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1. Introduction.

In this paper, we shall establish a general method for constructing elliptic
curves over the rational function field $Q(t)$ or $k(t)$ with relatively high rank
(up to 8), together with explicit rational points forming the generators of the
Mordell-Weil group. The construction is based on the theory of Mordell-Weil
lattices (see [S1] for the summary and [S5] for more details).

In order to better explain our method and, especially, the role played by
the invariants of the Weyl grouPs, we first recall the analogous situation in
the theory of algebraic equations. Letting $a_{1},$ $\cdots$ , $a_{n}$ be algebraically inde-
pendent over the ground field $k$ , say $k=Q$ , consider the algebraic equation

(1.1) $X^{n}+a_{1}X^{n-1}+\cdots+a_{n}=0$

over $k_{0}=Q(a_{1}$ , $\cdot$ . , $a_{n})$ . If $x_{1}$ , , $x_{n}$ are the roots, then we have the relation
of the roots and coefficients:

(1.2) $\pm a_{i}=\epsilon_{i}(x_{1}, \cdots , x_{n})$ (i-th elementary symmetric polynomial)

If $\mathscr{K}$ denotes the splitting field of (1.1) over $k_{0}$ , then we have

$\mathscr{K}=k_{0}(x_{1}, \cdots, x_{n})=Q(x_{1}, \cdots x_{n})$

Gal $(\mathscr{K}/k_{0})=\mathfrak{S}_{n}$ (n-th symmetric group).

In Particular, the invariant field $\mathscr{K}^{\mathfrak{S}_{n}}$ is $k_{0}$ by Galois theory, but a stronger
result holds:

$Q[x_{1}, \cdots x_{n}]^{\mathfrak{S}_{n}}=Q[a_{1}, \cdots a_{n}]$ ,

the fundamental theorem on symmetric functions ($Q$ may be replaced by $Z$

here).

With slight modification, the above can be viewed as follows. Take $0_{\underline{1}}=0$

and let $a_{2},$ $\cdots$ , $a_{n}$ be still algebraically independent; thus $x_{1}+\cdots+x_{n}=0$ and
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$k_{0}=Q(a_{2}, \cdots , a_{n})$ . Then we have

(1.3) $\mathscr{K}=k_{0}(x_{1}, \cdots x_{n})$

$=Q(x_{2}, \cdots , x_{n})$ (a purely transcendental extension of $Q$ )

(1.4) Gal $(\mathscr{K}/k_{0})=\mathfrak{S}_{n}=W(A_{n-1})$

(1.5) $Q[x_{2}, \cdots x_{n}]^{W(A_{n-1})}=Q$ [ $a_{2},$ $\cdots$ , a $n$].

Here $W(A_{n-1})$ is the Weyl group of type $A_{n-1}$ (cf. [B]), and (1.5) can be re-
garded as a special case of Chevalley’s theorem on the invariants of a finite
reflection group. The formula (1.2) expresses the fundamental invariants of
$IV(A_{n-1})$ in terms of the standard basis of the root system $A_{n-1}$ , or more pre-
cisely, of the dual lattice $A_{n-1}^{*}$ . By the formula (1.2), one can easily write
down an algebraic equation having the prescribed roots.

It is remarkable that an entirely similar situation arises from the Mordell-
Weil lattices of certain elliptic curves, which enables us to write down the
equation of elliptic curves over $Q(t)$ with relatively high rank, having the pre-
scribed data for the generators of the Mordell-Weil group.

For example, for the case of rank $r=8$ , consider the elliptic curve

(1.6) $E:y^{2}=x^{3}+x( \sum_{i=0}^{8}p_{i}t^{i})+(\sum_{i\Rightarrow 0}^{s}q_{i}t^{i}+t^{5})$

defined over $k_{0}(t)$ , where $k_{0}=Q(p_{0}$ , $\cdot$ .. , $p_{3},$ $q_{0}$ , $\cdot$ .. , $q_{3})$ . (This equation defines a
family of affine surfaces, known as the universal deformation of the rational
double point of type $E_{8}$ , parametrized by $\lambda=(p_{i}, q_{j})\in A^{8}$ (affine space of dimen-
sion 8); the origin $\lambda=0$ corresponds to the $E_{8}$-singularity: $y^{2}=x^{3}+t^{5}.$ ) Assume
that $\lambda$ is generic, that is, $p_{0},$ $\cdots$ , $q_{3}$ are algebraically independent over $Q$ , and
let $k-\overline{k}_{0}$ be the algebraic closure of $k_{0}$ . Then the Mordell-Weil lattice $E(k(t))$

turns out to be tbe root lattice of tyPe $E_{s}$ . Let $\mathscr{K}$ be the smallest extension
of $k_{0}=Q(\lambda)=Q(p_{i}, q_{j})$ such that $E(k(t))=E(\mathscr{K}(t));\mathscr{K}/k_{0}$ is a finite Galois exten-
sion. Then we can prove (see Theorems 8.3, 8.4)

(1.7) $\mathscr{K}=k_{0}(u_{1}, \cdots, u_{8})=Q(u_{1}, \cdots, u_{8})$

(1.8) Gal $(\mathscr{K}/k_{0})=iV(E_{8})$

(1.9) $Q[u_{1}, \cdots u_{8}]^{W(E_{8})}=Q[p_{0}, \cdots q_{3}]$ .
Here the parameters $u_{1},$ $\cdots$ , $u_{8}$ correspond to the basis of the root system of
tyPe $E_{8}$ , and they are defined in terms of the specialization homomorphism
$sp_{\infty}$ : $E(k(t))arrow G_{a}(k)$ from the Mordell-Weil group to the singular fibre of (1.6)

at $t=co$ .
The equality (1.9) says that the coefficients $p_{0},$ $\cdots$ , $q_{3}$ of the elliptic curve

(1.6) form the fundamental invariants of the Weyl group $W(E_{8})$ ; in particular,
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we can write

(1.10) $p_{i}=I_{20-6t}(u_{1}, \cdots , u_{8})$ , $q_{j}=I_{30-6j}(u_{1}, \cdots , u_{8})$ ,

which is an analogue of (1.2), the relation of roots and coefficients of an alge-
braic equation. Actually we have a universal algebraic equation of degree
$N=240$ whose roots are the $N$ “roots” of the root system $E_{8}$ . (1.10) represents
the essential part of the relation of the roots and coefficients of this universal
equation. As a by-product, we obtain explicit fundamental invariants of the
Weyl group $W(E_{8})$ (see Theorem 7.2, Theorem 8.3).

NOW we consider the elliptic curve (1.6) over the field $\mathscr{K}(t)=Q(u_{1}, \cdots, u_{8})(t)$ .
Then the Mordell-Weil group $E(\mathscr{K}(t))$ is isomorphic to the root lattice $E_{8}$ , and
it has a basis $\{P_{1}, , P_{8}\}$ such that $sp_{\infty}(P_{i})=u_{i}$ ; more explicitly, we have $P_{i}=$

$(x, y)$ where $x,$ $y$ are polynomials in $t$ with coefficients in $Q[u_{1}, , u_{8}][u_{i}^{-1}]\cap$

$Q(p_{0}, , q_{3})(u_{t})$ , of the following form:

(1.11) $x=u_{i}^{-2}t^{2}+a_{i}t+b_{i}$ , $y=u_{i}^{-3}t^{3}+c_{i}t^{2}+d_{\ell}t+e_{i}$ .

In order to obtain some elliptic curves over $Q(t)$ with rank $r=8$ , it suffices
to specialize $u_{1},$ $\cdots$ , $u_{8}$ to some rational numbers in such a way that the rank
remains the same (or, as we would say, that the Mordell-Weil lattice dces not
“degenerate”). Then (1.6) and (1.10) determine the equation of an elliptic curve
over $Q(t)$ with rank 8, which is given with a basis $\{P_{i}\}$ of $E(Q(t))$ of the form
(1.11).

The variation of the above theme can be played, in addition to the case
$E_{8}$ , in the cases $E_{7},$ $E_{6},$ $D_{4},$ $A_{2}$ , where we take the elliptic curve $E$ and the
parameter $\lambda$ as follows.

$(E_{7})$ $y^{2}=x^{3}+x(p_{0}+p_{1}t+t^{3})+(\Sigma_{i=0}^{4}q_{i}t^{i})$

$\lambda=(p_{0}, p_{1}, q_{0}, q_{1}, q_{2}, q_{3}, q_{4})\in A^{7}$

$(E_{6})$ $y^{2}=x^{3}+x(\Sigma_{i=0}^{2}p_{i}t^{i})+(\Sigma_{i=0}^{2}q_{i}t^{i}+t^{4})$

$\lambda=(p_{0}, p_{1}, p_{2}, q_{0}, q_{1}, q_{2})\in A^{6}$

$(D_{4})$ $y^{2}=x^{3}+x(p_{0}-t^{2})+(\Sigma_{i=0}^{2}q_{i}t^{i})$

$\lambda=(p_{0}, q_{0}, q_{1}, q_{2})\in A^{4}$

$(A_{2})$ $y^{2}=x^{3}+x\cdot p_{0}+q_{0}+t^{2}$

$\lambda=(p_{0}, q_{0})\in A^{2}$

These equations define universal deformation of the rational double points of
type $E_{7},$ $\cdots$ , $A_{2}$ . In each case, the Mordell-Weil lattice $E(\mathscr{K}(t))$ is equal to the
dual lattice $E_{7}^{*},$ $\cdots$ of the root lattice E., $\cdot$ .. , with the “narrow” Mordell-Weil
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lattice $E(\mathscr{K}(t))^{0}$ being exactly the root lattice (cf. \S 4 below).

In the next section, we formulate the part of the above results relevant to
the construction of elliptic curves over $Q(t)$ , together with explicit generators
of the Mordell-Weil groups. Indeed, everything can be stated in elementary
terms, with no mention of rational double points, their universal deformation
or even the invariants of the Weyl groups, although the last are visibly there.

Also the results give a complete algorithm for constructing numerical ex-
amples. The interested reader could use our algorithm to produce as many
examples of elliptic curves over $Q(t)$ with rank 2 or 4 (by hand) or with rank
6, 7 or 8 (by computer) as desired. We give a few numerical examples in \S 3.
The proof will occupy the rest of the paper. The general outline of the proof
will be given in \S 4, together with a brief review on the Mordell-Weil lattices.
Then we treat the cases $(A_{2}),$ $(D_{4})$ in \S 5, 6. After some preliminaries on the
root lattices $E_{\gamma}(r=6,7,8)$ in \S 7, we treat the case $(E_{8})$ in \S 8, and then the
cases $(E_{6}),$ $(E_{7})$ in \S 9, 10.

We add a few remarks on the related subjects.
(1) A natural question: what about the other type $A_{n}$ or $D_{n}$ , not men-

tioned in the above? The same idea seems to work, but with some modifica-
tion. First of all, the defining equation of the family does not give an elliptic
curve but rather a hyperelliptic curve of higher genus in general. The Mordell-
Weil group of the Jacobian variety of this curve will be of rank at least $n$ ,

and we may expect that, as a lattice, it will be the root lattice of the desired
type or some lattice closely related to it. Some preliminary calculation indi-
cates that the family for type $A_{3}$ (or $D_{5}$ ) gives an elliptic curve whose Mordell-
Weil lattice is $D_{4}^{*}$ (cr $E_{6}^{*}$ ) rather than $A_{3}^{*}$ (or $D_{\overline{o}}^{*}$ ). We hope to come back to
this question in some other occasion.

(2) We have treated here only one side of the arithmetic application of
the theory of Mordell-Weil lattices: construction of elliptic curves with rela-
tively high rank. The other side will be the construction of Galois representa-
tion $\rho$ : Gal $(\overline{Q}/Q)arrow Aut(E(\overline{Q}(t)))$ whose image is the full Weyl group $W(E_{8})$ , etc.
The existence of such follows from (1.8) and its variants for $E_{7},$ $E_{6}$ , $\cdot$ . , in
view of Hilbert’s irreducibility theorem (cf. [S1], Theorem 7.1). This essentially
answers the question raised by Weil and Manin (see [W1], p. 558, [M], Ch. 4,
23.13). Moreover our method will allow explicit construction of such Galois
representations, and in particular, of Galois extensions over $Q$ with Galois
group $W(E_{8})$ , etc. We shall discuss this in more detail in a forthcoming paper.

(3) In [Sl, \S 6], we have sketched the proof of (1.8), by making use of
the monodromy theory of the Milnor lattice of a rational double point. But
this can now be avoided, since we have more elementary, purely algebraic
proof of (1.8). Our results might be of some interest to people in the singu-



Construction of elliptic curves 677

larity theory, because (i) the field $\mathscr{K}$ provides the smallest extension of $Q(\lambda)$

over which the simultaneous resolution of singularities for the family (1.6) can
be performed, and (ii) the universal algebraic equation, mentioned before, can
be used to give a very precise description of the stratification of the parameter
space according to the type of singularities (see [S4]).

(4) Once we have an elliptic curve over $Q(t)$ of rank $r$ , we obtain an in-
finite family of elliptic curves over $Q$ of rank at least $r$ , by specializing $t$ to
rational numbers. This method was initiated by N\’eron [N1], who showed
further that there exists an infinite family of elliptic curves over $Q$ with rank
$\geqq 11$ . It seems very likely that our results, combined with N\’eron’s idea, will
allow some explicit construction of such a family.

(5) The numerical examples for $(E_{6}),$ $(E_{7})$ or $(E_{8})$ in \S 3 will give at the
same time explicit examples of del Pezzo surfaces of degree 3, 2 or 1, defined
over $Q$, such that all the exceptional curves of the first kind (27, 56 or 240 in
number, cf. [M] $)$ are defined over $Q$ . In particular, we can construct in this
way smooth cubic surfaces over $Q$ such that all the 27 lines on them are de-
fined over $Q$ , and also smooth plane quartic curves over $Q$ such that all the 28
double tangents are defined over $Q$ .

2. The construction theorems.

In the following, we make the statements for the case of $Q(t)$ , but $Q$ can
be replaced by any field whatsoever, as far as its characteristic does not divide
the denominators of rational numbers appearing in the formulas and is different
from 2 or 3 (cf. Remark at the end of \S 4).

THEOREM $(A_{2})$ . Take $(b_{1}, b_{2})\in Q^{2}$ such that $b_{1},$ $b_{2}$ and $b_{3}=-b_{1}-b_{2}$ are mutually

distinct. Let $E$ be the elliptic curve over $Q(t)$ :

(2. 1) $E:y^{2}=(x-b_{1})(x-b_{2})(x-b_{3})+t^{2}$ .
Then the Mordell-Weil group $E(Q(t))$ is torsion-free and of rank 2. Any two of
the three rational points

(2.2) $P_{\ell}=(b_{i}, t)$ $(i=1,2,3)$

generate $E(Q(t))$ . (Note that $P_{1}+P_{2}+P_{3}=0$ since the 3 points are collinear.) The
Mordell-Weil lattice is isomorphic to $A_{2}^{*}$ , the dual lattice of the root lattice $A_{2}$ .
The Gram matrix is:

(2.3) $(\langle P_{i}, P_{f}\rangle)_{1\leqq i.j\leqq 2}=(\begin{array}{ll}2/3 -1/3-1/3 2/3\end{array})$ .

THEOREM $(D_{4})$ . Take $(d_{1}, \cdots , d_{4})\in Q^{4}$ such that $d_{1}^{2},$ $\cdots$ $d_{4}^{2}$ are mutually
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distinct. Define

(2.4)

$|q_{2}= \frac{1}{3}\Sigma 4d_{i}^{2}p_{0}=\Sigma_{t<J}d_{i}^{2}d_{j}^{2}-3q_{2}^{2}i=1$

$|q_{1}=q_{0}=\Sigma i\triangleleft<kd_{i}^{2}d_{J}^{2}d_{k}^{2}-p_{0}q_{2}-q_{2}^{3}\epsilon\cdot 2d_{1}d_{2}d_{3}d_{4}$

$(\epsilon=\pm 1)$ .

Then the elliPtic curve over $Q(t)$

(2.5) $E:y^{2}=x^{3}+x(p_{0}-t^{2})+(q_{0}+q_{1}t+q_{2}t^{2})$

has a torsion-free Mordell-Weil group of rank 4, and, as a lattice, $E(Q(t))$ is iso-
morphic to $D_{4}^{*}$ , the dual lattice of the root lattice $D_{4}$ . There exist 4 rational
points of the form:
(2.6) $P_{i}=(b_{i}, d_{\ell}t+e_{i})$ ,

where $d_{i}$ are as given at the beginning and

(2.7) $b_{i}=-d_{i}^{2}+q_{2}$

(2.8) $e_{i}=\epsilon d_{j}d_{k}d_{l}$ (for $\{i,$ $j,$ $k,$ $1\}=\{1,2,3,4\}$ )

$=q_{1}/(2d_{i})$ in case $d_{i}\neq 0$ .

These points are independent, with the Gram matrix

(2.9) $(\langle P_{i}, P_{j}\rangle)=1_{4}$ ,

which generate a subgroup of index 2 in $E(Q(t))$ . Further there are 16 points of
the form
(2.10) $P’=(\pm t+b’, d’t+e’)$ ,

and any such $P’$ , together with any 3 of $P_{i}’ s$ , give a set of generators of $E(Q(t))$ .

