF. We shall make use of the polar coordinate system defined by

0.8 z = a+pw, a=\a|e, with o, o’ € S¢,
1z]* = |a|*+p*+2]|a|p cos ¢, cos¢ =0,
0?dSs = (psin)*'dSs&tpd¢ with 0<¢<m, o S
So we get

09 | . _ulzhds,

= ]S“"IS:p“(Singb)“‘lu(\/l al®*+p*+2plalcos dg.
Carrying out the change of variables defined by
(0.10) sin ¢ = 2+4/s(1—s),  that is, cos¢ =2s—1,
the desired estimate follows. Q. E.D.

In a similar way we can show the following (the proof is omitted):

LEMMA 0.2. Let u be of class C(R%™, R} ), and let (a’, b) be an arbitrary
point in R*"'XR***. Then we have

1

pn+a—1|Sn+a—-1]

(0.11) M., ,u(a) = u(x’, 121)dS,» -

SI(I'»Z)—(G’»D)I=P
Here
a=(a’, a,) with a,=1b|, x=(x', x,) with x,=|z|,
(a’, b), (x’, z) € R*""*XR**1.
Now it is clear that the definition of M., ,u(a) comes from the equality
(0.11) provided « is a positive integer.
Here we remark that the integral on the righthand side of (0.3) is not con-

vergent if a=(—1, 0], nevertheless we see that M,,,u(a) can be continued
analytically with respect to a in that case. In particular if a=0, we have

(0.12) M, ,u(a)
:2‘%:*””1"(—3—);;“”5“;{u(x’+a’, Xnt+an)+ulx’+a’, |x,—a,|)}dS:.

The potential theory has been developed together with the study of uniformly
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elliptic differential operators represented by the Laplacian A, and as a result it
has become an extensive field of research in both mathematics and mathematical
physics (see [5], [6], and [127]). Suitably extended versions are also ap-
plicable to nonlinear elliptic equations to some extent (see [1], [2], [10], [13]
[14], and [16]). But the development of the potential theory seems to be
rather limitted in the study of genuinely degenerate operators. Therefore we
also indicate in this paper that the classical potential theory for the uniformly
elliptic operators can be extended on the same lines to the degenerate operator
L, as a typical example.

This paper is organized in the following way. In §1 we shall describe the
modified mean value property and give a necessary and sufficient condition for
the a-harmonicity in terms of the mean value theorem. In §2 we prove Theo-
rems 1.1 and 1.2 stated in the previous section. The proof of
will be parallel to that for the Laplacian. In Appendix 1 we collect mostly
without proofs the basic properties of the potential kernel K, and we also give
the proof of a lemma which is needed in §1. In Appendix 2 we shall prove
a theorem on representation of superharmonic function.

§1. Main results.

In this section we shall describe the fundamental properties of the operator
L, defined by in terms of the modified mean value M, ,u(a) prepared in
the previous section. Let £ be a domain of R?. First we assume that a>0.

THEOREM 1.1. Suppose that a>0 and that u is of class CUR) (resp. CA(£L)).
Moreover we suppose that u is a-harmonic, that is:

(1.1) My, pu(a) = u(a)

holds for any as (resp. a=) and any p<=(0, dist(a, 92)) (resp. p<(0, dist(a,
02%)). Then u is of class C=(2) (resp. C=(£2)) and satisfies L,u=0 in
(resp. £).

THEOREM 1.2. Suppose that a>0 and that u is of class C*Q) (resp. C¥2)).
Then u is a-superharmonic in 2 (resp. £) if and only if L,u=>0 holds in
(resp. £).

From these theorems we immediately have:

COROLLARY 1.3. Suppose that a>0 and that u is of class C*(Q) (resp. CX(L)).
Moreover we suppose that u satisfies Lou=0 in Q (resp. £). Then u is of class
C=(2) (resp. C(2)).

