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Introduction.

In the previous papers, we calculated the g-cohomology groups of complex
Lie groups ([4], [5]) and some family of weakly pseudoconvex manifolds ([3]),
using several kinds of Dolbeault isomorphisms. These manifolds treated in
[3], [4] and are weakly pseudoconvex and, in general, noncompact, but
they have the structure of the fiber space with base a compact complex manifold
and fiber a Stein manifold. In this paper, we extend these Dolbeault isomor-
phisms to the ¢-cohomology for holomorphic vector bundles over locally trivial
holomorphic fiber spaces whose fibers are Stein manifolds, which is a generaliza-
tion of the results of [5].

Let M be a locally trivial holomorphic fiber space over a paracompact com-
plex manifold N whose fibers are biholomorphic onto a Stein manifold and E—
M be a holomorphic vector bundle over M. Let 24(E) be the sheaf of germs
of holomorphic »-forms with values in E, & be the sheaf of germs of C> func-
tions in M which is holomorphic along the fibers, $7'? be the sheaf of germs
of (r, p)-forms with coefficients in ¥ and 7 ?(E):=9"?RQR4(E). We get a
resolution of sheaves

0 —> QUE) —> F"YE) —> F"HE) —> - —> FY(E)—> 0,

where g=dim¢N.

In §1, we obtain vanishing theorems H*(M, $7'?(E))=0 (k=1) and a Dol-
beault isomorphism for H?(M, Q4(E)) (p=0).

It is known that any complex Lie group has a fibration with base a complex
torus and fiber a Stein group ([9]). Using this fact, in §2 we shall apply the
results in § 1 to the calculation of H?(G, 2%), where G is any complex Lie group.

1. Dolbeault isomorphisms for holomorphic vector bundles.

Throughout this paper, for a complex manifold X and a holomorphic vector
bundle E over X, we denote by &y the sheaf of germs of C= functions on X
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and Q%(E) (resp. £y ?(E)) the sheaf of germs of holomorphic r-forms (resp.
C=(r, p)-forms) with values in E.

Let M be a locally trivial holomorphic fiber space over a paracompact
complex manifold N of complex dimension ¢, whose fibers are biholomorphic
onto a Stein manifold S of complex dimension s. We denote by = the projec-
tion M—N. Let {D,} be a locally finite open covering of N, where D, is
biholomorphic onto a polydisc in C? for each «, with a family of biholomorphic
mappings 7, : 7~ (D.)—D. XS and local coordinates z,=(z}, ---, 2%) in D,. Let
{Us} be an open covering of S with a local coordinate w,=(w!, ---, wi) in U,,
for each ¢. We sometimes identify =~%(D,) with D,XS. Then {D,xXU,} is
an open covering of M and {, ,=(lis, -+, {&F8) :=(2L, -+, 2%, wk, -+, wi) is a
local coordinate in D,XU,, for each @ and ¢. For an open subset VCM, we
put F(V):={f; f is of class C* in V and for any z==(V), flz " (2)N\V is
holomorphic}. We denote by F the sheaf defined by the presheaf {F(V)}. We
call ¢ the sheaf on the fiber space M holomorphic along the fiber. Put V,,:
=VN\(D,%xU,) and

FTPV) = {¢; ¢ is a C(r, p)-form on V and ¢|V, .
= I2J¢,JdC£,gAd§§, 015 € F(Va,,) for each a and o,
where [ =(, -+, 4,), J =(u -, Jp)
1< <i,<g+s,and 1 <7, < < jp < g}

We get the sheaf $7'? defined by the presheaf {F7?(V)} for 0<r<q¢-+s and
0<p=q. Let E—~M be a holomorphic vector bundle and ©4(E) the sheaf of
germs of holomorphic sections of E. We put F(E):=FQ0Oy(E) and 7 ?(E):
=F"?R0y(E). For each a, there exists a holomorphic vector bundle E, over
S such that the induced bundle #z%E, on D,XS by the canonical projection
To: DaXS—S is isomorphic to E|D,xS. For any open subset DCD, and
ucs,

H(DxU, g7 2(E)) = H(DXU, 7 *(n¥E,))

= @i H(D, €5 PYQHYU, Q5 (EL)),

where ® denotes the topological tensor product. We denote by 8;"1’®Q§”(Ea)

the sheaf on U,XS defined by the presheaf {H%D, 8&"”)®H°(U, QT (EL))}.
Then we have

(L.1) FTP(E) DaXS = Brrsromr €5 PRRY(E),
for each . We have an exact sequence of sheaves,