Before proceeding to the case $E_{r}(r=6,7,8)$ , let us fix some notation. For
a moment, suppose that $u_{1}$ , , $u_{r}$ form a $Z$-basis of $E_{r}^{*}$ (the dual lattice of
the root lattice $E_{r}$ ) consisting of minimal vectors, and let the Gram matrix be

(2.11) $I_{r}=(\langle u_{i}, u_{j}\rangle)_{1\leqq i,j\leqq r}$ .
Let $\{u_{i}|1\leqq i\leqq N\}$ denote all the minimal vectors of $E_{r}^{*}$ (thus $N=54,56,240$ for
$r=6,7$ or 8; cf. [CS, Ch. 4] $)$ . Further, let $\{\alpha_{j}|1\leqq_{J}\leqq n\}$ denote all the roots
of $E_{r}$ , i. e., the minimal vectors of $E_{r}$ with $\langle\alpha_{J}, \alpha_{j}\rangle=2$ . (Thus $n=72,126$ or
240 for $r=6,7$ or 8.) For instance, we can take as $\alpha_{1}$ , , $\alpha_{r}$ the basis of $E_{r}$

given by [ $B$ , Ch. 6] and $\alpha_{1},$
$\cdots$

$\alpha_{n/2}$ the positive roots ( $i$ . $e$ . the roots which
can be written as positive linear combination of $\alpha_{1},$ $\cdots,$ $\alpha_{r}$ ) so that $\{\alpha_{1}, \cdots \alpha_{n}\}$
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$=\{\pm\alpha_{1}, \cdot. , \pm\alpha_{n/2}\}$ . TO fix the idea, let us make this choice.
NOW, writing each $u_{i}$ and $\alpha_{j}$ as a $Z$-linear combination of $u_{1},$ $\cdots$ , $u_{r}$ , we

define the following polynomials in $Z[u_{1}, \cdots , u_{r}]$ :

(2.12) $\epsilon_{\nu}(u)=\nu$-th elementary symmetric function of $u_{1},$
$\cdots$ , $u_{N}$

(2.13) $\delta_{1}(u)=\Pi_{1\cong i<j\xi N}(u_{i}-u_{j})$ ,

(2.14) $\delta_{0}(u)=\Pi_{1\leqq j\leqq n}\alpha_{i}=\pm(\Pi_{1\leqq j\leqq n/2}\alpha_{j})^{2}$ .

For $r=6(N=54)$ , we can choose $u_{1}$ , $\cdot$ .. , $u_{6}$ so that $\langle u_{i}, u_{j}\rangle\equiv 1/3$ (mod l) for all
$i,$ $j\leqq 6$ . We arrange $\{u_{i}\}$ so that the same congruence holds for all $i,$ $j\leqq N/2$

$=27$ , and we replace $N$ by $N/2$ in the definition of $\epsilon_{\nu}$ and $\delta_{1}$ above. With
this notation, we have:

THEOREM $(E_{6})$ . Take $a=(a_{1}, \cdots , a_{6})\in Q^{6}$ such that $\delta_{0}(a)\neq 0$ . Let $\epsilon_{\nu}=\epsilon_{\nu}(a)$ ,

and define

(2.15) $\{$

$P_{2}=\epsilon_{2}/12$

$P_{1}=\epsilon_{5}/48$

$q_{2}=(\epsilon_{6}-168p_{2}^{3})/96$

$P_{0}=(\epsilon_{8}-294P_{2}^{4}-528P_{2}q_{2})/480$

$q_{1}=$ $(\epsilon_{9}-- 1008p_{1}p_{2}^{2})/1344$

$q_{0}=$ $(\epsilon_{12}-608p_{1}^{2}p_{2}-4768p_{0}p_{2}^{2}-252p_{2}^{6}-1200p_{2}^{3}q_{2}+1248q_{2}^{2})/17280$ .
Then the elliptic curve over $Q(t)$

(2.16) $E:y^{2}=x^{3}+x(p_{0}+p_{1}t+p_{2}t^{2})+(q_{0}+q_{1}t+q_{2}t^{2}+t^{4})$

has a torsion-free Mordell-Weil group of rank 6, and, as a lattice, $E(Q(t))$ is iso-
morphic to $E_{6}^{*}$ , the dual lattice of the root lattice $E_{6}$ . There is a basis of $E(Q(t))$

consisting of the 6 rational points

(2.17) $P_{i}=(a_{i}t+b_{i}, t^{2}+d_{i}t+e_{i})$ $(1\leqq i\leqq 6)$

such that

(2.18) $(\langle P_{i}, P_{j}\rangle)=I_{6}$ .

Here $a_{i}$ has the prescribed value and

(2.19) $\{$

$b_{t}=\beta_{i}(a_{1}, \cdots a_{6})$

$d_{i}=(a_{i}^{3}+a_{i}p_{2})/2$

$e_{i}=$ $(3a_{i}^{2}b_{i}-d:+a_{i}p_{1}+b_{i}p_{2}+q_{2})/2$ ,

where $\beta_{i}$ is a certain polynomial in $u_{1},$
$\cdots$

$u_{6}$ such that

(2.20) $\beta_{i}(u_{1}, \cdots u_{6})\in Q[u_{1}, \cdots u_{6}]\cap Q(p_{0}, \cdots , q_{2})(u_{i})$ .
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There are exactly 27 rational points $P_{i}(1\leqq i\leqq 27)$ of the form (2.17), and
$\{\pm P_{i}\}$ give all the minimal vectors of norm 4/3 in the lattice $E_{6}^{*}$ . Moreover,
in case $\delta_{1}(a)\neq 0$ , each $P_{i}$ is uniquely determined by $a_{\ell}(1\leqq i\leqq 27)$ .

Next, for the case $E_{7}$ and $E_{8}$ , the Weyl group $W(E_{r})$ contains $-1$ , so we
have $\epsilon_{\nu}=0$ for all $\nu$ odd and $\epsilon_{2\nu}=(-1)^{\nu}\epsilon_{\nu}’$ , where $\epsilon_{\nu}’$ is the v-tb elementary
symmetric function of $u_{1}^{2},$ $\cdots$ , $u_{N/2}^{2}$ if we arrange $\{u_{t}\}$ so that $\{\perp-\mathcal{U}_{j}|1\leqq j\leqq N/2\}$

$=\{u_{i}\}$ . We use $\epsilon_{\nu}’$ simply because it is more suited to constructing examples.

THEOREM $(E_{7})$ . Take $c=(c_{1}$ , $\cdot$ .. , $c_{7})\in Q^{7}$ such that $\delta_{0}(c)\neq 0$ . Let $\epsilon_{\nu}’=\epsilon_{\nu}^{f}(c)$ ,
and define

Then the elliptic curve $E$ over $Q(t)$

(2.22) $y^{2}=x^{3}+x(p_{0}+p_{1}t+t^{3})+(q_{0}+q_{1}t+q_{2}t^{2}+q_{3}t^{3}+q_{4}t^{4})$

has a torsion-free Mordell-Weil group of rank 7, and, as a lattice, $E(Q(t))$ is iso-
morphic to $E_{7}^{*}$ , the dual lattice of the root lattice $E_{7}$ . It is generated by the 7
rational points

(2.23) $P_{i}=(a_{i}t+b_{i}, c_{i}t^{2}+d_{i}t+e_{i})$ $(1\leqq i\leqq 7)$

having the Gram matrix

(2.24) $(\langle P_{i}, P_{j}\rangle)=I_{7}$ .

Here $c_{i}$ has the prescribed value and $a_{i},$ $b_{i},$ $d_{i},$ $e_{i}$ are determined rationally from
$c_{\ell}$ over $Q[p_{0}, \cdots, q_{4}]$ and also polynomially from $c_{1},$ $\cdots$ , $c_{7}$ over $Q$ .

There are exactly 56 rational points $P_{i}$ of the form (2.22), which give the
minimal vectors of norm 3/2 in the lattice $E_{7}^{*}$ . In case $\delta_{1}(c)\neq 0$ , each $P_{i}$ is uni-
quely determined by $c_{i}(1\leqq i\leqq 56)$ .
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THEOREM $(E_{8})$ . Take $u=(u_{1}, \cdots, u_{8})\in Q^{8}$ such that $\delta_{0}(u)\neq 0$ . Let $\epsilon_{\nu}’=\epsilon_{\nu}’(u)$ ,
and define $p_{3},$ $p_{2},$

$\cdots,$ $\mathcal{G}0$ by the following formulas:

Then the elliptic curve over $Q(t)$

(2.26) $E:y^{2}=x^{3}+x(\Sigma_{i=0}^{3}p_{\ell}t^{\ell})+(\Sigma_{i=0}^{3}q_{i}t^{i}+t^{5})$

has a torsion-free Mordell-Weil group of rank 8, and as a lattice, it is isomorphic

to the root lattice $E_{8}$ . It has the 8 rational points

(2.27) $P_{i}=(g_{i}t^{2}+a_{i}t+b_{i}, h_{i}t^{3}+c_{i}t^{2}+d_{i}t+e_{i})$ $(1\leqq i\leqq 8)$

having the Gram matrix
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(2.28) $(\langle P_{i}, P_{j}\rangle)=I_{8}$ .

The coefficients of $P_{i}$ are determined as follows: first
$g_{i}=u_{i}^{-2}$ , $h_{i}=u_{i}^{-3}$

where $u$ has the prescribed value, and $a_{i},$ $b_{i},$ $c_{i},$
$d_{i},$ $e_{i}$ are given by certain ex-

pressions in $Q[u_{1}, --, u_{8}][u_{i}^{-1}]$ which are also expressed by some rational functions
of $u_{i}$ with coefficients in $Q(p_{0}, \cdots , q_{3})$ .

There are exactly 240 rational points $P_{i}$ of the form (2.27), which correspond
to the roots in the lattice $E_{8}$ . In case $\delta_{1}(u)\neq 0$ , each $P_{i}$ is uniquely determined
by $u_{i}(1\leqq i\leqq 240)$ .

Application to elliptic curves over $Q$ . Following the tradition since A.
N\’eron [N1], for each elliptic curve $E$ over $Q(t)$ constructed by the above
method, we can further specialize $t$ to some rational numbers (called $t$ again)

to obtain a family of elliptic curves $E^{(t)}$ over $Q$ , given with the rational points
$\{P_{i}^{(t)}\}$ , where $\{P_{i}|1\leqq i\leqq r\}$ denotes a basis of $E(Q(t))$ . By a theorem of N\’eron,

Silverman and Tate (cf. [Si], [T2]), we have:

COROLLARY. The Mordell-Weil group $E^{\mathfrak{c}\iota)}(Q)$ has rank at least $r$ and the
rational points $P_{i}^{(t)}(i=1, \cdots r)$ are independent, for all $t\in Q$ with only finitely
many exception. The “partial“ regulator of these points (with respect to the
canonical height on $E^{(i)}(Q))$ has the asymptotic behavior.

(2.29) $\lim_{h(t)arrow\infty}\det(\langle P_{i}^{(t)}, P_{j}^{(t)}\rangle_{can}/h(t))=1/(2^{r}\cdot d)$

where $h(t)$ is the standard height of a point $t\in P^{1}$ ($esp$ . $h(t)=\log|t|$ for $t\in Z$ ),

and $d$ is the determinant of the corresponding root lattice. Thus, according to
the cases $A_{2},$ $D_{4},$ $E_{6},$ $E_{7}$ or $E_{8}$ , the right hand side of (2.29) is equal to

1/12, 1/64, 1/192, 1/256 or 1/256.

3. Examples.

The algorithm given by Theorems $(A_{2})$ and $(D_{4})$ is so explicit that it may
not be necessary to give any numerical examples. But, just for fun, we write
down one such example for each type. Then we go on to the examples for
$E_{6},$ $E_{7},$ $E_{8}$ .

EXAMPLE $(A_{2})$ . Take $b_{1}=0,$ $b_{2}=1,$ $b_{3}=-1$ . The elliptic curve $E$ over $Q(t)$

defined by
$y^{2}=x^{3}-x+t^{2}$

has the Mordell-Weil group of rank 2, generated by
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$P_{1}=(0, t)$ and $P_{2}=(1, t)$ .

When-w $e$ specialize $t$ to any rational number, $E^{(t)}$ is an elliptic curve over $Q$

(note that the discriminant $-2^{4}(27t^{4}-4)$ never vanishes for any $t\in Q$ ). The
points $P_{1}^{(t)}$ and $P_{2}^{(t)}$ are independent except for a finite number of $t$ (such as
$t=0,1$ , etc.) and we have

$\lim_{h(i)arrow\infty}\det(\langle P_{i}^{(t)}, P_{J}^{(t)}\rangle_{can}/h(t))=1/12$ .

EXAMPLE $(D_{4})$ . Take $(d_{1}, , d_{4})=(1,2,3,4)$ . Then the elliptic curve $E$

has the equation
$y^{2}=x^{3}-x(t^{2}+27)+(10t^{2}+48t+90)$ .

Then $E(Q(t))$ has rank 4 and it is generated by

$P_{1}=(9, t+24)$

$P_{2}=(6,2t+12)$

$P_{3}=(1,3t+8)$

$P_{4}=(t+3,4t+6)$ .

For the specialized curves, we bave rank $E^{(t)}(Q)\geqq 4$ for almost all $r\in Q$ and

$\lim_{h(t)arrow\infty}\det$ $(\langle P_{i}^{(t}‘, P_{f}^{(t)}\rangle_{can}/h(t))=1/64$ .

EXAMPLE $(E_{6})$ . Take $(a_{1}, , a_{6})=(0,1,3,7,11,21)\in Q^{6}$ . Then we have

$E:y^{2}=x^{3}+x(-381t^{2}+202752t-36577584)$

$+t^{4}+427420t^{2}-319993344t+61357067136$ .

Tbe Mordell-Weil group $E(Q(t))$ is free of rank 6, and the 6 generators $P_{i}$ of
$E(Q(t))\cong E_{6}^{*}$ corresponding to the given values of $a_{i}$ are as follows:

$P_{1}=(6313/4, t^{2}-695573/8)$

$P_{2}=(t+1788, t^{2}-190t-40896)$

$P_{3}=(3t+1420, t^{2}-558t+110816)$

$P_{4}=(7t+12, t^{2}-1162t+246816)$

$P_{5}=(11t-1092, t^{2}-1430t+316224)$

$P_{6}=(21t-5252, t^{2}+630t-329563)$ .
Furthermore, for the specialized curves, we have rank $E^{(t)}(Q)\geqq 6$ for almost
all $t\in Q$ and

$\lim_{h(t)arrow\infty}det(\langle P_{i}^{(t)}, P_{j}^{(l)}\rangle_{can}/h(t))=1/192$ .
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We insert a remark about the 27 lines on a cubic surface. For an elliptic
curve over $Q(t)$ having the Mordell-Weil lattice of type $E_{6}$ , the associated
elliptic surface can be blown down to a smooth cubic surface defined over $Q$ so
that the 27 minimal sections ( $i$ . $e$ . those corresponding to the 27 rational points
mentioned in Theorem $(E_{6}))$ are mapped to the 27 lines on this cubic surface.
Therefore these 27 lines are all defined over $Q$ . The existence of such a cubic
surface over $Q$ is classically known, but our construction provides explicit
examples of such in a systematic way.

EXAMPLE $(E_{7})$ . Take $(c_{1}, , c_{7})=(1,2,4,8,16,32,64)\in Q^{7}$ . Then we have

$E:y^{2}=x^{3}+x(t^{3}-2716410100150129/27\cdot t$

$-28171549086S677435751762/3^{6})$

$+8878/3\cdot t^{4}+1195761874250/27\cdot t^{3}$

$+1666490318377404686/9\cdot t^{2}$

$+20193980549267845801903566/3^{7}\cdot t$

-17219105683784186196665593491513616/39.

The Mordell-Weil grouP $E(Q(t))$ is free of rank 7, and the 7 generators $P_{i}$ of
$E(Q(t))\cong E_{7}^{*}$ corresponding to the given values of $c_{i}$ are as follows:

$P_{1}-(-8875/3\cdot t-494991007099/27$ ,

$r^{2}+287657546/9\cdot t+17764798463061529/81)$ ,

$P_{2}=(-8866/3\cdot t-493630525042/27$ ,

$2t^{2}+434245276/9\cdot t+22809130472754890/81)$ ,

$P_{3}=(-8830/3\cdot t-490138015714_{/}’27$ ,

$4t^{2}+714936314/9\cdot t+32207272905385006/81)$ ,

$P_{4}=(-8686/3\cdot t-478143731698/27$ ,

$8t^{2}+1297687702/9\cdot t+52177541751701366/81)$ ,

$P_{5}=(-8110/3\cdot t-427412515282/27$ ,

$16t^{2}+2447266958/9\cdot t+91486391172386950/81)$ ,

$P_{6}=(-5806/3\cdot t-224940010642/27$ ,

$32t^{2}+4036998526/9\cdot t+107654483240065190/81)$ ,

$P_{7}=(+3410/3\cdot t+584853492206/27$ ,

$64t^{2}+4740279134/9\cdot t-77609819934613274/81)$ .
The specialized elliptic curve $E^{(t)}(Q)$ has rank $\geqq 7$ for almost all $t\in Q$ , and the
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rational points $P_{i}^{(t)}$ have the regulator asymptotic to $h(t)^{7}/256$ as $h(t)arrow\infty$ .
The above examples for the case $(E_{6})$ or $(E_{7})$ are constructed from the

data $(a_{i})_{i\leqq 6}$ or $(c_{i})_{i\leqq 7}$ satisfying the (stronger) non-degeneracy condition $\delta_{1}\neq 0$ .
Likewise, we have given the first example for the case $(E_{8})$ in [S2] corre-
sponding to the data $u_{i}=2^{i-1}(1\leqq i\leqq 8)$ which satisfies the condition $\delta_{1}\neq 0$ .
(Indeed, Theorem 7.2 of [S1] has been stated with this stronger assumption.
Thus Theorem $(E_{8})$ given above is not only more explicit but also stronger
than the previously announced one. Note that $\delta_{0}$ is a factor of $\delta_{1}$ in this case.)