Now we proceed to the case a<<1l. In this case we shall treat a-harmonic
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functions with the Dirichlet boundary condition, and characterize them using

the previous results. For simplicity we assume that 2=R?. Let u=C%R?)
be a solution of the equation L,u=0 with the Dirichlet boundary condition
ulz,=o=0. By u®" we denote the extension of u to R" obtained by setting
u=0 on R™R%?. Then it follows from Lemma A.3 in Appendix 1 that L,u*
=0 in R™, where the differentiations are taken in the distribution sense. Then
by virtue of the fundamental solutions (A.2) for L,(a<2), (A.5) and the ap-
proximation arguments (cf. see for example) it follows that:

For any point x,=R?®, there is a real analytic function v on R” such that
(1.2) u(x) = x 1 “v(x), in some neighborhood of x,.

In fact one can show the equality that ¢(x)u(x)=&E.(L.(pu*))(x) in some neigh-

borhood of each point x,&R%, where p= C3(RD), ¢=1 near x,. Here we used
the fact L.(pu*) can be approximated by C* functions.
Noting that L,(x; %)=0, we have

(1.3) Lou=x3"%Lv+[ Lo, 1720 =x43"%Ly_qv.
Since 2—a>0, it follows at once from the theorems that

THEOREM 1.4. Suppose that a<l and that u=C°(R?) satisfies the equation

1.4 L,u=0, in RZ?,
u I z,=0 = 0 .
Then
(1.5) U(x) = x2"My_q, ,0(x)  with v(x) = x5 u(x),

where v is a real analytic function on R} and p is an arbitrary posilive number.

§2. The proofs of Theorem 1.1 and 1.2.

We prepare further notations. Take a nonnegative smooth function @ such
that @(p)=1 in some neighborhood of the origin and such that

@2.1) S:’pw-lq)(p)dp =1, &(x])e C3RY.
Now we define a mollification of u as follows:
2.2) Ueo(X) = C(a)e“"‘“gz {s(l—s)} */2-1ds

) P —y, no (MG 1 Ry g
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for ucCYR?) (resp. ucC%R?)) and ¢>0. Then obviously u. ,=C=(R?) (resp.
U o =C=(RT)) for any a>0 and £>0. Moreover we show :

LEMMA 2.1. It holds that

(2:3) Ue,a(X) = C(a)e‘"‘“S:{s(l—s)} a/2=1fg
S (! — ar (NI TEEN
X R‘ﬂ—-lgo u<x —y » T(xn, r, S))T @(————;——)dy dr
for any a>0 and e>0.

PROOF OF THEOREM 1.1.
Admitting this for a moment, we show that u. .(x)=u(x) for a sufficiently
small ¢>0 if u is @-harmonic in 2 (resp. £). In fact we immediately have

1
0

2.4) e, (%) = C(a)S:@(p/we-“-*dpS {s(1—s)}**-1ds
X[ P =, 1, 7, NSy,
I}

= u(x) S?p"*“‘l@(p)dp = u(x),

where ¢ and p are sufficiently small positive numbers and dS,, ») is the (n—1)-
dimensional Lebesgue measure. Therefore we have proved that u is smooth if
u is a-harmonic. The equality L,u=0 easily follows from (2.12) if u is smooth
and a-harmonic. Q.E.D.

PrOOF OF LEMMA 2.1. Let us set for >0

1
[]

(2.5) Q) = 2““S:r“¢(r)drg Is(L—8)} 2 (2, 7, 5))ds

_ S:"rago(r)drgz¢v(\/tz+rz—2tr cos 0) sin*-104 8,

for ¢, ¢=Ci(R%). Here we used the change of variable defined by cos 6 =2s—1.

To prove we have only to show the equality p#¢=¢#¢p, which
implies the validity of the commutativity law. First we put »=tr and then
divide the integral into two terms. So that we obtain

gD#Qb(t) = Il+12 ’

1 n
— ja+l @ 7 soa-1
26 I, =t So(p(tr)z' d'rgogb(t\/l-{-r 27 cos ) sin*"1'6d 4,

L= t“*lgjgp(tr)t“drg ¢ (tv/TTT" =27 cos 0) sin-104 4.

n
0
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Secondly we carry out a change of variables in the inner integral defined by
a*=1+72—27rcos 0, so we get

—_— D1~-asa+1 ! e a-2
@7 I, =27 So<p(tr)z'dz'gl_rg(a, )" *(tg)oda,
I, = 21'“t“+lgj¢(tr)tdrgrjg(a, 7)**J(te)ad o,

where

go, 7) = vV [2(c*+7*)—(r*—a®)—1|.