(1.2) 0—> Q(E)—> F"YE)—> F"Y(E)—> +++ —> FTYE)—> 0.
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LEMMA 1.1. H*M, g7 P(E)=0, k=1.
PrOOF. By for each «,
HYD, XS, 7 7(E)) 22 H¥DuXS, Brrirrer €7 PRRF (E))
= Cusomt. rr+rr=r HY(Do, €7 QHS, QF(E)) =0,

by Kiinneth’s formula ([2]). Hence, 2:={z"%D,)} is a Leray covering for
gm?(E) on M. Let {p,} be a partition of unity subordinate to the covering
{D.} on N. For {fast€Z (W, F77(E)) we put gg(p):=2apan(p)faps(p) (PE
7-(Dp)). Then {g,} €CW, F7-7(E)) and 8{2.} =1{fas}. Hence H(M, 7 *(E))
=(0. Similarly we have H*(M, g7:?(E))=0, k=1.

By this lemma and (1.2), we obtain the following

THEOREM 1.1. Let M be a locally trivial holomorphic fiber space over a
paracompact complex manifold N of complex dimension q, whose fibers are biho-
lomorphic onto a Stein manifold and E—M be a holomorphic vector bundle. Then

) {0 € HY(M, $7-7(E)); dp = 0}
HA(M, Q5(E) = = SH(M, gT-P-l(E»GD

for qzp=1.

We note that H?(M, 25(E))=0 for p=qg-+1 by the above theorem and that
in case N is a Stein manifold, by the result of B. Jennane [1], H?(M, 23(E))
=0 for p=2. Professor Ohsawa kindly pointed out to the authors that M is
strongly (¢+1)-complete for any paracompact complex manifold N. Thus, for
any coherent analytic sheaf A4 on M, we have H?(M, A)=0 for p=q-+1.

2. 3 cohomology of complex Lie groups.

Let G be a connected complex Lie group with the Lie algebra &, G° the
maximal toroidal subgroup of G, K a maximal compact real Lie subgroup of G
with the Lie algebra &, K¢ the complex Lie subgroup with the Lie subalgebra
Re:=8++—18 of & and Z the connected center of K¢. By the result of
Matsushima [6], G is biholomorphic onto K¢XC*® and there exists a connected
Stein subgroup S, of K¢ such that the mapping

Po: ZXS, 2 (x, y)—> xy € K¢

is a finite covering homomorphism. By the result of Morimoto [7], G° is a
closed subgroup of Z and Z=G°XC*" XC" for some non-negative integers r
and u. Taking a Stein subgroup S:=C*"XC*XS,XC* of ZXxS,xXC*%, we get
a finite covering homomorphism
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p: G°XS 3 (%, X1, Xg, Xgy X4) > (0o((X0, X1, X2), X3), X) E G

Let 7,: G*%xS—G® and 7,: G*XS—S be the canonical projections. We get a
homomorphism

2.1 n: G'XS/Ker p = (a, b)Ker p — bry(Ker p) = S/z(Ker p)

for a=G’, b=S. From this projection 7, G=G*XS/Ker p is regarded as a fiber
bundle over the Stein group S: =S/z,(Ker p) whose fiber is isomorphic onto
G® and the structure group is the finite subgroup =,(Kerp) of G,. Let {U.}
be a locally finite Stein open covering of § with a family of biholomorphic
mappings h.: 77 (U.)—U.XG® and local coordinates wo=(w}, ---, wh) in U,.
We put G°=C"/I", where I is a discrete lattice of C* generated by R-linearly
independent vectors {e,, -**, en, Vi=V11, ***, Via), *** Vg=qs, ***, Vgn)} OVer Z and
e; denotes the i-th unit vector of C~”, i=1, .-, n. We sometimes identify
7~Y(U,) with U,xC"/I". We may assume det[Imuv;;; 1<7, j<q¢]#0. We put
V=i, -+, Vin)i=~—1le; for ¢+1=<i<n, Bi;:=Imuv;; for 1<s, j<n, and [7,;;
1<q, j€n]:=[Bi;; 154, j<n]™'. Let z=(g', -, z") be the natural coordinate
in C™. Putting

(2.2) (2 -, 2) = D et vy,

the mapping ¢: C*=z=(2!, -+, z")—t=(t!, -+, **)&R*" induces an isomorphism
as a real Lie group ¢: C*/I'-R*™/¢([")=T"**XR""?, where T"*? is a real
torus of real dimension n+q. We set

K i = 2fvimj—mas; and Ky i=max{|Kn ;| ; 1=i<qg}

for m=(my, my, -+, Musq)=Z™*%. Since C*/I" is toroidal, K,,>0 for any me
Z™ N\ {0} ([8D).