Below we give a new example for $(E_{8})$ corresponding to the prescribed
data $u_{i}=1(1\leqq i\leqq 8)$ , which satisfies the condition $\delta_{0}\neq 0$ but $\delta_{1}=0$ . We have
much smaller coefficients here than in [S2].

EXAMPLE $(E_{8})$ . Let $u_{i}=1$ for $i=1,$ $\cdots$ $8$ . Then the 120 “positive roots“
$u_{j}$ take the value 18-times, 2, $\cdots$ , or 77-times, and so on; symbolically, they
are:

$1^{8},$ $\{2,3,4,5,6,7\}^{7},$ $\{8,9,10,11\}^{6},$ $\{12,13\}^{5},$ $\{14,15,16,17\}^{4}$ ,
$(*)$

$\{$ 18, 19 $\}^{}$ , $\{$ 20, 21, 22, 23 $\}^{}$ , $\{$ 24, 25, 26, 27, 28, 29 $\}^{}$ .

Hence $\delta_{0}\neq 0$ and we can apply Theorem $(E_{8})$ to obtain an elliptic curve $E$ over
$Q(t)$ with rank $E(Q(t))=8$ . The equation of $E$ reads:

$y^{2}=x^{3}+x(-310t^{3}+243896065t^{2}-60857017136860t$

+13936180986780637484/3)

$+t^{5}-2763436738910/3\cdot t^{3}+1681300207452917540/3\cdot t^{2}$

$-384550638908428401057560/3\cdot t$

+282412962406880649939736350128/27,

The 8 generators $P_{i}$ of $E(Q(t))$ are given as follows:

$P_{1}=(t^{2}-541045t+218476650754/3$ ,

$t^{3}-811722t^{2}+219092370780t-19661726638639000)$ ,

$P_{2}=(t^{2}-618805t+286705607554/3$ ,

$t^{3}-928362t^{2}+287022107100t-29551900557554200)$ ,

$P_{3}=(i^{2}-651925t+319030396354/3$ ,

$t^{3}-978042t^{2}+318964426140t-34686244462893400)$ ,

$P_{4}=(t^{2}-682165t+348384666754/3$ ,

$t^{3}-1023402t^{2}+348767821020t-39580648307551000)$ ,

$P_{5}=(t^{2}-782965t+457679889154/3$ ,

$t^{3}-1174602t^{2}+458789609820t-59594315820808600)$ ,



686 T. SHIODA

$P_{6}=(t^{2}-951445t+673629129154/3$ ,

$t^{3}-1427322t^{2}+676331322780t-106406856287968600)$ ,

$P_{7}=(t^{2}-1206325t+1079980986754/3$ ,

$t^{3}-1809642t^{2}+1085727346140t-215998191424639000)$ ,

$P_{8}=(t^{2}-1569205t+1824534541954/3$ ,

$t^{3}-2353962t^{2}+1835670395100t-474295484395883800)$ .

The coefficient of $t^{2}$ (resp. $t^{3}$ ) in the $x$ (resp. $y$ )-coordinate of each $P_{i}$ is 1, as
prescribed. The 8 points $P_{i}$ are so arranged that the Gram matrix $(\langle P_{i}, P_{j}\rangle)$

is equal to the standard Cartan matrix of $E_{8}$ as in [B]. We note that there
are altogether 240 rational points $P$ of the above form, and the $t^{2}$-coefficients
of $x$ -coordinate of $P$ can be read off from $(*)$ : there are so many $P’ s$ corre-
sponding to a given value in $(*)$ as tbe multiplicity there indicates.

AS before, the specialized elliptic curve $E^{(t)}(Q)$ has rank $\underline{>-}8$ for almost all
$t\in Q$ , and the rational points $P_{i}^{(t)}$ have the regulator asymptotic to $h(t)^{8}/256$ as
$h(t)arrow\infty$ .

4. General outline of the proof.

We start from the elliptic curve $E_{\lambda}$ over $K=k(t)$

$\langle$4.1) $y^{2}=x^{3}+x\cdot p(t)+q(t)$

$\lambda=(p_{i}, q_{j})\in A^{r}$

which is given in the introduction by one of the equations $(E_{8})(=(1.6)),$ $(E_{7})$ ,
$(E_{6}),$ $(D_{4})$ or $(A_{2})$ . The ground field $k$ is supposed to be an algebraically closed
field of characteristic $0$ containing $p_{i}$ and $q_{j}$ (cf. Remark at the end of this
section).

Let

(4.2) $f:S_{\lambda^{-}}P^{1}$

denote the associated elliptic surface (the Kodaira-N\’eron model) of $E_{\lambda}/K$. In
general, an elliptic surface of the form (4.1) is a rational surface, provided that
$p(t)$ and $q(t)$ are polynomials in $t$ of degree $\leqq 4$ and $\leqq 6$ . (This follows from
the canonical bundle formula of an elliptic surface and Castelnuovo’s rationality
criterion.) In particular, our $S_{\lambda}$ is a rational elliptic surface, and hence we can
make use of the basic results on the Mordell-Weil lattice of such a surface (cf.

[Sl, II], [S5, \S 10] $)$ .
First let us briefly review the generalities on Mordell-Weil lattices, fixing

some notation (cf. [Sl, I], [S5, \S 7-9]).
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In general, consider an elliptic surface $f$ : S– $C$ with the generic fibre $E$

over $K=k(C)$ where $S$ (or $C$ ) is a smooth projective surface (or curve) defined
over an algebraically closed field $k$ of arbitrary characteristic and $k(C)$ denotes
the function field of $C$ . Then the global sections of $f$ : $Sarrow C$ are in a natural
one-to-one correspondence with the $K$-rational points of $E$ so that we identify
$E(K)$ with the group of sections of $f$. For $P\in E(K)$ , we denote by $(P)$ the
image curve of the section $P:Carrow S$ .

We can define a natural bilinear pairing on $E(K)$ as follows, by using
intersection theory on the surface $S$ .

Let $NS(S)$ be the N\’eron-Severi group of $S$ , which is an indefinite integral
lattice with respect to the intersection pairing $(D_{1}\cdot D_{2})$ . Let $T$ be the “trivial”
sublattice of $NS(S)$ , which is generated by the zero section and all the irreducible
components of fibres. The quotient group $NS(S)/T$ is naturally isomorphic to
$E(K)$ . There is a unique map $\varphi:E(K)arrow NS(S)Q$ splitting this isomorphism
such that ${\rm Im}(\varphi)$ is orthogonal to $T$. Now the orthogonal complement of $T$ in
$NS(S),$ $L=T^{\perp}$ , is a negative-definite even integral lattice (by the Hodge index
theorem and the adjunction formula). Then the map $\varphi$ induces an injection of
$E(K)/E(K)_{tor}$ into L@Q. For $P,$ $Q\in E(K)$ , we define

(4.3) $\langle P, Q\rangle=-(\varphi(P)\cdot\varphi(Q))$ .

The Mordell-Weil lattice of $E/K$ or $f$ : $Sarrow C$ is defined as $E(K)/E(K)_{tor}$ with
the above pairing $\langle, \rangle$ . Further, let $E(K)^{o}$ be the subgroup of finite index in
the Mordell-Weil group $E(K)$ consisting of those sections which pass through
the same irreducible component of every fibre as the zero section. Then $\varphi$

maps $E(K)^{o}$ isomorphically onto $L$ , and we call it the narrow Mordell-Weil
lattice of $E/K$ or $f$ , which is a positive-definite even integral lattice.

More explicitly, the pairing is given by the formula

(4.4) $\langle P, Q\rangle=x+(PO)+(QO)-(PQ)-\sum_{\iota\in R}contr_{v}(P, Q)$ .
Here $\chi$ is the arithmetic genus of $S$ and we write $(PO)$ for the intersection

$g$ number $((P)\cdot(O))$ , and similarly for $(QO)$ or $(PQ)$ . $R$ is the set of reducible
fibres of $f$ , and for each $v\in R$ , the local contribution $contr_{v}(P, Q)$ is a rational
number depending only on the type of the singular fibre $f^{-1}(v)$ and on its com-
ponents hit by the sections $(P)$ and $(Q)$ (see below). In particular, we have

(4.5) $\langle P, P\rangle=2\chi+2(PO)-\Sigma_{\iota\in R}contr_{v}(P)$

and
$\langle P, Q\rangle=\chi+(PO)+(QO)-(PQ)\in Z$ if $P$ or $Q\in E(K)^{o}$

Also the other data can be made more explicit in terms of the singular
fibres. For each $v\in R$ , write
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(4.6) $f^{-1}(v)=\Theta_{v,0}+\Sigma_{i\geqq 1}\mu_{v,i}\Theta_{v,i}$ $(\mu_{v.0}=1)$

where $\Theta_{v.i}(0\leqq i\leqq m_{v}-1)$ are the irreducible components, $m_{v}$ being their number,

such that $e.,$
$0$ is the unique component of $f^{-1}(v)$ meeting the zero section. Let

$F$ be any fixed fibre of $f$. Then the trivial sublattice $T$ of $NS(S)$ is the direct
sum of $\langle(O), F\rangle$ and $T_{v}=\langle\Theta_{v.i}(i\underline{>-}1)\rangle(v\in R)$ , with $rk(T)=2+\Sigma_{\iota\in R}(m_{v}-1)$ , and
we have

(4.7) rk $E(K)=\rho(S)-2-\Sigma_{v\in R}(m_{v}-1)$ ,

(4.8) $\det T=\Pi_{v\in R}m_{v}^{(1)}$ , $m_{v}^{(1)}=\det T_{v}=\#\{i\geqq 0|\mu_{v.i}=1\}$

where $\rho(S)=rkNS(S)$ is the Picard number of $S$ . Further, if we denote by
$A_{v}=((\Theta_{v.i}\Theta_{v.j}))_{i,j\geqq 1}$ the Gram matrix of $T_{v}$ , then

(4.9) $contr_{v}(P, Q)=(i, j)$-entry of $(-A_{v})^{-1}$

if $P$ meets $e_{v,i}$ and $Q$ meets $\Theta_{v.j}$ , with $i,$ $J\geqq 1$ , and $=0$ otherwise.
NOW we suppose that $S$ is a rational surface. In this case, we have $C=P^{1}$ ,

$K=k(t),$ $x=1$ and $\rho(S)=10$ . Then the narrow Mordell-Weil lattice $M=E(K)^{o}$

is a positive-definite even integral lattice of rank

(4.10) $r=8-\Sigma_{v\in R}(m_{v}-1)$ .
The Mordell-Weil lattice $E(K)/E(K)_{tor}$ is isomorphic to the dual lattice $M^{*}$ of
$M$. We have $\det M^{*}=1/\det M$ and

(4.11) $\det M=\det T/n^{2}$ , $\det T=\Pi_{v\in R}m_{v}^{(1)}$

where $n$ is the order of the torsion subgroup $E(K)_{ior}$ . In particular, the
Mordell-Weil group is torsion-free if $\det T$ is square-free.

When $E$ is defined by a Weierstrass equation such as (4.1), a rational point
$P=(x, y)$ in $E(K)$ has the property $(PO)=0$ if and only if $x,$ $y$ are Polynomials
in $t$ of degree at most 2 or 3, i. e.,

(4.12) $x=gt^{2}+at+b$ , $y=ht^{3}+ct^{2}+dt+e$ .

NOW, going back to the situation at the beginning of this section, we de-
scribe the general outline of the proof of the theorems stated in \S 2. It will be
done in each case in the following steps.

Step 1. First we $\det e$rmine the singular fibre $f^{-1}(\infty)$ of $f$ at $t=\infty$ . Let-
ting $s=1/t,$ $X=x/t^{2},$ $Y=y/t^{3}$ , we rewrite (4.1) as

(4.13) $Y^{2}=X^{3}+X\cdot P(s)+Q(s)$

where $P(s)=p(t)/t^{4}$ and $Q(s)=q(t)/t^{6}$ are polynomials in $s$ . (Later (4.13) will be
referred to as the “

$\infty$ -model” of (4.1).) The type of the singular fibre $f^{-1}(\infty)$
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is determined by the order of the discriminant

$\Delta=-2^{4}\cdot(4P(s)^{3}+27Q(s)^{2})$

at $s=0$ (cf. [K], [N2], [T1]). The result is summarized as follows:

case $|$ $(E_{8})$ $(E_{7})$ $(E_{6})$ $(D_{4})$ $(A_{2})$

(4.14)
$\det T_{\infty}typem_{\infty}\infty$

$|$

$\{0\}\Pi 11$ $A_{1}^{-}m22$ $A_{2}^{-}IV33$ $D_{4}^{-}I_{0}^{*}45$ $E_{6}^{-}IV^{*}73$

Here $A_{1}^{-}$ , denotes the root lattice $A_{1}$ , $\cdot$ .. with opposite inner product.

Step 2. Until Step 5, assume that $(\#)f$ : $S_{\lambda}arrow P^{1}$ has no reducible singular
fibres other than $f^{-1}(\circ\circ)$ . This is certainly the case for $\lambda$ generic. Under this
assumption, the Mordell-Weil group $E_{\lambda}(K)$ is torsion-free and the structure of
the Mordell-Weil lattice on $E_{\lambda}(K)$ is completely determined. It is isomorphic
to the dual lattice of the root lattice corresponding to the type of the equation
we started with. Namely we have

(4.15) $E_{\lambda}(K)\cong E_{8},$ $E^{*},$ $E_{6}^{*},$ $D_{4}^{*}$ or $A_{2}^{*}$ ,

according to the case $(E_{8}),$ $(E_{7}),$ $(E_{6}),$ $(D_{4})$ or $(A_{2})$ (cf. [S5, \S 10], [OS]). The
minimal norm and the number of the minimal vectors in these lattices are well-
known (cf. [CS, Ch. 4]):

(4.16) $mlnimalnorm\#\min.vectors$ $|$ $2402$

3/2 4/3 1 2/3

56 54 24 6.

Compare the minimal norms with the following values of $contr_{\infty}(P)$ for $P$ meet-
ing $\Theta_{\infty.i}$ for some $i\geqq 1$ , computed by (4.9) (cf. [S5, (8.16)] :

(4.17) $contr_{\infty}(P)$ $|$
$0$ 1/2 2/3 1 4/3.

By (4.5), we see that a minimal section of $E(K)$ takes the form (4.12).

Step 3. Next we consider the specialization homomorphism

(4.18) $sp_{\infty}$ : $E_{\lambda}(K)arrow f^{-1}(\infty)^{\#}$

which maps each $K$-rational point $P$ of $E_{\lambda}$ to the unique intersection point of
$(P)$ and $f^{-1}(\infty)$ . In the above, $f^{-1}(\infty)\#$ is the smooth part of $f^{-1}(\infty)$ , which
has a natural structure of algebraic group over $k$ . More explicitly, it is a
direct product of the additive group $G_{a}$ and a finite abelian group $H$ of order
$m_{\infty}^{(1)}=\det T_{0}$ , and we have
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(4.19) $H\cong\{0\},$ $Z/2,$ $Z/3,$ $(Z/2)^{\oplus 2}$ or $Z/3$ ,

according to the case $(E_{8})$ , , $(A_{2})$ (cf. [K], [N2], [T1]).

NOW we take the minimal sections $P\in E_{\lambda}(K)$ and consider $sp_{\infty}(P)$ . It turns
out that the $G_{a}$ -comPonent of $sp_{\infty}(P)$ , say $sp_{\infty}’(P)$ , is a $ve$ry important parameter,
which determines $P$ for $\lambda$ generic.

Sfep4. Next we choose a basis {P. $|1\leqq\nu\leqq r$ } of $E_{\lambda}(K)$ consisting of minimal
sections, and let

(4.20) $u_{\nu}=sp_{\infty}’(P_{\nu})$ .

Then $(u_{1}, \cdots , u_{r})$ completely determines the coefficients $p_{i},$ $q_{j}$ of the equation
(4.1) of the elliptic curve $E_{\lambda}$ . This step is crucial.

For the case $(E_{r})(r=6,7,8)$ , we consider the universal polynomial of type
$E_{r}$

(4.21) $\Phi_{E_{\Gamma}}(X)=\Pi_{\nu=1}^{N}(X-u_{\nu})$ , $u_{\nu}=sp_{\infty}’(P_{\nu})$ ,

where P. $(1\leqq\nu\leqq N)$ denote all the minimal sections in $E_{\nu}(K)\cong E_{r}^{*}$ . On the one
hand, this can be expressed by the elementary symmetric functions of $u$ . $s$ ,
which are obviously the invariants of the Weyl group $W(E_{r})$ . On the other
hand, we can prove that it is a polynomial with coefficients in $Q[\lambda]=Q[p_{i}, q_{j}]$ ,
by means of elimination method. Comparing the two expressions, we obtain the
relations of $p_{i}$ and $q_{j}$ as the fundamental invariants of $W(E_{r})$ , as stated in
Theorem $(E_{r})$ .

Step 5. Finally we note that the non-degeneracy assumption such as
$\delta_{0}(u)\neq 0$ in the theorems is equivalent to the assumption $(\neq)$ in the Step 2 that
$f:_{\wedge}^{Y}S_{\grave{\lambda}}arrow P^{1}$ has no reducible fibres other than $f^{-1}(\infty)$ .