Therefore we get

(2.8) o#HY) = 2*“2“”8 Tafg(a, ) 2p(it)d(to)dadT,

A,
where
A" ={le, 7)€ R. XR,||1—7]| £ 0 £ 1+7}.

After all we have proved the commutativity law for the #-product, because
g(o, v) and A% * are symmetric with respect to ¢ and r.

PROOF OF THEOREM 1.2. We shall deal with the case that 2=R?. Since
the operator L, is elliptic in R?%, the proof in the general case follows in a
similar way.

Hence we assume that u is of class C%(R?). First we recall that
7(Xa, @n, $) =[x3+ai+2a,x,(1—25)]"* and 7(0, an, s) = an.
Assume that a,>0, then by Taylar’s expansion formula we get
(2.9) u(x’'+a’, y(xn, @z, s))—u(a)

= "5 %,6;u(a)+(1—25)x w,u(a)
j=1

+2“M§n_1xixjaia,-u(a)—i—(l—Zs)tg‘,:xnxjanaju(a)
+271(1—2s)’x202u(a)+2s(1—s)ar'x20,u(a)+o(| x|?).
If a,=0, simply we have
(2.9%) u(x'+a’, 1(xn, @n, s))—u(a) = é x0u(a)+o(|x]).
We prepare the following lemmas. (The proof is omitted.)

LEMMA 2.2. Suppose that k(j)=0 for j=1, ---, n. Then we have
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(2.10) Ssn_1|x1]k“)"lek(z)"']xn]k(n)dsx
P k()+1 lra . -1
=20 P(=5)T (5 B e0+n))

LEMMA 2.3. Let Re $>0. Then we have

(2.11) 72 () = zﬂ-lr(ig) p<ﬁ~2L1>

Using these lemmas we have
M, ,u(a) = u(a)—p*{2ax(n+a)} ' Lou(a)+o(p?)

(2.12)
M., ,u(a) = u(a)+c(a, n)apd,u(a)+o(p), if a,=0,

where

a2 [(a/2* ' (n+a)/2)
o t[(a) (n+a+1)/2) °

Since p and @ are arbitrary, we have L,u=0 if u is a-superharmonic.
We note that if u is a-harmonic in R?, then the equality L,u=0 follows from
(2.12). Moreover if u is a-harmonic in R?, then 0,u(x) also vanishes on the
boundary.

We proceed to the proof of the converse. Assume that L,u=>0. Then it
suffices to show that 6,M,, ,u(y)<0 for any ycR?. In fact the a-superhar-
monicity follows from this inequality and the property

ca, n) =

(2.13) lgrrg M, ,u(y) = u(y).

Let us set v=u(x’+y’, y(x4, ¥, 8)). By 0dv/ds and ov/or we simply denote
the derivatives of v with respect to s and 7 respectively. Then we have

0 2X,Y, 0
2.14 2y = _S&tndn Y
(2.1 35" P g
#  4dxiyi,s 18
215 = (G )
and hence

(2.16) (A“Lx%ai,,)”

:(Ax,_‘_ 0’ a__8~>v_ 4y§s(l—s)( 0* 10 >+ ayn(1~23)iv

a7 T e 7 orr ' 7 or’ 1%.  or

_ ¢ a o 1 i a 0
= (At 5o+ 25 o= g (s0-9) g vt Ga-2950),

where A;=27-,0%; and A, =372103
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By the homogeneity with respect to p we have
(2.17)  Cla)0,M., ,u(y)

= P"“‘"S:{S(I—S)}“’2‘1dsgaB+x%8yu(x’+y’, 1(Xn, Yn, $)dSz
0

= tim pt-e=n{ {s(l—s) #ds|_, x40,u(x'+", 1(xa, 32 )dSs,

+
B},

where vy is the outer normal and B} .={x: [x|=Zp, eSx,=p} for 0<e<p.
We also note that 0., 7=7"'"[(xn—Y2)s+(xn+¥,)(1—s)] is bounded. Then
by Green’s formula we get