DEFINITION 2.1. We say that a toroidal group C™/I" is of finite type if
C/I" satisfies the following condition:
There exists a>0 such that

(2.3) sup exp(—alm*||)/Kn < oo, where ||m*| = max{|m;|; 1 <7< n}.
The condition (2.3) is equivalent to the following condition :
2.4) For any ¢>0 there exists a>0 such that
sup exp (—elm’[|—allm” [}/ Kn < oo,

where ||m’||=max{|m;|, |mas:|; 1Si<qg}. By the results of [4, 10], a toroidal
group C*/I" of finite type satisfies .
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q! .
dim H?(G®, ) = { Ta=pipt if 025p=g¢
0 it p>q.

For gen~'(U,), we put h(g)=(wi(g), -, wk(g), [2.(8)NEU.XC*/T", [2.(8)]
=(zg), -+, 2MeN+T'eC/T" and [t.(g)]=¢([2.(g)])=(ta(8), -+, t(@N+¢I")
eT"*xR"% From we have

(2-5) Zf, = t(iz’i‘z.};l tZ*jvj,-, Z:-l, ST P
For gex=(UaNUyp),

(2.6) hoh5"(w (), [26(8)]) = (wa(g), faslzp(8)]) = (wa(g), [24(9)D),

where fqp: UsNUg—n, (Ker p)CC™/I" is holomorphic. We put ¢efas=(fas,
o, i)+ T *ex R Since m(Ker p)is a finite subgroup, f.s is locally
constant and f23‘=0 for i=¢+1, .-, n.
From we have
ti =th+fis+nls for some integer nis (=1, -+, n+q)

2.7) . .
and 3% =13 (j=q+1, -+, n).

From and (2.7), it follows that
zh =zh+flgtnls+ 25 (FoF +ni5vs),

(2.8) , o ‘ X
dzi =dz} and dzi=dz}, (=1, -, n).

Hence dzi and dzi are global 1-forms on G, /=1, ---, n. We get the following
fibration of G([9]). We denote by z, the projection C"=(z?, -, 2")—(2', -+, 29
(4% Since myle;), n(v;) (1=i<q) are R-linearly independent, m, induces the
C*m-49-principal bundle

ng: C*/[' 2 z4+'—> n(z)+[* € T¢:=CYI'*

over the complex ¢-dimensional torus T, where ['*:=x,["). We also denote
by =, the projection C*/I'XS>(a, b)—rna)sTi. Then Kerz,=C*" xS is a
closed Stein subgroup of C"/I'XS. Thus =, defines a fiber bundle G—T¢/x,
(Ker p) over the complex torus 7'¢/x(Ker p), with fiber which is isomorphic
onto the closed Stein subgroup p(Kerz,)CG. In the fibration given by
for each a, m, sends gz '(U,) to (zig), -, 2¥g)+[*+rKerp)esTi/x,
(Ker p). Hence (z;, -+, 2%) defines a local coordinate in 7'¢/n(Ker p) and (w;,
e, wh, 24, -+, 2z2) defines a local coordinate in the fibers of =n,: G—T%/x,
(Ker p). Let & be the sheaf on the fiber bundle z,: G-T¢/r(Kerp), which
is holomorphic along the fibers. Then
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¢ € H (G, 9) if and only if ¢ is of class C~ and aa;i =0,

de
0z

=0,G¢=1, -, 1, j=¢+1, ---, n) for each a.

We put ¢,:=¢|z"'(U,). We expand ¢, on 7 (U)=U,XC"/I": ¢o(Wa, ta)
=D ez +1aP (W, 174) €Xp 2a/—14m, 1)), where th:=(8L, -+, t2*9), t1 :=(t2*7+,
e, B, Sy by =1 0mth and aRe H (U, XR™, €). We put ¢Hw,, ta):=
A (Wa, o) €XpRrv/—1(m, tp). Then p,=nezr+e¢?. From we get

7f2§=17’ika,k90?(wa, ta) 1< éQ)
aSDZ,L _ — m ” 1 aa‘g}(wm t”a) -7 ’
(2.10) = VI mmiawa, t R R )exp @av/=T<m, 1))
(g+1 =i < n).