Then, specializing $(u_{1}, \cdots , u_{r})$ to some rational values in $Q^{\gamma}$ such that $\delta_{0}(u)$

$\neq 0$ , we complete the proof.
For the case $(A_{2})$ and $(D_{4})$ , we can skip or reverse some of the above steps

and verify the theorem in a more elementary way.

REMARK. This method of the proof will make it clear that we can replace
$Q$ by any field of characteristic $0$ in the statement of the theorems, or even by
one of characteristic $p$ , provided that $p$ is different from a small number of
prime numbers which come into the denominators of some expression in the
course of the proof. The primes to be avoided are the following:

$p=2,3$ in case $(A_{2})$ or $(D_{4})$

$p=2,3,5,7$ in case $(E_{6})$

$p\leqq 11$ or $p=29$ , 1229 in case (E-)
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$p$ :;; 19 or $p=41,61,199$ in case $(E_{8})$ .

5. Case $(A_{2})$ .

We begin with the case $(A_{2})$ , where the elliptic curve $E=E_{\lambda}$ is given by

(5.1) $y^{2}=x^{3}+p_{0^{X}}+q_{0}+r^{2}$

$\lambda=(p_{0}, q_{0})\in A^{2}$

Letting $b_{1},$ $b_{2},$ $b_{3}$ be the roots of $x^{3}+p_{0}x+q_{0}=0$ , we have

(5.2) $\{\begin{array}{l}p_{0}=b_{1}b_{2}+b_{2}b_{8}+b_{3}b_{1} (b_{1}+b_{2}+b_{3}=0)q_{0}=-b_{1}b_{2}b_{3}.\end{array}$

The assumption $(\#)$ is that

(5.3) $b_{1},$ $b_{2},$ $b_{3}$ are distinct,

which is equivalent to the condition:

(5.3) $\Delta_{0}=4p_{0}^{3}+27q_{0}^{2}\neq 0$ .
Step 1. The elliptic surface $f$ : $S_{\lambda}arrow P^{1}$ has a singular $fibre^{-}of$ type $IV^{*}$ at

$r=\infty$ :

(5.4) $f^{-1}(\infty)=\Theta_{0}+\Theta_{1}+\Theta_{2}+2(\Theta_{3}+\Theta_{4}+\Theta_{5})+3\Theta_{6}$ ,

where the irreducible components $\Theta_{i}$ are smooth rational curves with self-
intersection number $-2$ intersecting other components as in the figure below.
We always choose $\Theta_{0}$ to be the unique component meeting the zero-section (0).

$m_{\infty}=7$

$m_{\infty}^{(1)}=3$

Step 2. Let us check the “Step 5” first.

LEMMA 5.1. There are no reducible fibres of $f:S_{\lambda}arrow P^{1}$ other than $f^{-1}(\infty)$

under the assumption (5.3).

PROOF. The discriminant of (5.1) is

$\Delta=4p_{0}^{3}+27(q_{0}+t^{2})^{2}=\Delta_{0}+54q_{0}t^{2}+27t^{4}$

By (5.3), $\Delta$ has either 4 simple roots $(p_{0}\neq 0)$ or 2 double roots $(p_{0}=0)$ . Hence
the singular fibre $f^{-1}(v)$ at $v\neq\infty$ is either of type $I_{1}$ or II (a rational curve with
a node or cusp) (cf. [K], [N2], [T1]), hence irreducible. $q.e.d$ .
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It follows from (4.10), (4.11) that the rank of $E(K)$ is $r=2$ and $\det T=$

$m_{\infty}^{(1)}=3$ . Hence $E(K)$ is torsion-free (3 is square-free) and we have $E(K)^{o}\equiv A_{2}$

and $E(K)\cong A_{2}^{*}$ by the general theory. But we see this more directly below.

Step 3. Now we look at the 3 obvious points of $E(K)$ :

(5.5) $P_{i}=(b_{i}, t)$ $(i=1,2,3)$ .

Since they are collinear, lying on the line $y=t$ , we have

(5.6) $P_{1}+P_{2}+P_{3}=0$

by the definition of the group law on $E$ .
Let us see how the section $(P_{i})$ intersects the singular fibre $f^{-1}(\infty)$ . At

any rate, a section meets the smooth part $f^{-1}(\infty)^{\#}$ , and

(5.7) $f^{-1}(\infty)^{\#}=O_{0}’-r\cup\Theta_{1}^{\mu}’\cup\Theta_{2}^{4}\cong G_{a}\cross Z/3Z$

where $\Theta_{i}^{\#}$ is $\Theta_{i}$ minus the points meeting other $\Theta_{j}$ and corresponds to the
coset $G_{a}\cross\overline{i}(i=0,1,2)$ .

LEMMA 5.2. All the 3 sections $(P_{\ell})$ intersect the same non-identity component

of $f^{-1}(\infty),$ $\Theta_{1}$ or $\Theta_{2}$ .

PROOF. In terms of the $\infty$ -model of (5.1) (cf. (4.13)), we have $P_{i}=(b_{i}s^{2}, s^{2})$ ,

which passes the singular point $(0,0)$ of the cuspidal cubic $Y^{2}=X^{3}$ at $s=0$ .
The latter is the fibre $f^{J-1}(\infty)$ , where we denote by $f’$ : $S’arrow P^{1}$ the associated
Weierstrass fibration; namely, $S’$ is the normal surface obtained from $S$ by

collapsing all the non-identity components $\bigcup_{t\geqq 1}\Theta_{i}$ in $f^{-1}(\infty)$ . Thus each $(P_{i})$

in $S$ must meet either $\Theta_{1}$ or $\Theta_{2}$ .
Suppose, for instance, that $(P_{1})$ meets $\Theta_{1}$ and $(P_{2})$ meets $\Theta_{2}$ . Then $P_{3}$ would

meet $\Theta_{0}$ by (5.6) and (5.7), a contradiction. Hence all the $P_{i}(i=1,2,3)$ meet
one and the same component. q. e. $d$ .

Step 4. Let us rename $\Theta_{1}$ as the component meeting all $P_{i}$ .

LEMMA 5.3. Let
$sp_{\infty}$ : $E(K)arrow f^{-1}(\infty)\#=G_{a}\cross Z/3$

be the specialization homomorphism. Then we have

$\langle$ 5.8) $sp_{\infty}(P_{\ell})=(- \frac{b_{i}}{2},$ $I)$ $(i=1,2,3)$ .

PROOF. TO compute the $G_{\alpha}$ -component of $sp_{\infty}(P_{i})$ , it is enough to compute
$sp_{\infty}(Q)$ for $Q=3P_{i}\in E(K)^{o}$ . This can be done directly by using the addition
formula (5.9) below, but we proceed in a slightly different way.
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In general, if $P_{i}=(x_{i}, y_{i})(i=1,2)$ are two points of $E$ , the sum $P=P_{1}+P_{2}$

has the coordinates $x,$ $y$ given by

(5.9) $\{y=-y_{1}-m(x-x_{1})$ .
$x=-x_{1}-x_{2}+m^{2}$ , $m=(y_{1}-y_{2})/(x_{1}-x_{2})$ ,

Applying this to $Q_{1}=P_{2}-P_{3}\in E(K)^{o}$ , we have

$\{\begin{array}{l}x(Q_{1})=-(b_{2}+b_{3})+\{2/(b_{2}-b_{3})\}^{2}\cdot t^{2}y(Q_{1})=-3b_{1}/(b_{2}-b_{3})\cdot t-\{2/(b_{2}-b_{3})\}^{3}\cdot t^{3}\end{array}$

Rewriting these in terms of the coordinates $X,$ $Y$ of the $\infty$ -model (4.13), we
have

$sp_{\infty}(Q_{1})=(X/Y)|_{s=0}=-(b_{2}-b_{3})/2$ .
Similarly, for $Q_{2}=P_{3}-P_{1}\in E(K)^{o}$ , we have

$sp_{\infty}(Q_{2})=-(b_{3}-b_{1})/2$ .
By (5.6), we have $Q_{1}=P_{1}+2P_{2}$ and $Q_{2}=-2P_{1}-P_{2}$ so that $3P_{1}=-(Q_{1}+2Q_{2})$ .
Hence

$sp_{\infty}(3P_{1})=(b_{2}-b_{3})/2+(b_{3}-b_{1})=-3b_{1}/2$ .
This proves that the $G_{a}$ -component of $sp_{\infty}(P_{1})$ is $-b_{1}/2$ , as asserted. $q$ . $e.d$ .

COROLLARY 5.4. The 3 sections $(P_{i})(i=1,2,3)$ are disjoint from each other
and also from the zero section (0).

PROOF. Clearly $(P_{i})$ and $(P_{j})(i\neq!)$ do not meet at $t\neq\infty$ , because $b_{i}\neq b_{J}$ by
assumption. Further they cannot meet at $\infty$ by (5.8). It is easy to see that
$(P_{i})$ and (0) are disjoint. $q$ . $e$ . $d$ .

LEMMA 5.5. The value of the pairing $\langle P_{t}, P\rangle$ is as follows:

(5.10) $\langle P_{t}, P_{j}\rangle=\{_{-1/3}^{2/3}$ $(i=j)(i\neq])$

.
In particular, $\det(\langle P_{i}, P_{j}\rangle)_{i.j\leqq 2}=1/3$ .

PROOF. This follows from (4.4), (4.5) and Corollary 5.4, since we have
$contr_{\infty}(P_{i}, P_{j})=4/3$ . The latter is in the table (4.17) for $i=_{J}$ , and we have the
same value for $i\neq_{J}$ because all sections $P_{i}$ pass the same component $\Theta_{1}$ in the
singular fibre $f^{-1}(\infty)$ of type $lV^{*}$ . $q.e.d$ .

NOW the rational points (or sections) $Q_{1},$ $Q_{2}\in E(K)^{o}$ , given in the proof of
Lemma 5.3, have Gram matrix

(5.11) $(\langle Q_{i}, Q_{j}\rangle)_{i.j\leqq 2}=(\begin{array}{ll}2 -1-1 2\end{array})$ .
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This clearly shows the isomorphism of lattices:

(5.12) $E(K)^{o}\cong A_{2}$ and $E(K)\cong A_{2}^{*}$ ,

proving also that $\{Q_{1}, Q_{2}\}$ and $\{P_{1}, P_{2}\}$ give the generators of the Mordell-Weil
lattices $E(K)^{o}$ and $E(K)$ . Note that $\pm P_{i}(i=1,2,3)$ correspond to the 6 minimal
vectors of $A_{2}^{*}$ and $P_{i}-P_{j}(i\neq j)$ to the 6 minimal vectors (the 6 “roots”) of $A_{2}$ .

This completes the analysis of the case $(A_{2})$ , and in particular, the proof
of Theorem $(A_{2})$ .

6. Case $(D_{4})$ .
We consider the elliptic curve $E=E_{\lambda}$

(6.1) $y^{2}=x^{3}+x(p_{0}-t^{2})+q_{0}+q_{1}t+q_{2}t^{2}$

$\lambda=(p_{0}, q_{0}, q_{1}, q_{2})\in A^{2}$

Step 1. The associated elliptic surface $f$ : $S_{\lambda}arrow P^{1}$ has a singular fibre of
type $I_{0}^{*}$ at $t=\infty$ :

(6.2) $f^{-1}(\infty)=\Theta_{0}+\Theta_{1}+\Theta_{2}+\Theta_{3}+2\Theta_{4}$

where we use the similar notation as before; see the figure below.

$m_{\infty}=5$

$m_{\infty}^{(1)}=4$

Step 2. Until Step 5, we assume that $(\#)f$ has no reducible fibres other
than $f^{-1}(\infty)$ . Then we have by (4.10) and (4.11)

$r=8-(5-1)=4$ , $\det T=m_{\infty}^{(1)}=4$ .
This implies that the Mordell-Weil group $E(K)$ is torsion-free of rank 4 such
that $\det E(K)^{o}=4$ . (Indeed, if $n$ is the order of $E(K)_{tor}$ , then $n^{2}$ must divide
4. Hence $n=1$ or 2. If $n=2$ , then $E(K)^{o}$ would be an even unimodular lattice
of rank 4, a contradiction.) It follows that (under the assumption $(\#)$ )

(6.3) $E(K)^{o}\cong D_{4}$ and $E(K)\cong D_{4}^{*}$ .
In particular, the minimal norm of $E(K)$ is 1 and the number of the minimal
sections is 24.

The mlnimal sections are characterized as follows:

LEMMA 6.1. Let $P\in E(K),$ $P\neq O$ . Then we have $\langle P, P\rangle=1$ if and only if
$(P)$ is disjoint from $(O)$ and $\Theta_{0}$ . In terms of the coordinates $P=(x, y)$ , this is
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so if and only if
(6.4) $x=at+b$ , $y=dt+e$ $(a, b, d, e\in k)$ .

Thus there exist exactly 24 rational points of this form.

PROOF. We have
$\langle P, P\rangle=2+2(PO)-contr_{\infty}(P)$

and, for the singular fibre of type $I_{0}^{*}$ ,

(6.5) $contr_{\infty}(P)=\{o1 ^{if} (P) meetS \Theta_{0}$

otherwise.
Hence the first assertion holds. Next, by (4.12), $P=(x, y)$ is of theLform (cf.

[Sl, Lemma 3.1] or [S3, Proposition 5.1] $)$ :

$x=gt^{2}+at+b$ , $y=ht^{3}+ct^{2}+dt+e$ .

If $(P)$ does not meet $\Theta_{0}$ (i. e. it meets $\Theta_{i}$ for some $i=1,2$ or 3), tben it passes
the cusp $(0,0)$ of the cuspidal cubic at $t=\infty$ (cf. the arguments given for the
case $(A_{2}))$ , and hence we have $g=h=0$ . Moreover, we have $c=0$ from the
equation (6.1), hence $P$ is of the form (6.4). The converse is easily verified.

$q.e.d$ .

Step3. Next let us consider the specialization map:

$sp_{\infty}$ : $E(K)arrow f^{-1}(\infty)^{\#}$ .

Since the singular fibre $f^{-1}(\infty)$ is of type $I_{0}^{*}$ , its smooth part is

(6.6) $f^{-1}( \infty)^{\#}=\bigcup_{i=0}^{3}\Theta_{i}^{\#}\cong G_{a}\cross(Z/2)^{\oplus 2}$

If og corresponds to the coset $G_{a}\cross\theta$ , then write $[\Theta_{i}]=\theta\in(Z/2)^{e2}$ .

LEMMA 6.2. The 24 rational poinfs $(at+b, ct+d)$ are grouped into the 3 sets
of 8 points, corresponding to $a=0$ , 1 or $-1$ . The 8 points in each set pass
through the same irreducible component $\Theta_{i}$ , so we can label $\Theta_{i}$ so that $\Theta_{1},$ $\Theta_{2},$ $\Theta_{3}$

correspond to $a=0,1,$ $-1$ . Then we have

(6.7) $sp_{\infty}(P)=\{(d,[\Theta_{1}])(-d/2,[\Theta_{i}])$

if $a=0$

if $a=\pm 1(i\geqq 2)$ .

PROOF. Let us analyse the condition for $P=(at+b, *)$ to belong to $E(K)$ .
It is necessary and sufficient for this that

(6.8) $(at+b)^{3}+(at+b)(p_{0}-t^{2})+(q_{0}+q_{1}t+q_{2}t^{2})$

is a square in $k[t]$ . The coefficient of $t^{3}$ must vanish, so we have
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a $-a=0$ , $i.e.$ , $a=0,1$ or $-1$ .

First consider the case $a=0$ . Then (6.8) is a square if and only if $b$ is a
root of the quartic equation

(6.9) $h(X)=(X^{3}+p_{0}X+q_{0})(X-q_{2})+q_{1}^{2}/4=0$ .

For any such $b,$ $P=(b, dt+e)$ belongs to $E(K)$ if and only if

(6.10) $d^{2}=-b+q_{2}$ , $e^{2}=b^{3}+p_{0}b+q_{0}$ , $2de^{--}-q_{1}$ ,

and hence there are exactly 2 choices of $(d, e)$ . (The case $d=e=0$ does not
occur, because then $P$ becomes a torsion point of order 2.) Thus we obtain 8
points of the form $(b, dt+e)$ , provided that 4 roots of (6.9) are distinct.

The case $a=1$ or $-1$ can be treated in the same way, and we obtain (at

most) 8 points each, of the form $(\pm t+b, dt+e)$ .
Since the number of minimal vectors in $D_{4}^{*}$ is 24, the $3\cdot 8=24$ points so

obtained must be all distinct. In particular, $h(X)$ must have 4 distinct roots
$b_{1},$ $\cdots$ , $b_{4}$ under $(\#)$ .

Next we see that the 8 points for each value of $a$ pass through the same
irreducible component $\Theta_{i}$ (some $i\geqq 1$ ), by checking that their differences inter-
sect the identity component $\Theta_{0}$ at $t=\infty$ . For instance, we have by the addi-
tion formula (5.9)

$X(P_{1}-P_{2})|_{s\Rightarrow 0}=1/(d_{1}-d_{2})^{2}$ , $Y(P_{1}-P_{2})|_{s=0}=1/(d_{1}-d_{2})^{3}$

for $P_{i}=(b_{i}, d_{i}t+e_{i})$ , in terms of the $\infty$ -model (cf. (4.13)). This shows first that
$P_{1}-P_{2}$ intersects $\Theta_{0}$ at $r=\infty$ and that

(6.11) $sp_{\infty}(P_{1}-P_{2})=d_{1}-d_{2}\neq 0$ .
In other words, $P_{1}$ and $P_{2}$ intersect the same component, say $\Theta_{j}(J\geqq 1)$ , at dis-
tinct points.