(218) C(a)-lapMa.pu(y>

= lin.} p““‘"gl {s(I—s)}*/*"'ds
& 0

%[, 28(Actarz 52 )utxr+2, 150, 30, )dx

o€

= lim pl-a-nS:{sa—s)} ar-igs

<
B},

—lim p'~- "S {s(1—s)}e/*"ds

&0

XSB+ Ex%[ 4y’2'sr(21—s) (gr _%%)_______aynr(in 2s) 67] u(x’+y’, dx

, 0
(A o 8)’ +ar! aT)u(x +2', 1(Xa, Ya, $))dx

1
— 17 1-a-n . al2-1
=1lim p So{s(l S} er1ds

a 0 -1 0
xSBstn(Ax S Far S e/ 2, 1, 3n, $)dx

—liq.l p"“‘"S:{s(l—s)} alz~1ds

0* I 0
a-2 ’ ’
XSB; 5x (s(l—s) 5< ——2 (1-—23)———88 )u(x 4+, Ndx
(using integration by parts with respect to s)

= 1in01 pl""”S:{s(l—s)} a/z-1dg

XSBZEx%[<Az+az; iz, )u(x +z, Zn)]zn_,(xn y s)dx
(using in Lemma 2.4)
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1
— p1—a-ngo{s(1_s)} arz=14¢

X SBJ% [(Az—i—azzl 6
o

. Yu(r'+2, zn)] dx <0,

2! =y’
zp=r{xn, ¥Yn, O

(since u is a-superharmonic)

where A,=>17., 0%/0z}.
LEMMA 24. Let a>0. Then

(2.19) I(y, a) = S:x“de:m[s(l—S)]“/z'lds

is finile if y=0.

PROOF OF LEMMA 2.4. Let us set

_ 1/2 Xasa/z-l d
(2.20) Jtx, 30 = (Tx—y "+ axysye ¢°
K4, 0= [‘emqrorea,  for 4= 22
0 [x—y]
Then we have
2.21) Ky, @) < 2max(l, 21-a/2>§: J(x, v, @xedx,
(2.22) J(x, 3, ) = @Uxy)" x| x—y|*'K(4, a),
and
A al2
(Tﬁf) , for 0<a<1,
(2.23) K(A, a) < Const. A N2
( 1+A> -log(2+A), for a=1,
Acl?(14-A)E, for 1< a.

Hence J(x, y, a) satisfies

Q.E.D.

x & — a-1

(lx+yl) [x—yl|eY, for 0<a<l,
x [x+]

< =
(2.24) J(x, ¥, a) < Const. lx—l—yl'loglx—y] , for a=1,

xa

— f .

PR or 1<a

So that the desired estimates follow.

Q.E.D.
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Appendix 1. Potential kernels and the proof of Lemma A.3.

In this section we shall introduce potential kernels closely related to_the
operators L, and A, defined by

(A.1) Apg = —V-(x8V:) = x5 L,.
Let us set
Eo(x, ) = Doy | x=y*|"*|x—y[*"F(a, ), a>0,
(A.2) Ea(X, ¥) = Dy_qxi %|x—y*|* ¢ x—y|* "F2—a, w), a<2,
Ko(x, 3) = Dalx—3*|"*|x—3|*"F(a, ®), a>0,

where
y*=(y, =),
_q_E=ylt L 4xay.
O =TI T Ty
D — 2a—27r—n/2[’((n+a——2)/2)r(a/2>

I'(a)

and F(a, ) is a hypergeometric function defined by

_ I > [(+at+2—n/DG+a/d) o
B3 Fla ) = Faga—m/Dlaz) & TG+a) Nk
_ _I(a) @)y | n-2

x| (2= 311 =)+ [x—y*20) @ rL0(1- )] 1d0 .
Moreover F(a, w) satisfies the following estimates (the proof is omitted):
PROPOSITION A.l. There exist positive numbers ¢, and c, such that

ci' S Fla, w) Z ¢y, n=3, a>0,

(A4) - F(a, )
= Toglzt x—y* /=311~

n=2, a>0.

Here ¢, and ¢, are independent of x and y.

Then E.(x, ), €«(x, ¥) and K,(x, y) are Green functions for the operators
L. and A, in the following sense (cf. and [11]):

PROPOSITION A.2. Suppose that fe CRHNE and g CARY)NE'. Let
us set
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u(x) = Eaf(0) = |, Bal, 5)f()dy,

(A5) o) = Eaf() = |, Ealx, DI,

wix) = Kof(x) = | Kolx, 9)f ().