From (2.9) and (2.10), we can write

(2.11)  QH(wa, ta) = cHwa) eXP(—27 D ioqrmila*) exp 2V —1<m, 1)),
where ¢ are holomorphic function in U,. In particular,

(2.12) = HG, F) is holomorphic if and only if ¢, =¢i=c for each a.
Similarly to [Lemma 7 in [3]], we have the following

LEMMA 2.1. Let {c™(wea); mEZ™"} be a sequence of holomorphic functions
in Uy and let ¢ =D nez"+c™(w,) eXp(—27) D2 g mit2*) exp Qv —1m, )
be a formal series in U,XC"/I'. Then ¢ converges to a function in H'(U,X
C*/I', F) if and only if for any compact subset A of U, and R>0 and any
k>0, supues{lc™W)|m|*R™"; meZ™*% <+oco, where |m| :=max{|m;|; 1<
i<n—+q} and |m'| :=max{|m;|; ¢+1=j<n}.

Let Q7:=0% be the sheaf of germs of holomorphic r-forms on G. By
fTheorem 1.1, we have an isomorphism

{¢p € H(G, F7?); dp = 0}

(2.13) FeHYNG, 9= =55, g7

for p=1. Let ¢=HYG, 7'?) be a d-closed form (1=<p=gq). We put ¢, :=
¢l '(Uy), for each a. For 1=4,<--<i =, 157, < <J»=n and 15k, <<
kp=q, put I:=(,, -+, i,), J:=(j1, =+, j»») and K:=(ky, -, kp). We can write
Va=21,7. K, r'+rr=rPa, ;o g AW Nd2ENdZE, where ¢ 17x€H (" (U,), ). From
(2.11) we write Qo rsx=2mez*CT 17x(Wa) €XP(—27 22 _grym i%+E) exp 2/ —1
{m, thy), where ¢% ;;x are holomorphic functions in U,. Put ¢, rox=c% 17x(wa)
X eXP(—27 2D P egsimil2*) exp RaA/—1(m, thy) and % =1 s k. v+ rr=rPr 17 AWY
ANdziNdzZE. Then ¢.=Xnezrteph. For each I and [, ¢o 15 :=2xPa, 17xdZ5
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is a d-closed (0, p)-form in z~Y(U,). Let meZ**\{0} and s(m):=min{s; | Kn |
=Kn, 15s=q}. For 1=k, <---<k,.,=<q we put K’ :=(ky, -+, kp-1). We put

Cuirg = 2h=1fsrCh 17k Eyek p_l(wa)» and -
(2.14) m iR (wa)
A% 17k (We) 1= oK "
T m, s(m)

Further, put
™= Ded® rrx(Wa) eXp (=223 7-gumat ) exp 2/ —1m, t>)dzZE,

and @7 :=(=1)"37. 7. &', rrarr=r P roe dwi Ndzi N dZE' . Then, ¢% ;o H(z7Y(U.),
g"r-1y and ¢reH(z Y(U,), ¥7'?-'). From the similar calculation to the pre-
vious paper ([4]), we get

(2.15) 0P 10 = Qars, PR = @F
for meZ™*9\ {0} and

(2.16) Pa = Pat Znez” 007 -
In z7(U.)Nz"'(Uyp), from (2.7) and (2.8), we have

(2.17) o =¢F forall me Z"*,
From [2.1I5) and [2.17), we get in z~='(U )Nx"*(Uy),
(2.18) ¢ = ¢} and d¢y = o¢F for m = Z"*9\{0}.

Thus ¢°:=¢} is a holomorphic (7, p)-form on G. We put @™ :=dJ7 < H(G, F"*7?)
and @™ ' :=0({¢7})={p—dr} € Z'({z"'(Ua)}, F7?*). Since dP™*=0, similarly
to getting (2.14), we have ¥™ e C({z ' (U,)}, $7'?-?) such that @™ =¥ ™1,
Continuing this argument, we get @™ ?cZ?({z ' (U.)}, £7) and F([@d™P])=
[@™], where F is the isomorphism in Since H(zn ' (U,), 27)=PDrsror
HU,, 2F)RC{dz%; |J|=r"} and dz{ are global 1-forms on G for 1<i<n,
we have H?(z ' (Ua), 87)= D srrar H'({Ua}, LFIQC{d2L; | J ="} =Drrsrrar
= H*(S, 27)RC{dz;; | JI=r"}=0. Then we get ¥™H (G, F7°?7") satisfying

(2.19) o™ = o™,
From [2.16), (2.18) and [2.19), we have the following proposition.