Similarly it is easy to check that two sections corresponding to different
values of $a=0,1,$ $-1$ meet the different components of $f^{-1}(\infty)$ . Hence we may
suppose that the 3 components $\Theta_{1},$ $\Theta_{2},$ $\Theta_{3}$ correspond to $a=0,1,$ $-1$ .

Finally, to prove the formula (6.7), we have only to compute $sp_{\infty}(2P)\in G_{a}$

(note that $2P\in E(K)^{o}$ ). By the addition formula again, we see easily

$sp_{\infty}(2P)=2d/(1-3a^{2})$ ,

which implies (6.7). q. e. $d$ .

COROLLARY 6.3. For $P_{i}=(b_{i}, d_{i}t+e_{i})\in E(K)(i=1, \cdots , 4)$ , the Gram matrix
$(\langle P_{i}, P_{j}\rangle)$ is equal to the identity matrix of degree 4. Hence $P_{1},$ $\cdots$ , $P_{4}$ are inde-
pendent and they generate a subgroup of index 2 in $E(K)$ . If $Q$ is any rational
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point of the form $(\pm t+b’, d^{f}t+e‘)$ , then $P_{1},$ $P_{2},$ $P_{3}$ and $Q$ generate the full Mordell-
Weil group $E(K)$ .

PROOF. By the above lemma, the sections $(P_{i})$ are disjoint from each other
and also from the zero section. We can compute $\langle P_{i}, P_{j}\rangle$ by (4.4), (4.5) and
(6.5), noting that $contr_{\infty}(P_{i}, P_{J})=1$ for all $i,$ $j$ since all $P_{i}$ pass through the
same $\Theta_{1}$ . Hence the first assertion. Then $\det(\langle P_{i}, P_{j}\rangle)=1$ , and since we know
$\det(E(K))=1/4,$ $P_{i}$ generates a subgroup of index 2 in $E(K)$ . Finally $Q$ is not
in this subgroup, since $\langle P_{i}, Q\rangle\equiv 1/2(mod 1)$ . Hence the last assertion. $q.e.d$ .

Step 4. Let $P_{i}$ $(i=1$ , $\cdot$ .. , 4 $)$ be as in Corollary 6.3. Since $b_{i}$ are the 4 roots
of $h(X)=0$ in (6.9), the relation of the roots and coefficients give

$\int b_{1}+\cdots\ldots+b_{4}=q_{2}b_{1}b_{2}+=p_{0}$

(6.12)

$[b_{1}b_{2}b_{3}b_{4}=q_{1}^{2}/4-q_{0}q_{2}b_{1}b_{2}b_{3}+\cdots=p_{0}q_{2}-q_{0}$

Using the relation $b_{i}=-d_{l}^{2}+q_{2}$ in (6.10), we can rewrite (6.12) as the relations
of $d_{i}$ . By a simple computation (which is not so tedious because it leads very
naturally to the fundamental invariants of the Weyl group $W(D_{4})$ ; cf. [B] $)$ , we
have:

$\int\Sigma_{i}d_{i}^{2}=3q_{2}\Sigma_{i\triangleleft}d_{t}^{2}d_{j}^{2}=p_{0}+3q_{2}^{2}$

(6.13)
$\backslash ||\Sigma\iota<J<kd_{i}^{2}d_{j}^{2}d_{k}^{2}=q_{0}+p_{0}q_{2}+q_{2}^{3}d_{1}d_{2}d_{3}d_{4}=\epsilon q_{1}/2$

$(\epsilon=\pm 1)$ .

SteP 5. Now we reverse the above arguments. Take arbitrary $d_{1},$
$\cdots,$

$d_{4}$ such
that $(\pi\#)d_{1}^{2},$

$\cdots,$
$d_{4}^{2}$ are distinct. Then define $q_{2},$ $p_{0},$ $q_{0}$ and $q_{1}$ by (6.13). Letting

$\lambda=(p_{0}, q_{0}, q_{1}, q_{2})$ , consider the elliptic curve $E_{\lambda}$ and the elliptic surface $S_{\lambda}$ de-
fined by (6.1). Define also $b_{i},$

$e_{i}$ by

$b_{i}=-d+q_{2}$ , $e_{\ell}=\epsilon d_{j}d_{k}d_{1}$ ( $=q_{1}/2d_{i}$ if $d_{i}\neq 0$).

Then
$P_{i}=(b_{i}, d_{i}t+e_{i})$ $(i=1, \cdots , 4)$

give 4 rational points of $E_{\lambda}$ over $k_{0}(t),$ $k_{0}=Q(\lambda)=Q(p_{0}, \cdots , q_{2})$ , such that $sp_{\infty}(P_{i})$

$=(d_{i}, [\Theta_{1}])$ . The Mordell-Weil lattice $E(K)$ will be isomorphic to $D_{4}^{*}$ , once the
condition $(\not\in)$ (that $f$ : $S_{\lambda}arrow P^{1}$ has no reducible fibres other than $f^{-1}(\infty)$ ) is
verified.

LEMMA 6.4. The two conditions $(\#)$ and $(\#\#)$ are equivalent. In other words,
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there are no reducible fibres of $f$ : $S_{\lambda}arrow P^{1}$ other than $f^{-1}(\infty)$ , precisely when
$d_{1}^{2},$ $\cdots$ . $d_{4}^{2}$ are distinct.

PROOF. We have seen in Steps 2 and 3 that the condition $(\#)$ implies that
$b_{1},$ $\cdots$ , $b_{4}$ are distinct, and the latter is equivalent to the condition $(\#\#)$ . Let
us show the converse: $(\#\#)\Rightarrow(_{\overline{\nu}})$ .

Assume for a moment that $d_{1},$ $\cdots$ , $d_{4}$ are algebraically independent over $Q$ .
Then $p_{0},$ $\cdots$ , $q_{2}$ are so too, in which case it is obvious that $f$ has no other
reducible fibres at $t\neq\infty$ . Then the narrow Mordell-Weil lattice $E_{\lambda}(K)^{o}$ is iso-
morphic to $D_{4}$ by (6.3).

Recall that the narrow Mordell-Weil lattice is isomorphic (up to the sign) to
the orthogonal complement $L$ of the trivial sublattice in $NS(S_{\grave{A}})$ . The 24
“roots” $Q\in E(K)^{o}\cong D_{4}$ define the 24 elements $D(Q)=(Q)-(O)\in NS(S_{\lambda})$ such tbat

(6.14) $(D\cdot D)=-2$ , $(D\cdot(O))=(D\cdot\Theta_{i})=0$ (all $i\geqq 0$).

Observe that $\{Q\}=\{\pm P_{i}\pm P_{j}|1\leqq i<j\leqq 4\},$ $\{P_{\ell}\}$ being as before. Now we
specialize $d_{1},$ $\cdots$ , $d_{4}$ in such a way that they still satisfy $(\#:k)$ , then we still
get 24 divisor classes $D=(Q)-(0)$ in $NS(S_{\lambda})$ satisfying (6.14), using the 4 points
$P_{i}=(b_{i}, d_{i}t+e_{i})$ . Therefore there is no room for the non-identity components
$\Theta_{v,j}$ for $v\neq\infty$ (note $\Theta_{v,j}$ will satisfy (6.14) too). Thus there is no reducible
singular fibres other than $f^{-1}(\infty)$ . (Compare the arguments involving the “

$E_{8^{-}}$

frame” in [S4]; here we implicitly considered the “
$D_{4}$-frame”.) $q$ . $e$ . $d$ .

Finally, taking $(d_{1}, , d_{4})$ in $Q^{4}$ satisfying $(\#\#)$ and applying the above
argument, we complete the proof of Theorem $(D_{4})$ .

7. Preliminaries for the cases $(E_{r})$ .
First we recall basic facts on the root lattices $E_{6},$ $E_{7}$ and $E_{s}$ ; we refer to

[ $B$ , Ch. 6], [CS, Ch. 4] or [ $M$ , Ch. 4] for the details.
(i) The most fundamental of these three lattices is the root lattice $E_{8}$ . It

is characterized as the unique positive-definite even integral unimodular lattice
of rank 8. The minimal norm is 2, and there are 240 minimal vectors (roots’)

in $E_{8}$ , which form the root system of type $E_{8}$ in the Euclidean space $E_{8}\otimes R$

$=R^{8}$ . Any root spans a sublattice $\cong A_{1}$ , and its orthogonal complement in $E_{8}$

defines the root lattice $E_{7}$ , whose isomorphism class is independent of the
choice of $A_{1}$ . It has $\det=2$ and 126 minimal vectors (roots’) of norm 2. Simi-
larly, the orthogonal complement in $E_{8}$ of any sublattice isomorphic to $A_{2}$

defines the root lattice $E_{6}$ , which is unique up to isomorphism. It has $\det=3$

and 72 minimal vectors of norm 2.
(ii) The dual lattice $L^{*}$ of a lattice $L$ is the subgroup cf $LgQ$ consisting
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of those elements $x$ such that $\langle x, y\rangle\in Z$ for all $ysL$ . We have $\det L=[L^{*} : L]$

for any integral lattice $L$ . The root lattice $E_{8}$ is self-dual, since it is uni-
modular. The dual lattice $E_{7}^{*}$ of $E_{7}$ has $\det=1/2$ and 56 minimal vectors of
norm 3/2, and $[E_{7}^{*} : E_{7}]=2$ . The dual lattice $E_{6}^{*}$ of $E_{6}$ has $\det=1/3$ and 54
minimal vectors of norm 4/3, and $[E_{6}^{*} : E_{6}]=3$ .

(iii) The automorphism group of $E_{8}$ , Aut $(E_{8})$ , is equal to the Weyl group
$W(E_{8})$ , which is of order $2^{14}3^{7}5^{2}7$ and contains $-1_{8}$ , with the quotient group
$7V(E_{8})/\{\pm 1\}$ having a simple subgroup of index 2. Similarly we have Aut $(E_{7})$

$=W(E_{7})$ , which is of order $2^{10}3^{4}5\cdot 7$ and contains $-1$ such that $W(E_{7})/\{\pm 1\}$ is
a simple group. For $E_{6}$ , we have Aut $(E_{6})=W(E_{6})\cdot\{\pm 1\},$ $W(E_{6})$ being of order

$2^{7}3^{4}5$ and not containing $-1$ ; further $W(E_{6})$ has a simple subgroup of index 2.
According to the ATLAS, these simple groups are $U_{4}(2)\cong S_{4}(3),$ $S_{6}(2)$ and $O_{8}^{+}(2)$

for $E_{6},$ $E_{7}$ and $E_{8}$ respectively.
The Weyl group $W(E_{r})$ acts transitively on the set of roots in $E_{r}$ as well

as on the set of minimal vectors in $E_{7}^{*}$ , except that, in case $r=6,$ $W(E_{6})$ has
2 orbits there.

(iv) Now let $\{\alpha_{1}, , \alpha_{\gamma}\}$ be a basis (or a system of simple roots) of $E_{\gamma}$ ,

which has the familiar Dynkin diagram:

For $E_{6}$ or $E_{7}$ , ignore those $\alpha_{j}$ with $j>6$ or 7.
$lf$ we denote by $\{\alpha_{j}| 1; j\leqq\uparrow??\}$ all the “positive roots” of $E_{r},$ $i$ . $e.$ , those

roots which can be written as a linear combination of $\alpha_{1},$
$\cdots$ , $\alpha_{\gamma}$ with non-

negative integral coefficients (cf. $[B$ , tables at the end of Ch. 6]), then $\pm\alpha_{j}$

give all the roots of $E_{\gamma}$ . Thus $n=2m$ is equal to the number of the roots,
i. e., $n=240,126$ or 72 for $r=8,7$ or 6.

(v) NOW choose a basis $\{u_{1}, \cdots , u_{r}\}$ of the dual lattice $E_{r}^{*}$ consisting of
minimal vectors. The Gram matrix of $E_{r}^{*}$ is then given by

$I_{r}=(\langle u_{i}, u_{j}\rangle)_{1\leqq i.j\leqq r}$ $(r=8,7,6)$ .

Let us denote by { $u_{i}|$ l$i\leqq N} all the minimal vectors of $E_{r}^{*}$ ; thus $N=240,56$

or 54 according as $r=8,7$ or 6. We arrange $\{u_{i}\}$ so that they coincide with
$\{\pm u_{i}|1\leqq i\leqq N/2\}$ .

(vi) The symmetric algebra of $E_{r}^{*}$ is identified with the polynomial ring
$Z[u_{1}$ , $\cdot$ .. , $u_{r}]$ . Writing $u_{i}$ and $\alpha_{j}$ as a $Z$-linear combination of $u_{1}$ , $\cdot$ . , $u_{r}$ , we
regard them as elements of $Z[u_{1}, , u_{r}]$ .

$DEFINITIO_{\perp}^{\tau}t7.1$ . We define the following polynomial in $X$ with coefficients
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in $Z[u_{1}, \cdots u_{r}]$ :

(7.1) $\Phi_{E_{r}}(X)=\Pi_{\dot{\tau}=1}N(X-u_{i})=\Pi_{\tau=1}^{N/2}(X^{2}-u_{t}^{2})$ ,

whicb will be called the universal Polynomial of tyPe $E_{r}$ .
Letting

(7.2) $\epsilon_{\nu}$ $=\nu$-th elementary symmetric function of $u_{1},$ $\cdots$ , $u_{N}$

(7.3) $\epsilon_{v}’$ $=\nu$-th elementary symmetric function of $u_{1}^{2},$ $\cdots$ , $u_{N/2}^{2}$ ,

we have $\epsilon_{v}=0$ for $\nu$ odd and $\epsilon_{2\nu}=(-1)^{\nu}\epsilon_{\nu}’$ . Obviously, we have

(7.4) $\Phi_{E_{r}}(X)=X^{N}+\Sigma_{\nu=1}^{N/2}\epsilon_{2\nu}X^{N-2v}$

The coefficients $\epsilon_{\nu}$ are invariant under $W(E_{r})$ as polynomials in $u_{1},$ $\cdots$ , $u_{r}$ .
(vii) The structure of the ring of $W(E_{r})$-invariants in $Q[u_{1}, \cdots , u_{r}]$ is

well-known. It is a graded polynomial ring generated by $r$ homogeneous ele-
ments of weights

(7.5)
$\int$

2, 8, 12, 14, 18, 20, 24, 30 $(r=8)$

2, 6, 8, 10, 12, 14, 18 $(r=7)$

$(2,5,6,8,9,12$ $(r=6)$ .
(viii) As a by-product of the proof of Theorem $(E_{r})$ given in the next

sections, we can prove that, for $r=8$ or 7, $\epsilon_{w}$ with $w$ ranging over the weights
in (7.5) form a set of fundamental invariants of $W(E_{r})$ . In other words, we $Ar$

obtain:

THEOREM 7.2.

(7.6) $Q[u_{1}, \cdots u_{8}]^{W(E_{8})}=Q[\epsilon_{2}, \epsilon_{8}, \epsilon_{12}, \epsilon_{14}, \epsilon_{18}, \epsilon_{20}, \epsilon_{24}, \epsilon_{30}]$

(7.7) $Q[u_{1}, \cdots u_{7}]^{W(E_{7})}=Q[\epsilon_{2}, \epsilon_{6}, \epsilon_{8}, \epsilon_{10}, \epsilon_{12}, \epsilon_{14}, \epsilon_{18}]$

(ix) For the case of $E_{6}$ , we slightly modify the notation as follows. We
can choose $u_{1}$ , , $u_{6}$ so that $\langle u_{i}, u_{j}\rangle\equiv 1/3(mod 1)$ for all $i,$ $j\leqq 6$ , and arrange
$\{u_{i}\}$ so that the same congruence holds for all $i,$ $j\leqq N/2=27$ . Thus $\{u_{i}|1\leqq i\leqq 27\}$

and $\{-u_{i}|1\leqq i\leqq 27\}$ give the 2 orbits mentioned in (iii). We redefine $\epsilon_{\nu}$ as
the v-th elementary symmetric function of $u_{1},$ $\cdots$ , $u_{27}$ . Let

(7.8) $\Psi_{E_{6}}(X)=\Pi_{i=1}27(X-u_{i})$

$=X^{27}+\Sigma_{\nu=1}^{27}(-1)^{\nu}\epsilon_{\nu}X^{27-v}$

Note that $\epsilon_{\nu}$ are invariant under $W(E_{6})$ , since $\{u_{1}, \cdots , u_{27}\}$ is stable under
$IV(E_{6})$ . We have

(7.9) $\Phi_{E_{6}}(X)=\Psi_{E_{6}}(X)\Psi_{E_{6}}(-X)$ ,
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so we rename the universal polynomial of tyPe $E_{6}$ to mean this newly defined
polynomial $\Psi_{E_{6}}(X)$ of degree 27.

With this modified notation, we can state:

THEOREM 7.3.

(7.10) $Q[u_{1}, \cdots u_{6}]^{W(E_{6})}=Q[\epsilon_{2}, \epsilon_{5}, \epsilon_{6}, \epsilon_{8}, \epsilon_{9}, \epsilon_{12}]$ .
REMARK 7.4. The fundamental invariants of the Weyl group $TV(E_{r})$ seem

to have been studied by many authors ($e.g$ . $[F]$ for $E_{6}$ , [Br] for $E_{7}$ ), but we
have not found in the literature such a simple statement as above. This comes
out automatically in our approach via the Mordell-Weil lattices (see the proof
of Theorem 8.3, 9.3 or 10.3).