Then it holds that

Lou(x) = f(x), Rea >0,
(A.6) Lov(x)= f(x) and vl|z -0 =0, Rea <1,
Aqw(x) = f(x), Rea > 0.

Moreover it holds that

g(x) = Ea(Lag)x), Rea>0,
(A7) g(x) = Ka(Aag)(x), Rea>0,

g(x) = Ea(Lag)(x), Rea <1, g(x)]z,=0=0.
Here, by & we mean the set of distributions having compact support.

Here we note that kernels are connected one another in the following way :
For a>0,
Ko(x, ) = Ka(y, x) = y37“Ea(x, 3) = 237%€2-a(x, ¥),
(A.8)
E (x, y)=Es-a(y, x) and Aq=2x51Ly="L,(x5*).
Here *L, is the formal transpose of L,. In particular if h:>=3 and a=n—2,
then we can compute F(a, @) to obtain

(A.9) Kno(%, 3) = 2n-4zr-“/21’(f;—2—)-<1x—y*| |x—y])",

By virtue of these kernels, it is not difficult to develop the so-called potential
theory for the operator L, (or A,) in the same lines of the classical theory.
Lastly we show the following lemma which was needed in §2.

LEMMA A.3. Let a<l and usC%R%). Assume that u satisfies

(A.10) ‘ L,u=20, Ulz,=0=0, then
(A.11) xlim;xnaznu(x) =0. |

ProoF. First we remark that since the operator L, is elliptic in R?,
Xa0z,u(x) is continuous there. Let x,&RZ} and choose a smooth function ¢ so
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that

‘ 1’ X e Bd/4<x0>)
(A.12) o(x) = { and |0%¢| < ¢ d7*,
0, x & Bap(x,).

where d=dist(x,, {x,=0}) and ¢, is a positive number independent of each
(x4, x). Then we have from (A.7)

L(up)=uL,0o—2x,Nop-Vu,
(A.13)

(up)(x) = Ea(u Lop—2x,No -Vu)(x).

Integration by parts gives

(A.14) % B (UQ)(x) = § 2(x, yu(y)dy,

By 2(x0)\Bg/4(Z0)

for any x=B,,.(x,), where

D(%, 3) = 02, [Ea(%, INLaX3)H2 28y (328, 9(9)Ealx, 3N].
By virtue of (A.12) and simple calculations, one can show
(A.15) |P(x, )| £ CLIx—y|"+d7 | x—y|'7"],

for (x, y)EBg,(x,) X Bg2(x,). Therefore we have

A16)  [%ade,u(0)] S |2(x, 3)1u()|dy
d/2(T\Bg/4(Z0)
< CSupgypep|u(x)|,  for any x & B, (x,).

This proves the assertion. , Q.E.D.

Appendix 2. Representation of a-superharmonic functions by potentials.

In this section we shall prove a theorem on representation of a-superhar-
monic function.

THEOREM A.4. Let a>0. Suppose that f is an a-superharmonic function in
R®. Then for any bounded domain Q< R? there exist a measure po concentrated
on R, and a function hg a-harmonic in Q such that

f(x) = Kaqpo(x)+ ho(x), re .

Moreover this expression is unique.
Here

Kepta) = | Ka(x, 3)dpols),

K.(x, v) is defined by (A.2).



162 T. Hor1ucHI

Proor. If f is smooth, then the assertion holds with po=-—V-(x4Vf)=
x%'L,f. So we will show in the general case that V-(x4Vf) in the distribu-
tion sense turns out to be a measure in R?. To this end we consider the fol-
lowing measure y; with a=R?% and p>0:

(A.17) vi(f) = p7?[f()—Ma,f(a)]  with fe& CYRE).

Now we assume that f is a-superharmonic. Then from (2.12) it follows that
v3(f)>0, v3(f) is locally integrable with respect to a, and lim,., v3(f)=[2(n+
a)a,] 'L.f(a) weakly. So that x3;'L.f(x) is a measure as a limit of non-
negative, locally integrable measure in RZ%, and this proves the assertion because
—V-(x8Vf)=x2{x3'Lof} holds.