PROPOSITION 2.1. Let o= H(G, $7'?) be a d-closed form (r=0, g=p=1).
Then we have a holomorphic (r, p)-form @*=21, 7. k. 1114171=+C% 17xdWENAZIN
dz¥ on G and a (r, p—1)-form T™= H(G, F7-?P-") for each me Z"+*9\ {0} satisfy-
ing ‘P=§D°+Emezn+q\(0)5wm-

In Proposition 2.1, ¢:=Xnez*9¥™ gives a formal solution of the o-
closed form ¢—¢°. To study the convergence of the formal solution, we have
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the following

LEMMA 2.2, Lot 0.=X1. 7. g 1114101=rPa, 1ogdWEANdZINAZES H(U X C /T,
G7P) be a d-closed form (r=0, q=p=1). If C"/I' is finite type, then we have
G EHUXC™/T, F7P71) satisfying @a=@4+0¢..

PrROOF. We put ¢,=necz®*tn@s and ¢g =217 & r+r=rCq 17x(Wa)
exp(—2a 27 —geimit3*) exp Cr v/ —1Iim, 1o))dwi AdziNdzE. By [Lemma 2.1, for
any compact subset A of U,, any R>0 and any k>0, we have

(2.20) supwes {| €% rox(W)Im|*R"™"; m € Z™*%) < +oo.

By [2.15), for each meZ"*2\{0}, we have ¢7=(—1)"Z1,v. k. r +r=rd% 178 (Wa)
exp (=27 Dt egeimsll* ) exp Rav/ —1dm, thy)dwhi ANdziANdZE" satisfying ¢T=0¢7%,
where d7 ;sx. are given by (2.14). From (2.3) and [2.20), we have supyea
{d™ rox (W)} |m)*R'™"; meZ™+*%} < 400, for any compact subset A of U,,
any R>0 and any £>0. Then, ¢,=nez+% ¢y converges in H(U.XC"/TI",
grP-1) and @.=¢S+0¢.. By H?(G, 27) has a quotient topology of the
Fréchet space {¢=HYG, $7'7); dp=0}, for p=1.

THEOREM 2.1. Let G be a connected complex Lie group of complex dimen-
sion n+1 and G°=C"/I" the maximal toroidal subgroup of G of complex dimen-
sion n. Then the following statements (1), (2), (3) and (4) are equivalent.

(1) G° is of finite type.

BrririrH(S, QLIRC {d21 A+ Nd2TT" NdZ*I N NdZ*7;
() H¥G, Q) =1 1=/,1<<jrm=Zg, 1Sk,<-<kp,=q}  for 1=p=g
0 for pzg+l,

where S=G/G° is a Stein group and dz’ are global 1-forms on G'=C*/I'(j=
1, -, n)

(3) HP(G, 27) has a Hausdorff topology, for any p, r=0.

(4) oHYG, 7 P°') is a closed subspace of the Fréchet space H(G, G ?) for
p=1 and r=0.

PrOOF. Assume (1) holds. Let ¢o=H%G, F7?) be a ¢-closed form for p=1
and r=0. We put ¢,:=¢|x"YU,), for each a. By Lemma 2.3, we have
holomorphic (r, p)-forms ¢ and ¢, H(z"*(U,), F7?~') satisfying ¢o.=¢3+9¢,.
By ¢*=¢$ is a holomorphic (», p)-form on G and @ :=d),=HG, F'?)
is a closed (r, p)-form. Then similarly to getting [2.19) and by [Lemma 2.2, we
have ¥ HY(G, ¥ *') satisfying ¢=¢"+d¥. Combining this with (2.12), we
get (2). It is obvious that (2)=(3)=(4). Finally we prove (4)=(1). Suppose
G° is not of finite type. Then by (2.4), there exists ¢>0 such that we can
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choose a sequence {m,; #=1} in Z"*?\{0} satisfying exp(—e|m)|—pulm”,.l)/
Kn,>p for any p=1. Put

{ exp(—ellmull—plm” 1)/ Kn, — m=m, for some p=1
0 otherwise .

For each a, we put

Gl’? = (2 exp (277-'\/:I<m, f;a>))5m eXp("‘ZWETiL=q+1 mitntt)
XexpRrv—1<m, t,>)

in z(U,). From 2.7), in z U )Nz Up), ¢7=¢F. Then we have
¢"=H G, F) such that ¢™|z"*({U,)=¢% By (2.10), we have d¢i=
2?=1(ﬂ2g=17inm,i¢T)d§{;- By [Lemma 2.1, we see Emeznw\m&b"’} converges to
a form o= H%G, g™'). By the choice of the sequence {m,}, the formal series
Smez™t ™ cannot converge to any function in HG, ). Suppose ¢=02
for some A= nez"+9nA™. Then we can see 2"=¢™ for m+0. It is a con-
tradiction. Then ¢=limy_..(02m<y¢™) belongs not to dH(G, F*°), but to the
closure of dH(G, 4*°. This contradicts the statement (4).
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