(x) Using the minimal vectors (roots) in $E_{r}$ instead of those in $E_{r}^{*}$ , we
can define similar polynomial:

(7.11) $\Pi_{J^{n}\Rightarrow 1}(X-\alpha_{j})\in Z[u_{1}, \cdots , u_{\gamma}][X]$

of degree $n=240,126$ or 72 for $r=8,7$ or 6; for $r=8$ , this is the same as $\dot{\Phi}_{E_{8}}$ .
The coefficients of (7.11) are again invariant under $W(E_{r})$ . In particular, the
constant term

(7.12) $\delta_{0}(u)=\Pi_{i=1}^{n}\alpha_{j}=\pm(\Pi_{j=1}n/2\alpha_{j})^{2}$

is an important invariant, playing the role of the difference product or the dis;

criminant, which appears in the statement of Theorem $(E_{r})$ . It is known that
the Jacobian determinant of any sets of fundamental invariants of $W(E_{r})$ with
respect to $u_{1}$ , $\cdot$ .. , $u_{r}$ is equal to $\Pi_{j=1}^{n/2}\alpha_{j}$ , up to a constant.

8. Case $(E_{8})$ .
Let us consider the elliptic curve $E=E_{\lambda}$

(8.1) $y^{2}=x^{3}+x(\Sigma_{i=0}^{3}p_{i}t^{i})+(\Sigma_{i=0}^{3}q_{i}t^{i}+t^{5})$

$\lambda=(p_{0}, p_{1}, p_{2}, p_{3}, q_{0}, q_{1}, q_{2}, q_{3})\in A^{8}$ .
AS before, let $K=k(t)$ be the rational function field over an algebraically closed
field $k$ containing $p_{\ell}$ and $q_{j}$ .

Step1. The elliptic surface $f$ : $S_{\lambda}arrow P^{1}$ has an irreducible singular fibre of
tyPe II at $r=\infty$ :
(8.2) $f^{-1}(\infty)=\Theta_{0}$ (a rational curve with a cusp)

(8.3) $f^{-1}(\infty)^{\#}=\Theta_{0}^{\#}\cong G_{a}$ (the additive group).

Step2. Assume that $(\#)f$ has no reducible fibres at all. Thls is certainly
the case if $\lambda$ is generic (over the prime field) or if $\lambda$ is sufficiently general. Then
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we have $E(K)=E(K)^{o}$ , which has rank $r=8$ and $\det=1$ by (4.10) and (4.11).

Hence the Mordell-Weil lattice $E(K)$ is an even unimodular lattice of rank 8,
and as such, it is isomorphic to the root lattice $E_{8}$ :

(8.4) $E(K)=E(K)^{o}\cong E_{8}$ .
It has 240 roots (minimal vectors of norm 2). Since

$\langle P, P\rangle=2+2(PO)\geqq 2$ for any $P\in E(K)$ , $P\neq 0$ ,

$P$ is a minimal section if and only if $(PO)=0$ . By (4.12), we have:

LEMMA 8.1. Under the assumption $(\#)$ , there are exactly 240 rational points
$P=(x, y)$ in $E(K)$ of the form:
$\langle$8.5) $x=gt^{2}+at+b$ , $y=hr^{3}+ct^{2}+dt+e$ ,

with some constants a, $b$ , , $g,$ $h$ in $k$ .

Step 3. Consider the specialization homomorphism:

$\langle$8.6) $sp_{\infty}$ : $E(K)arrow f^{-1}(\infty)\#\cong G_{a}$ .

LEMMA 8.2. If $P$ is given by (8.5), then $g\neq 0,$ $h\neq 0$ , and

(8.7) $sp_{\infty}(P)=g/h$ .

PROOF. In terms of the $\infty$ -model (cf. (4.13)), $P$ is written as

$X=g+as+bs^{2}$ , $Y=h+cs+ds^{2}+es^{3}$

Hence the section $(P)$ meets $f^{-1}(\infty)$ at (X, $Y$ ) $=(g, h)$ , which must be different
from the singular point $(0,0)$ of the curve $Y^{2}=X^{3}$ . Hence both $g$ and $h$ are
$\neq 0$ , and we have

$sp_{\infty}(P)=(X/Y)|_{s=0}=g/h$ . $q.e.d$ .
Step 4. Now we assume that $\lambda$ is generic over $Q$ , i. e., $p_{0}$ , , $q_{3}$ are alge-

braically independent over $Q$ , and let $k$ be the algebraic closure of $Q(\lambda)=$

$Q(p_{0}, \cdots , q_{3})$ . Then the condition $(\#)$ holds, and hence we have $E_{\lambda}(K)\cong E_{8}$ by
(8.4). We choose a basis $\{P_{1}, , P_{8}\}$ of $E_{\lambda}(K)$ with Gram matrix $(\langle P_{i}, P_{j}\rangle)$

$=I_{8}$ , and label the 240 points $P_{i}(1\leqq i\leqq 240)$ in the same way as in \S 7 (v).

Letting

(8.8) $u_{\ell}=sp_{\infty}(P_{i})\in k$ ,

we define the polynomial

(8.9) $\Phi(X, \lambda)=\Pi_{i=1}^{240}(X-u_{i})\in Q(\lambda)[X]$ .
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It has coefficients in $Q(\lambda)$ because $\{u_{i}\}$ is stable under Gal $(k/Q(\lambda))$ . Since $sp_{\infty}$

isla homomorphism, $\Phi(X, \lambda)$ will coincide with the universal polynomial of type
$E_{8}$ defined by (7.1), once we see that $u_{1},$ $\cdots$ , $u_{8}$ are algebraically independent
over $Q$ . At any rate, the coefficients $-\perp\epsilon_{\nu}$ of $\Phi(X, \lambda)$ are contained in
$Z[u_{1}, \cdots u_{240}]^{\mathfrak{S}_{240}}\subset Z[u_{1}, \cdots u_{8}]^{W(E_{8})}$ .

THEOREM 8.3. Assume that $\lambda=(p_{0}, \cdots , q_{3})$ is generic over Q. Then the poly-
nomial $\Phi(X, \lambda)$ has the coefficients in the polynomial ring $Z[\lambda]=Z[p_{0}, \cdots , q_{3}]$ .
The elements $u_{1},$ $\cdots$ , $u_{8}$ are algebraically independent over $Q$ , and we have

(8.10) $Q[u_{1}, \cdots , u_{8}]^{W(E_{8})}=Q[p_{0}, \cdots , q_{3}]$ ,

which also coincides with $Q[\epsilon_{2}, \epsilon_{s}, \epsilon_{12}, \epsilon_{14}, \epsilon_{18}, \epsilon_{20}, \epsilon_{24}, \epsilon_{30}]$ . In other words, both
$\{p_{0}, \cdots , q_{3}\}$ and $\{\epsilon_{2}, \cdots , \epsilon_{30}\}$ form the fundamental invariants of the Weyl group
$W(E_{8})$ . The explicit relation between them is given by the formulas (2.25) of
Theorem $(E_{8})$ .

THEOREM 8.4. Under the same assumption, the polynomial $\Phi(X, \lambda)$ is irre-
ducible over the rational function field $Q(\lambda)=Q(p_{0}, \cdots , q_{3})$ . The splitting field of
$\Phi(X, \lambda)$ over $Q(\lambda)$

(8.11) $\mathscr{K}=Q(\lambda)(u_{1}, \cdots , u_{240})$

is a Galois extension of $Q(\lambda)$ with the Galois group
(8.12) Gal $(\mathscr{K}/Q(\lambda))=W(E_{8})$ (the Weyl group of type $E_{8}$ )

and it is a purely transcendental extension of the prime field $Q$ :

(8.13) $\mathscr{K}=Q(u_{1}, \cdots , u_{8})$ .

THEOREM 8.5. For $\lambda$ generic, the specialization map

$sp_{\infty}$ : $E_{\lambda}(k(t))arrow k$

is an $in_{J}ective$ homomorphism, whose image $\Sigma_{i=0}^{8}Zu_{i}$ is a submodule of rank 8 in
$\mathscr{K}=Q(u_{1}, \cdots , u_{8})$ with $W(E_{8})$-action. In particular, each minimal section $P$ is
uniquely determined by $u=sp_{\infty}(P)$ .

More explicitly, for each root $u$ of the equation $\Phi(X, \lambda)=0$ , there is a unique
rational point $P=P(u)$ of $E_{\lambda}(k(t))$ with $sp_{\infty}(P)=u$ . It is of the form (8.5), i.e.,
$P=(x, y)$ with

$x=gt^{2}+at+b$ , $y=ht^{3}+ct^{2}+dt+e$ ,

in which $g,$ $h,$ $a,$ $\cdots$ , $e$ are determined by $u$ as follows:

(8.14) $\{g=u^{-2}a,b,c,d,$ $e\in Q[u_{1}, \cdots u_{8}][u^{-1}]\cap Q(\lambda)(u)$

.
$h=u^{-3}$
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These results (and Theorems 7.2, (7.6)) will be proven almost at the same
time.

PROOF OF THEOREM 8.3. Let us analyse the condition for the point (8.5)

to belong to $E(K)$ , by means of the elimination method. For that purpose, we
substitute (8.5) into the equation (8.1) and look at the coefficients of $t^{m}$ for
$m=6,5$ , $\cdot$ .. , $0$ . Then we get 7 polynomial relations among $a,$

$b$ , $\cdot$ .. , $g,$
$h$ over

$Q[p_{0}, \cdots q_{3}]$ :

(8.15) $h^{2}=g^{3}$

(8.15) $2ch=1+3ag^{2}+P_{3}g$

(8.15) $c^{2}+2dh=3a^{2}g+3bg^{2}+p_{2}g+p_{3}a$

(8.15) $2cd+2eh=a^{3}+6abg+p_{1}g+p_{2}a+P_{3}b+q_{3}$

(8.15) $d^{2}+2ce=3a^{2}b+3b^{2}g+p_{0}g+p_{1}a+p_{2}b+q_{2}$

(8.15) $2de=3ab^{2}+p_{0}a+p_{1}b+q_{1}$

(8.15) $e^{2}=b^{3}+p_{0}b+q_{0}$ .
NOW, we set $u=g/h$ in view of (8.7). Then, by $(8.15)_{1}$ , we have

$g=u^{-2}$ , $h=u^{-3}$

The next 3 relations $(8.15)_{2},$ $\cdots$ , $(8.15)_{4}$ determine $c,$ $d,$ $e$ as elements of
$Q[p_{0}, \cdots , q_{3}][u, u^{-1}, a, b]$ . Substitute these into the remaining 3 relations, and
we get 3 relations among $u,$ $a,$

$b$ over $Q[p_{0}, \cdots , q_{3}]$ . Then, eliminating $a$ and
$b$ from them, we obtain a monic polynomial of degree 240 in $u$ with coefficients
in $Q[p_{0}, q_{3}]$ .

In carrying out the elimination process sketched above (and also for con-
structing numerical examples), it is useful to note that we are dealing with a
weighted homogeneous equation. Namely we have

$\frac{xyt}{10156}|\frac{p_{0}p_{1}p_{2}p_{3}q_{0}q_{1}q_{2}q_{3}}{20148230241812}|\frac{abcdeghu}{4103915-2-31}$

where the second row gives the weight of the letter above.
Let us introduce the homogeneous elements of weight $0$ :

(8.16) $\{P_{i}=p_{i}/uA=a/u^{4}$

, $B=b/u^{10}$ , $C=c/u^{3}$ , $D=d/u^{9}$ , $E=e/u^{15}$ ,
20-6i $Q_{i}=q_{t}/u^{30-6i}$ $(i=0,1,2,3)$ .

Then $(8.15)_{2},$ $\cdots$ , $(8.15)_{4}$ imply

(8.17) $C,$ $D,$ $E\in Q[P_{0}, \cdots , Q_{3}][A, B]$
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(for instance, $C=(1+3A+P_{3})/2$ , etc.). Substituting these into $(8.15)_{5},$ $\cdots$ , $(8.15)_{7}$ ,

we obtain 3 relations of $B$ over $Q[P_{0}$ , $\cdot$ .. , $Q_{3}][A]$ of the form:

(8.18) $B^{2}+f_{2}(A)\cdot B+f_{4}(A)=0$

(8.19) $f_{1}’(A)\cdot B^{2}+f_{3}’(A)\cdot B+f_{5}’(A)=0$

(8.20) $B^{3}+f_{2}’’(A)\cdot B^{2}+f_{4}’’(A)\cdot B+f_{6}’’(A)=0$ ,

where $f_{d}(A)$ , $\cdot$ are polynomials of degree $d$ in $A$ over $Q[P_{0}$ , $\cdot$ .. , $Q_{3}]$ . Under
(8.18), the last two are equivalent to the following:

(8.19) $h_{2}(A)\cdot B+h_{4}(A)=0$

(8.20) $h_{3}(A)\cdot B+h_{5}(A)=0$ .

Eliminating $B$ from $(8,19)’$ , (8.20) and (8.18), we obtain two relations of $A$

over $Q[P_{0}, \cdots , Q_{3}]$ of degree 8 and 7:

(8.21) $A^{8}+\cdots=0$ , $(310+P_{3})\cdot A^{7}+\cdots=0$ .
In particular, we see that $A$ is integral over $Q[P_{0}, \cdots , Q_{3}]$ , and so are $B,$ $C$ ,
$D,$ $E$ , by (8.18) and (8.17). Next we eliminate $A$ from (8.21) to obtain a rela-
tion $R=0$ among $P_{0},$ $\cdots$ , $Q_{3}$ . In other words, $R$ is the resultant of two rela-
tions in (8.21). On the other hand, let $L$ be the resultant of $h_{2}(A)$ and $h_{4}(A\rangle$

appearing in (8.19). Then we have

(8.22) $R=const$ . $L^{2}\cdot F$

where $F$ is a polynomial in $Z[P_{0}, \cdots , Q_{3}]$ with the constant term 1. Writing
$P_{0}$ , $\cdot$ .. , $Q_{3}$ in terms of $p_{0}$ , $\cdot$ . , $q_{3}$ and $u$ by (8.16), and multiplying $u^{240}$ to $F$, we
finally obtain a monic relation of $u$ over $Z[p_{0}, \cdots , q_{3}]$ :

(8.23) $\Phi(u)=u^{240}+60p_{3}u^{238}+1764p_{3}^{2}u^{236}+\cdots=0$ .

Conversely, for any root $u$ of (8.23), we have a common root $A$ of (8.21), which
uniquely determines $B$ satisfying (8.18), $\cdots$ , (8.20), and also $C,$ $D,$ $E$ by (8.17).

Hence we obtain, for a given $u$ , at least one set of $g,$ $h,$ $a$ , 2
$e$ satisfying all

the relations of (8.15), and thus a rational point $P$ of the form (8.5) such that
$sp_{\infty}(P)=u$ . Noting that $\Phi(X)$ is separable (which can be checked by specialzing
$p_{i}$ and $q_{j}$ to numerical values), we see that $\Phi(X)$ divides $\Phi(X, \lambda)$ defined by
(8.9). Therefore, comparing the degree, we conclude that

(8.24) $\Phi(X)=\Phi(X, \lambda)$ .
This proves the first assertion in Theorem 8.3.

Next we compare the coefficients of $X^{f}$ in (8.24) for $d=2,8,12,14,18,20$,
24, 30, which are the weights of the fundamental invariants of the Weyl group
$W(E_{8})$ (cf. (7.5)). Then we find the following explicit formulas:
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$(\begin{array}{l}\epsilon_{2}=60p_{3},\epsilon_{8}=720p_{2}+478170p_{3}^{4},\epsilon_{12}=15120q_{3}+\ldots\epsilon_{14}=79200p_{1}+\ldots\end{array}$

(8.25)

$|\epsilon_{30}=65945880000q_{0}+<\epsilon_{24}=419237280q_{1}+\epsilon_{20}=11040480p_{0}+\epsilon 18=2620800q_{2}+\cdot\cdot|.’.-\ldots$

,

where
Obviously it follows that

(8.26) $Q[\epsilon_{2}, \cdots , \epsilon_{30}]=Q[p_{3}, p_{2}, q_{3}, p_{1}, q_{2}, p_{0}, q_{1}, q_{0}]$ .
This shows first that $\epsilon_{2},$

$\cdots$ , $\epsilon_{30}$ are algebraically independent over $Q$ , since $p_{i}$ ,
$q_{j}$ are so by assumption, and second that they form the fundamental invariants
of $W(E_{8})$ because they have the right weights. For the same reason, $p_{0},$

$\cdots,$ $q_{3}$

form the fundamental invariants, which proves (8.10). It is by now clear that
$u_{1},$

$\cdots$ , $u_{8}$ are algebraically independent over $Q$ .
Writing out the part

formula expressing $p_{i},$ $q_{j}$ in terms of $\epsilon_{\acute{a}}$ $(d=1,4, \cdots , 15)$ , which is nothing but
the formula (2.25) of Theorem $(E_{8})$ . To emphasize the dependence of $p_{i},$ $q_{j}$

upon $u_{1}$ , , $u_{8}$ , we write it here in the form:

(8.27) $p_{i}=I_{20-6\ell}(u_{1}, \cdots u_{8})$ , $q_{i}=I_{30-6i}(u_{1}, \cdots u_{8})$ ,

where $I_{w}$ stands for an invariant of weight $w$ for the Weyl group $W(E_{8})$ .
Thus we have proven Theorem 8.3 (and (7.6) of Theorem 7.2).