Secondly we show that ho=f—K,pe is a-harmonic. Indeed, according to
the method of mollification in we can easily verify the smoothness
of hg. Lastly we prove the uniqueness. Assume that K,p,+h, =Kp+h,
holds with h,, h, being a-harmonic. Then the signed measure p=p,—py, has
the potential K,y=h,—h,=h. Then the assertion follows from the next uni-
queness lemma.

LEMMA A.5. Let a>0. Suppose that in the region £ the potential of a
signed measure K pu(x) equals an a-harmonic funclion h(x) almost everywhere.
Then p=( in 2.

PrROOF. It suffices to show that u(g)=0 for any function g with continuous
derivatives of the second order and with compact support in 2. Then, we have
by Green’s formula and the mollification lemma 2.1,

(A.18) @) = |[Katx, D7 Log()dxdp(n)
= —{|Katx, 9)7-(eiVgNdxdp(y)
= —gh(x)v-(gig(x))dx = —EV-(gih(x))g(x)dx

= Sx:“Lah(x)-g(x)dx =0,

as required. Q.E.D.

References

[1] D.R. Adams, Weighted nonlinear potential theory, Trans. Amer. Math. Soc., 297
(1986), 73-94.

[2] D.R. Adams and N. G. Meyers, Thinness and Wiener criteria for non-linear potentials,
Indiana Univ. Math. J., 22 (1972), 139-158.



[3]
(4]

[5]

£6]
L7]

[8]

[9]
(10]
[11]

(12]
[13]

[14]
[15]
(16]

Mean value property 163

M.S. Baouendi and C. Goulaouic, Régularité et théorie spectrale pour une classe
d’opérateurs elliptiques dégénérés, Arch. Rational Mech. Anal., 34 (1969), 361-379.
P. Bolley, J. Camus and G. Métivier, Estimations de Schauder et régularité Hoslder-
ienne pour une classe de problémes aux limites singuliéres, Comm. Partial Differ-
ential Equations, 11 (1986), 1135-1203.

L. Carleson, Selected problems on exceptional sets, Van Norstrand Co., Toronto-
London-Melbourne, 1967.

G. Choquet, Theory of Capacities, Ann. Inst. Fourier, 5 (1955), 131-395.

J.L. Doob, Classical Potential Theory and its Probabilistic Counterpart, Springer,
1984.

C. Goulaouic and N. Shimakura, Régularité holderienne de certains problémes aux
limites elliptiques dégénérés, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 10 (1983),
79-108.

C.R. Graham, The Dirichlet problem for the Bergman Laplacian 1lI, Comm. Partial
Differential Equations, 8 (1984), 563-641.

L.1. Hedberg and T.H. Wolff, Thin sets in nonlinear potential theory, Ann. Inst.
Fourier, 33: 4 (1983), 161-187.

T. Horiuchi, Existence and uniqueness of classical solutions for certain degenerated
elliptic equations of second order, J. Math. Kyoto Univ., 24 (1984), 557-576.

N.S. Landkof, Foundations of Modern Potential Theory, Springer, 1972.

V.G. Maz’ja and V.P. Havin, A mnonlinear analogue of the Newton potential and
metric properties of the (p, [)-capacity, Soviet Math. Dokl., 11 (1970), 1294-1298.
V.G. Maz’ja and V. P. Havin, Nonlinear potential theory, Russian Math. Surveys,
27 (1972), 71-148.

N.G. Meyers, A theory of capacities for potentials of functions in Lebesgue class,
Math. Scand., 26 (1970), 255-292.

E.W. Stredulinsky, Weighted inequalities and degenerate elliptic partial differential
equations, Lecture Notes in Math., 1074, Springer, 1984.

Toshio HORIUCHI

Department of Mathematics
Ibaraki University

Mito, lbaraki 310

Japan



	Introduction.
	\S 1. Main results.
	THEOREM 1.1. ...
	THEOREM 1.2. ...
	THEOREM 1.4. ...

	\S 2. The proofs of Theorem ...
	Appendix 1. Potential ...
	Appendix 2. Representation ...
	THEOREM A.4. ...

	References