PROOF OF THEOREM 8.4. For the splitting field $\mathscr{K}$ of $\Phi(X, \lambda)$ over $Q(\lambda)$ ,

we have
$\mathscr{K}=Q(p_{0}, \cdots q_{3})(u_{1}, \cdots , u_{240})=Q(u_{1}, \cdots , u_{8})$

by (8.27), since all $u_{i}$ are $Z$-linear combination of $u_{1},$ $\cdots$ , $u_{8}$ . Next, taking the
field of fractions in both sides in (8.10), we have

(8.28) $Q(u_{1}, \cdots , u_{8})^{W(E_{8})}=Q(p_{0}, \cdots , q_{3})$ .

By Galois theory, it is then immediate that $Q(u_{1}, \cdots , u_{8})$ is a Galois extension
of $Q(p_{0}, \cdots , q_{3})$ with Galois group $W(E_{s})$ . Moreover this Galois group acts
transitively on the 240 roots $u_{i}$ of the polynomial $\Phi(X, \lambda)$ , since the Weyl group
$W(E_{8})$ acts transitively on the “roots” of $E_{8}$ . This proves the irreducibilitv of
$\Phi$ over $Q(p_{0}$ , $\cdot$ .. , $q_{3})$ . Thus we have proven Theorem 8.4.



Construction of elliPtic curves 707

PROOF OF THEOREM 8.5. First of all, the specialization map $sp_{\infty}$ is injec-
tive, because $u_{1},$

$\cdots$ , $u_{8}$ are linearly independent over $Q$ (they are even alge-
braically independent).

TO prove other assertion, we use the notation in the proof of Theo-
rem 8.1. Take a root $u$ of $\Phi(X, \lambda)=0$ and define $P_{i},$ $Q_{i}$ by (8.16) using this
$u$ . AS noted before, we have a common root $A$ of (8.21), which is obviously
integral over $Q[P_{0}, \cdots , Q_{3}]$ . On the other hand, applying the Euclid algorithm
to the 2 relations in (8.21), we obtain a relation of degree 1 in $A$ (one step
before getting the resultant $R$). This means that $A$ is in the quotient field of
$Q[P_{0}, \cdots , Q_{3}]$ . Hence $A$ belongs to the normalization of the ring $Q[P_{0}, \cdots, Q_{3}]$ ,

which is contained in $V=Q[u_{1}, \cdots , u_{8}][u^{-1}]$ . Thus $a=u^{4}\cdot$ $A$ belongs to $V$ .
Similarly, $B$ is integral over $Q[P_{0}, \cdots , Q_{3}][A]$ by (8.18), hence over

$Q[P_{0}, \cdots , Q_{3}]$ , and it belongs to $Q(P_{0}, \cdots , Q_{3})(A)=Q(P_{0}, \cdots , Q_{3})$ by (8.19).

Hence we have $B\in V$ and $b=u^{10}\cdot B\in V$ . By (8.17) and (8.16), we see also $c,$
$d$ ,

$e\in V$.
This completes the proof of Theorem 8.5.

Step5. It follows from Theorem 8.5 that the speclalization map $sp_{\infty}$ is a
group isomorPhism of $E_{\lambda}(k(t))$ to $\Sigma_{i=1}^{8}Zu_{i}$ for $\lambda$ generic, and we can introduce
the lattice structure on the latter to make $sp_{\infty}$ a lattice isomorphism. In parti-
cular, we have

(8.29) $(\langle P_{i}, P_{j}\rangle)=(\langle u_{i}, u_{j}\rangle)=I_{8}$ .

NOW we observe that the condition $(\neq)$ in Step 2 is equivalent to the non-
vanishing of the invariant $\delta_{0}$ in Theorem $(E_{8})$ . Indeed, if $(^{\mu},)$ holds, then the
Mordell-Weil lattice $E(K)$ is $E_{8}$ so that it has 240 roots $P$, and $sp_{\infty}(P)\neq 0$ by
(8.7). Since $\delta_{0}$ is the constant term of $\Phi(X, \lambda)=\Phi_{E_{8}}(X)$ (cf. tbe end of \S 7),

we have $\delta_{0}\neq 0$ . Conversely, if there is a reducible fibre for $f$ : $S_{\lambda}arrow P^{1}$ , the
non-identity components give rise to zeros of $\Phi(X)$ , hence $\delta_{0}=0$ (cf. [S4]).

NOW we specialize the generic $u=(u_{1}$ , $\cdot$ .. , $u_{8})$ to $u^{o}=(u_{1}^{o}$ , $\cdot$ .. , $u_{8}^{o})$ in $Q^{8}$ such
that $\delta_{0}(u^{o})\neq 0$ . (For the notion of specialization, we refer to [W2].) Then
$\lambda=(p_{0}, \cdots , q_{3})$ specializes to $\lambda^{o}=(p_{\cup}^{0}, \cdots , q_{3}^{o})$ in $Q^{8}$ , which is uniquely determined
from $u^{o}$ by (8.27) or by (2.25). The Mordell-Weil lattice $E_{\lambda}(K)$ specializes to
$E_{\lambda^{o}}(K)$ , and the 240 roots { $P_{i}|1\leqq$ i$240} in the former specialize to $\{P_{2}^{o}\}$ in
the latter. Each $P_{i}^{o}$ is a $Q(t)$-rational point of $E_{\lambda^{\circ}}$ of the form (8.5):

$x=(u_{\ell}^{o})^{-2}t^{2}+\cdots$ , $y=(u_{i}^{o})^{-3}t^{3}+\cdots$

as it is obtained from a $Q(u_{1}, \cdots , u_{8})(t)$-rational point $P_{i}$ of $E_{\lambda}$ (given by Theo-
rem 8.5) under the specialization of $(u_{1}$ , $\cdot$ .. , $u_{s})$ to $(u_{1}^{\circ}$ , $\cdot$ .. , $u_{8}^{\circ})\in Q^{8}$ .

On the other hand, recall that we have
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$\langle P_{i}, P_{j}\rangle=1-(P_{i}P_{j})$ ,

since there are no reducible fibres. By the invariance of the intersection num-
ber under specialization (cf. [W2]), we have therefore

(8.30) $(\langle P_{i}^{o}, P_{j}^{o}\rangle)_{i.f\leqq 8}=(\langle P_{i}, P_{j}\rangle)_{i.j\leqq 8}=I_{8}$ .

Thus we have shown that, given any $u^{o}\in Q^{8}$ such that $\delta_{0}(u^{o})\neq 0$ , we can
define an elliptic curve $E=E_{\lambda\circ}$ defined over $Q(t)$ , having the 8 generators $\{P_{i}^{o}\}$

of the Mordell-Weil group $E(Q(t))$ of rank 8, satisfying (8.30). Further, if
$\delta_{1}(u^{o})\neq 0$ , then all $u_{i}(1\leqq i\leqq 240)$ are distinct, and the proof of Theorem 8.5
(and 8.3) gives the algorithm to uniquely determine the rational point $P_{i}^{o}$ for
each $u_{\iota}^{o}$ .

This completes the proof of Theorem $(E_{8})$ stated in \S 2.

9. Case $(E_{7})$ .
The remaining cases $(E_{7})$ and $(E_{6})$ are similar to the case $(E_{8})$ , and indeed,

the formulation of the results and the proof can be given in a surprisingly
parallel way. It should be noticed that the crucial step using the elimination
argument is considerably simpler here.

In this section, we treat the case $(E_{7})$ .
Thus we consider the elliptic curve $E=E_{\lambda}$

(9.1) $y^{2}=x^{3}+x(p_{0}+p_{1}t+t^{3})+(\Sigma_{i=0}^{4}q_{i}t^{i})$

$\lambda=(p_{0}, p_{1}, q_{0}, q_{1}, q_{2}, q_{3}, q_{4})\in A^{7}$ .

AS before, $K=k(t)$ is the rational function field over an algebraically closed
field $k$ containing $p_{i}$ and $q_{j}$ .

Step 1. The elliptic surface $f$ : $S_{\lambda}arrow P^{1}$ has a reducible singular fibre of
type III at $t=\infty$ :

(9.2) $f^{-1}(\infty)=\Theta_{0}+\Theta_{1}$ , $(\Theta_{0}\cdot\Theta_{1})=2$ ,

where $\Theta_{0},$ $\Theta_{1}$ are smooth rational curves tangent at the unique point of their
intersection. The associated algebraic group is:

$\langle$ 9.3) $f^{-1}(\infty)^{*}=\Theta_{0}^{*}\cup\Theta_{1}^{\#}\cong G_{a}\cross Z/2$ .
Step 2. Assume that $(\#)f$ has no reducible fibres other than $f^{-1}(\infty)$ .

This is certainly the case if $\lambda$ is generic or sufficiently general. Then the
narrow Mordell-Weil lattice $E(K)^{o}$ has rank $r=7$ and $\det=2$ by (4.10) and
(4.11). Hence it is isomorphic to the root lattice $E_{7}$ , because its opposite lattice
is the orthogonal complement of $\Theta_{1}$ (a “root”) in $E_{8}^{-}$ , where $E_{8}^{-}$ is itself the
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orthogonal complement of $\langle(0), F\rangle$ in $NS(S_{\lambda})$ (cf. \S 7 (i) and Step 2 in case
$(E_{8}))$ . In general, we call such an $E_{8}^{-}$ the ”

$E_{8}$-frame” of a rational elliptic
surface with a section $(O)$ (cf. [S4]). Thus we have

(9.4) $E(K)\cong E_{7}^{*}$ , $E(K)^{o}\cong E_{7}$ .
There are 56 minimal sections of $E(K)$ of norm 3/2. Recalling that

$\langle P, P\rangle=2+2(PO)-\{01/2$
$(P\Theta_{0})=1$

otberwise,

for any $P\in E(K),$ $P\neq 0$ (see (4.17)), $P$ is a minimal section if and only if $(PO)$

$=0$ and $(P\Theta_{1})=1$ . Then we have:

LEMMA 9.1. Under the assumption $(\#)$ , there are exactly 56 rational points
$P=(x, y)$ in $E(K)$ of the form:
(9.5) $x=at+b$ , $y=ct^{2}+dt+e$ $(a, b, \cdots e\in k)$ .

PROOF. Using (4.12), argue as in Lemma 6.1. $q.e.d$ .

Step 3. Consider the specialization homomorphism:

(9.6) $sp_{\infty}$ : $E(K)-f^{-1}(\infty)\#\cong G_{a}\cross Z/2$ .

LEMMA 9.2. If $P$ is given by (9.5), then

(9.7) $sp_{\infty}(P)=(-c, \overline{1})$ .

PROOF. We have to show that the $G_{a}$ -component $sp_{\infty}^{f}(P)$ of $sp_{\infty}(P)$ is equal
to $-c$ , for which it suffices to see $thatsp_{\infty}(Q)=-2c$ for $Q=2P\in E(K)^{o}$ . By the
addition formula (5.9) (or its variant: the duplication formula), this can be
easily verified (cf. the proof of (6.17) of Lemma 6.2). q.e. $d$ .

Step 4. Now we assume that $\lambda$ is generic over $Q$ , i. e., $p_{0}$ , $\cdot$ . , $q_{4}$ are alge-
braically independent over $Q$ , and let $k$ be the algebraic closure of $Q(\lambda)=$

$Q(p_{0}$ , $\cdot$ .. , $q_{4})$ . Then the condition $(\#)$ holds, and hence we have $E_{\lambda}(K)\cong E_{7}^{*}$ by
(9.4). We choose a basis $\{P_{1}$ , $\cdot$ .. , $P_{7}\}$ of $E_{\lambda}(K)$ with Gram matrix $(\langle P_{i}, P_{J}\rangle)$

$=I_{7}$ , and arrange the 56 points $P_{i}(1\leqq i\leqq 56)$ in the same way as in \S 7 (v).

Letting

(9.8) $u_{i}=sp_{\infty}^{f}(P_{i})=-c_{i}\in k$ ,

we define the polynomial

(9.9) $\Phi(X, \lambda)=\Pi_{i=1}^{56}(X-u_{i})\in Q(\lambda)[X]$ .

AS in the case $(E_{8})$ , this will coincide with tbe universal polynomial of type
$E_{7}$ defined by (7.1), provided that $u_{1},$ $\cdots$ , $u_{7}$ are algebraically independent over
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$Q$ . Note $\Phi(-X, \lambda)=\Phi(X, \lambda)$ .

THEOREM 9.3. Assume that $\lambda=(p_{0}, \cdots , q_{4})$ is generic over Q. $T$ en the
polynomial $\Phi(X, \lambda)$ has the coefficients in the polynomial ring $Z[p_{0}, \cdots , q_{4}]$ . The
elements $u_{1},$ $\cdots$ , $u_{7}$ are algebraically independent over $Q$ , and we have

(9.10) $Q[u_{1}, \cdots u_{7}]^{W(E_{7})}=Q[p_{0}, p_{1}, q_{0}, q_{4}]$ ,

$=Q[\epsilon_{2}, \epsilon_{6}, \epsilon_{8}, \epsilon_{10}, \epsilon_{12}, \epsilon_{14}, \epsilon_{18}]$ .

Thus both $\{p_{0}, \cdots , q_{4}\}$ and $\{\epsilon_{2}, \cdots , \epsilon_{18}\}$ form the fundamental invariants of the
Weyl group $W(E_{7})$ . The explicit relation between them is given by the formulas
(2.21) of Theorem $(E_{7})$ .

THEOREM 9.4. Under the same assumption, the polynomial $\Phi(X, \lambda)$ is irre-
ducible over the rational function field $Q(\lambda)=Q(p_{0}, \cdots , q_{4})$ . The splitting field of
$\Phi(X, \lambda)$ over $Q(\lambda)$

(9.11) $\mathscr{K}=Q(\lambda)(u_{1}, \cdots, u_{56})$

is a Galois extension of $Q(\lambda)$ with the Galois group
(9.12) Gal $(\mathscr{K}/Q(\lambda))=7V(E_{7})$ (the Weyl group of type $E_{7}$ )

and it is a purely transcendental extension of $Q$ :

(9.13) $\mathscr{K}=Q(u_{1}, \cdots, \mathcal{U}’)$ .

THEOREM 9.5. For $\lambda$ generic, the composed map

(9.14) $sp^{\gamma}=pr_{1}\circ sp_{\infty}$ : $E_{\lambda}(k(t))arrow G_{a}(k)\cross Z/2arrow G_{a}(k)=k$

is an injective homomorphism, whose image $\Sigma_{i=\iota}^{7}Zu_{\ell}$ is a submodule of rank 7 in
$\mathscr{K}=Q(u_{1}, \cdots , u_{7})$ with $W(E_{7})$-action. In particular, each minimal section $P$ is
uniquely determined by $u=sp_{\infty}^{f}(P)(=-c)$ .

More explicitly, for each root $c$ of the equation $\Phi(X, \lambda)=0$ , there is a unique
rational point $P=(x, y)$ of $E_{\lambda}(k(t))$ such that

$x=at+b$ , $y=ct^{2}+dt+e$ ,

where a, $b,$ $d,$ $e$ are determined by $c$ as follows:

$\int d=d(c)\in Q[u_{1}a=c^{2}-q_{4}\ldots u_{7}]\cap Q(\lambda)(c)$

(9.15)

$|b=-a^{3}+2cd-q_{3}e=(3a^{2}b-d^{2}+p_{1}a+q_{2})/(2c)$

,

$d(c)$ being certain rational function of $c$ with coefficients in $Q(\lambda)=Q(p_{0}, \cdots , q_{4})$
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which is also expressed as a polynomial in $u_{1},$
$\cdots$

$u_{7}$ .

PROOF OF THEOREM 9.3. AS before, we substitute (9.5) into (9.1) and look
at the coefficients of $t^{m}$ for $m=4,3$ , $\cdot$ .. , $0$ . Then we get 5 relations among
$a,$ $b,$ $\cdots$ , $e$ over $Q[p_{0}, \cdots , q_{4}]$ :

(9.16) $\{$

$c^{2}=a+q_{4}$

$2cd=a^{3}+b+q_{3}$

$d^{2}+2ce=3a^{2}b+p_{1}a+q_{2}$

$2de=3ab^{2}+p_{0}a+p_{1}b+q_{1}$

$e^{2}=b^{3}+p_{0}b+q_{0}$ .

By the first 3 relations, $a,$ $b,$ $e$ are determined as elements of $Q[p_{0}, \cdots , q_{4}]$

$[c, c^{-1}, d]$ , as in (9.15). Substituting these into the last 2 relations, we get 2
monic relations of $d$ over $Z[p_{0}$ , $\cdot$ .. , $q_{4}][c]$ of degree 3 and 4:

(9.17) $d^{3}+\cdots=0$ , $d^{4}+\cdots=0$ .

Then, eliminating $d$ from them, we obtain a monic polynomial of degree 56 in
$c$ with coefficients in $Z[p_{0}, , q_{4}]$ :

(9.18) $\Phi(c)=c^{56}-36q_{4}c^{54}+594q_{4}^{2}c^{52}+(72q_{3}-6084q_{4}^{3})c^{50}+\cdots=0$ .

Note, as before, that we have the weighted homogeneity, the weights being
given in this case by

(9.19)

NOW, for any root $c$ of (9.18), we have a common root $d$ of (9.17), which
uniquely determines $a,$ $b,$ $e$ by the formulas in (9.15). Hence, for each $c$ , there
is at least one rational point $P$ of the form (9.5). As before, this implies:

(9.20) $\Phi(X)=\Phi(X, \lambda)$ .

This proves the first assertion in Theorem 9.1.
Next we compare the coefficients of $X^{d}$ in (9.20) for $d=2,6,8,10,12,14$ ,

18, which are the weights of the fundamental invariants of the Weyl group
$W(E_{7})$ (cf. (7.5)). Then we find the following:
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(9.21) $|\epsilon_{6}=72q_{3}-6084q_{4}^{3}\epsilon_{2}=-36q_{4}\epsilon_{8}=60p_{1}-1800q_{3}q_{4}+43875q_{4}^{4}\epsilon_{10}=-504q_{2}+\cdots$,

$\epsilon_{12}=-540p_{0}+\cdots$ ,

$\epsilon_{14}=3828q_{1}+\cdots$

$\epsilon_{18}=-29496q_{0}+\cdots$ ,

where .. stands for a sum of terms in $p_{i}$ or $q_{j}$ of lower weights.
Hence we have

(9.22) $Q[\epsilon_{2}, \cdots \epsilon_{18}]=Q[q_{4}, q_{3}, p_{1}, q_{2}, p_{0}, q_{1}, q_{0}]$ .

which proves (9.10), together with the algebraic independence of $u_{1},$
$\cdots$ , $u$

over $Q$ .
Letting $\epsilon_{2\nu}=(-1)^{\nu}\epsilon_{\nu}’$ , we obtain from (9.21) the formula expressing $p_{i},$ $q_{J}$ in

terms of $\epsilon_{a}’(d=1, 3, 9)$ , which is nothing but the formula (2.21) of Theorem
$\langle$ $E_{7})$ . In particular, we can write

$\langle$ 9.23) $p_{i}=I_{12-4i}(u_{1}, \cdots u_{7})$ , $q_{j}=I_{18-4j(l\ell_{1}},$ $\cdots$ $u_{7})$ ,

where $I_{w}$ denotes an invariant of weight $w$ for the Weyl group $W(E_{7})$ . Thus
we have proven Theorem 9.3 (and (7.7) of Theorem 7.2).

Theorems 9.4 and 9.5 can be proven exactly in the same way as before, so
we omit the proof.

Step 5. It follows from Theorem 9.5 that the specialization map $sp_{\infty}’$ is a
group isomorphism of $E_{\lambda}(k(t))$ to $\Sigma_{i=1}^{7}Zu_{i}$ for $\lambda$ generic, and we can introduce
the lattice structure on the latter to make $sp_{\infty}’$ a lattice isomorphism. In parti-
cular, we have

(9.25) $(\langle P_{t}, Pj\rangle)=(\langle u_{t}, u_{j}\rangle)=I_{7}$ .

NOW we observe that the condition $(\#)$ in Step 2 is equivalent to the non-
vanishing of the invariant $\delta_{0}$ in Theorem $(E_{7})$ . Indeed, if $(\#)$ holds, then the
narrow Mordell-Weil lattice $E(K)^{o}$ is $E_{7}$ so that it has 126 roots $P$, and we
have $sp_{\infty}(P)\neq 0$ by the same proof as (8.7). Since $\delta_{0}$ is the product of these
(cf. the end of \S 7), we have $\delta_{0}\neq 0$ . Conversely, if there is a reducible fibre
for $f$ : $S_{\lambda}arrow P^{1}$ other than $f^{-1}(\infty)$ , then its non-identity components, say $\Theta$ ,
give rise to the roots $(\Theta\cdot\Theta)=-2$ of the “

$E_{7}$-frame” in $NS(S_{\lambda})$ , which implies
$\delta_{0}=0$ (cf. [S4]). The condition $\delta_{0}\neq 0$ is also equivalent to the smoothness of
the affine surface defined by (9.1).

NOW we specialize the generic $u=(u_{1}, , u_{7})$ to $c=(c_{1}, , c_{7})$ in $Q^{7}$ such
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that $\delta_{0}(c)\neq 0$ . Then $\lambda=(p_{0}$ , $\cdot$ .. , $q_{4})$ specializes to $\lambda^{o}=(p_{0}^{0}$ , $\cdot$ .. , $q_{4}^{o})\in Q^{7}$ , which is
uniquely determined from $c$ by (9.23) or by (2.21). The Mordell-Weil lattice
$E_{\lambda}(K)$ specializes to $E_{\lambda^{\circ}}(K)$ , and the 56 minimal vectors $\{P_{i}|1\leqq i\leqq 56\}$ in the
former specialize to $\{P_{i}^{o}\}$ in tbe latter. Each $P_{i}^{o}$ is a $Q(t)$-rational point of $E_{\lambda}\circ$

of the form (9.5), as it is obtained from a $Q(u_{1}$ , $\cdot$ .. , $u_{7})(t)$-rational point $P_{i}$ of
$E_{\lambda}$ (given by Theorem 9.5) under the specialization of $(u_{1}, \cdots , u_{7})$ to $(c_{1}, \cdots, c_{7})$

$\in Q^{7}$ .
On the other hand, we have

$\langle P_{i}, P_{j}\rangle=1/2-(P_{t}P_{J})$ ,

since $f^{-1}(\infty)$ is the only reducible fibre. By the invariance of the intersection
number under specialization, we have therefore

(9.26) $(\langle P_{i}^{o}, P_{j}^{O}\rangle)_{i.j\leqq 7}=(\langle P_{i}, P_{j}\rangle)_{i.j\leqq 7}=I_{7}$ .
Thus we have shown that, given any $c\in Q^{7}$ such that $\delta_{0}(c)\neq 0$ , we can de-

fine an elliptic curve $E=E_{\lambda}\circ$ defined over $Q(t)$ , having the 7 generators $\{P_{i}^{o}\}$

of the Mordell-Weil group $E(Q(i))$ of rank 7, satisfying (9.26). Further, if $\delta_{1}(c)$

$\neq 0$ , then all $c_{i}(1\leqq i\leqq 56)$ are distinct, and the proof of Theorem 9.3 (and 9.1)

gives the algorithm to uniquely determine the rational point $P_{i}^{o}$ for each $c_{i}$ .
This completes the proof of Theorem $(E_{7})$ stated in \S 2.

10. Case $(E_{6})$ .
Finally we consider the case $(E_{6})$ .
The elliptic curve $E=E_{\lambda}$ is given by

(10.1) $y^{2}=x^{3}+x(p_{0}+p_{1}t+p_{2}t^{2})+(q_{0}+q_{1}t+q_{2}t^{2}+t^{4})$

$\lambda=(p_{0}, p_{1}, p_{2}, q_{0}, q_{1}, q_{2})\in A^{6}$

AS before, $K=k(t)$ is the rational function field over an algebraically closed
field $k$ containing $p_{i}$ and $q_{j}$ .

Step 1. The elliptic surface $f$ : $S_{\lambda}arrow P^{1}$ has a reducible singular fibre of
type IV at $r=\infty$ :

(10.2) $f^{-1}(\infty)=\Theta_{0}+\Theta_{1}+\Theta_{2}$ ,

where $\Theta_{0},$ $\Theta_{1},$ $\Theta_{2}$ are smooth rational curves meeting transversally at the uni-
que point of their intersection. The associated algebraic group is:

(10.3) $f^{-1}(\infty)\#=\Theta_{0}^{\#}\cup\Theta_{1}^{\#}\cup\Theta_{2}^{\#}\cong G_{a}\cross Z/3$ .
Step 2. Assume that $(\#)f$ has no reducible fibres other than $f^{-1}(\infty)$ . This
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is certainly the case if $\lambda$ is generic or sufficiently general. Then the narrow
Mordell-Weil lattice $E(K)^{o}$ has rank $r=6$ and $\det=3$ by (4.10) and (4.11).

Hence it is isomorphic to the root lattice $E_{6}$ , because its opposite lattice is the
orthogonal complement of $T_{\infty}=\langle\Theta_{1}, \Theta_{2}\rangle\cong A_{2}^{-}$ in the $E_{8}$-frame $E_{8}^{-}$ in $NS(S_{\lambda})$ (cf.

\S 7 (i) and Step 2 in case $(E_{7}))$ . Therefore we have

(10.4) $E(K)\cong E_{6}^{*}$ , $E(K)^{o}\cong E_{6}$ .

There are 54 minimal sections of $E(K)$ of norm 4/3. Recall that

$\langle P, P\rangle=2+2(PO)-\{2/30$
$(P\Theta_{0})=1$

otherwise,

for any $P\in E(K),$ $P\neq O$ (see (4.5) and (4.17)). Hence $P$ is a minimal section if
and only if $(PO)=0$ and $(P\Theta_{i})=1$ for $i=1$ or 2.

LEMMA 10.1. Under the assumption $(\#)$ , there are exactly 27 rational points
$P=(x, y)$ in $E(K)$ of the form:
(10.5) $x=at+b$ , $y=t^{2}+dt+e$ $(a, b, d, e\in k)$ ,

and the corresponding sections $(P)$ intersect one and the same component of $f^{-1}(\infty)$ ,

say $\Theta_{1}$ .

PROOF. The first assertion is shown in the same way as Lemma 9.1. Now
take $P,$ $P’$ as in (10.5). By the addition formula (5.9), we see that $P-P’$ passes
through the identity component $\Theta_{0}$ (so that $P-P’$ belongs to $E(K)^{o}$ ), which
proves the second assertion. $q$ . $e.d$ .

Step 3. Consider the specialization homomorphism:

(10.6) $sp_{\infty}$ : $E(K)arrow f^{-1}(\infty)^{*}\cong G_{a}\cross Z/3$ .

LEMMA 10.2. If $P$ is given by (10.5), then

(10.7) $sp_{\infty}(P)=(-a/2, \overline{1})$ .

The proof is similar to that of Lemma 9.1, and will be omitted.

Step 4. Now we assume that $\lambda$ is generic over $Q$, i.e., $p_{0}$ , $\cdot$ .. , $q_{2}$ are alge-
braically independent over $Q$ , and let $k$ be the algebraic closure of $Q(\lambda)=$

$Q(p_{0}, , q_{2})$ . Then the condition $(\#)$ holds, and hence we have $E_{\lambda}(K)\cong E_{6}^{*}$ by
(10.4). We choose a basis $\{P_{1}$ , $\cdot$ .. , $P_{6}\}$ of $E_{\lambda}(K)$ with Gram matrix $(\langle P_{i}, P_{j}\rangle)$

$=I_{6}$ , and arrange the 54 points $P_{i}(1\leqq i\leqq 54)$ in the same way as in \S 7 (ix).
Letting

(10.8) $u_{i}=-2\cdot sp_{\infty}’(P_{i})=a_{i}\in k$ ,
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we defne the polynomial

(10.9) $\Psi(X, \lambda)=\Pi_{i=1}^{27}(X-u_{i})\in Q(\lambda)[X]$ .
AS before, this will coincide with the universal polynomial of type $E_{6}$ defined
by (7.8), provided that $u_{1},$

$\cdots$ , $u_{6}$ are algebraically independent over $Q$ .

THEOREM 10.3. Assume that $\lambda=(p_{0}, \cdots , q_{2})$ is generic over Q. Then the
polynomial $\Psi(X, \lambda)$ has the coqfficients in the polynomial ring $Z[p_{0}, \cdots , q_{2}]$ . The
elements $u_{1},$

$\cdots$ , $u_{6}$ are algebraically independent over $Q$ , and we have

(10.10) $Q[u_{1}, \cdots , u_{6}]^{W(E_{b})}=Q[Pop_{1}, p_{2}, q_{0}, q_{1}, q_{2}]$ ,

$=Q[\epsilon_{2}, \epsilon_{5}, \epsilon_{6}, \epsilon_{8}, \epsilon_{9}, \epsilon_{12}]$ .

Thus both $\{p_{0}, \cdots , q_{2}\}$ and $\{\epsilon_{2}, \cdots , \epsilon_{12}\}$ form the fundamental invariants of the
Weyl group $7V(E_{6})$ . The explicit relation between them is given by the formulas
(2.15) of Theorem $(E_{6})$ .

THEOREM 10.4. Under the same assumption, the polynomial $\Psi(X, \lambda)$ is irre-
ducible over the rational $fun\prime tion$ field $Q(\lambda)=Q(p_{0}, \cdots , q_{2})$ . The splitting field
of $\Psi(X, \lambda)$ over $Q(\lambda)$

(10.11) $\mathscr{K}=Q(\lambda)(u_{1}, \cdots , u_{27})$

is a Galois extension of $Q(\lambda)$ with the Galois group

(10.12) Gal $(\mathscr{K}/Q(\lambda))=W(E_{6})$ (the Weyl group of type $E_{6}$ )

and it is a purely transcendental extension of $Q$ :

(10.13) $\mathscr{K}=Q(u_{1}, \cdots , u_{6})$ .

THEOREM 10.5. For $\lambda$ generic, the composed map

(10.14) $sp_{\infty}’=pr_{1}\circ sp_{\infty}$ : $E_{\lambda}(k(t))arrow G_{a}(k)\cross Z/3arrow G_{a}(k)=k$

is an injective homomorphism, whose image $\Sigma_{i=0}^{6}Zu_{i}/2$ is a submodule of rank 6
in $\mathscr{K}=Q(u_{1}, \cdots , u_{6})$ with $W(E_{6})$-action. In particular, each minimal section $P$ is
uniquely determined by $sp_{\infty}’(P)(=-a/2)$ .

More explicitly, for each root $a$ of the equation $\Psi(X, \lambda)=0$ , there is a unique
rational point $P=(x, y)$ of $E_{\lambda}(k(t))$ such that

$x=at+b$ , $y=t^{2}+dt+e$ ,

where $b,$ $d,$ $e$ are determined by $a$ as follows:
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(10.15) $\{$

$b=\beta_{a}(u_{1}, \cdots u_{6})\in Q[u_{1}, \cdots, u_{6}]\cap Q(\lambda)(a)$

$d=(a^{3}+p_{2}a)/2$

$e=(3a^{2}b-d^{2}+p_{1}a+p_{2}b+q_{2})/2$ .

Here $\beta_{a}(u_{1}, \cdots , u_{6})$ is a certain rational function of $a$ with coefficients in $Q(\lambda)=$

$Q(p_{0}, \cdots , q_{2})$ which is also expressed as a polynomial in $u_{1},$ $\cdots$ , $u_{6}$ .

PROOF OF THEOREM 10.3. AS before, we substitute (10.5) into (10.1) and
look at the coefficients of $t^{m}$ for $m=3,$ $\cdots$ , $0$ . Then we get 4 relations among
$a,$ $b,$ $\cdots$ $e$ over $Q[p_{0}, \cdots , q_{2}]$ :

$|2d=a^{3}+p_{2}ad^{2}+2e=3a^{2}b+p_{1}a+p_{2}b+q_{2}$

(10.16)
$|2de=3ab^{2}+p_{0}a+p_{1}b+q_{1}e^{2}=b^{3}+p_{0}b+q_{0}$

.
By tbe first 2 relations, $d,$ $e$ are determined as in (10.15). Substituting these
into the remaining relations in (10.16), we get 2relations of $b$ over $Z[p_{0}, \cdots, q_{2}][a]$

of degree 3 and 2:

(10.17) $b^{3}+\cdots=0$ , $ab^{2}+\cdots=0$ .

Then, eliminating $b$ , we obtain a monic relation $\Psi(a)=0$ of degree 27 in $a$ with
coefficients in $Z[p_{0}, \cdots , q_{2}]$ : explicitly, we have

(10.18) $\Psi(X)=X^{27}+12p_{2}X^{25}+60p_{2}^{2}X^{23}$

$-48p_{1}X^{22}+(96q_{2}+168p_{2}^{3})X^{21}+\cdots$

$+(480p_{0}+294p_{2}^{4}+528p_{2}q_{2})X^{19}$

$-(1344q_{1}+1008p_{1}p_{2}^{2})X^{18}+\cdots$

$+(17280q_{0}+4768p_{0}p_{2}^{2}-1248q_{2}^{2}$

+1200 $P_{2}^{3}q_{2}+608p_{1}^{2}p_{2}+252p_{2}^{6}$ ) $X^{i5}+\cdots$

The weights in this case are defined as follows:

(10.19) $x4$ $6y$ $3t$ $p_{8}o$ $p_{1}5$ $p_{2}2$ $12q_{0}$ $q_{1}9$ $q_{2}6| \frac{abde}{1436}$

$x y t$ $p_{0} p_{1} p_{2} q_{0} q_{1} q_{2}$

$4 6 3$ $85 2 12 9 6$

The rest of the proof is completely analogous to that of Theorem 8.3 or
9.3, and it can be safely omitted.

Also Theorems 10.4 and 10.5 can be proven exactly in the same way as
before.

Step5. It remains to check that the condition $(\#)$ in Step 2 is equivalent



Construction of elliptic curves 717

to $\delta_{0}\neq 0$ in Theorem $(E_{6})$ , but again this can be verified by the same method.
(These conditions are also equivalent to the smoothness of the affine surface
defined by (10.1).)

Finally we specialize the generic $u=(u_{1}, \cdots , u_{6})$ to some $a=(a_{1}, \cdots , a_{6})$ in
$Q^{6}$ such that $\delta_{0}(a)\neq 0$ . Then we obtain an elliptic curve $E$ defined over $Q(t)$ ,

having the 6 explicit generators $\{P_{i}^{o}\}$ of the Mordell-Weil group $E(Q(t))$ of
rank 6, such that the Gram matrix $(\langle P_{\ell}^{o}, P_{j}^{o}\rangle)=I_{6}$ . Further, if $\delta_{1}(a)\neq 0$ , then
all $a_{i}(1\leqq i\leqq 27)$ are distinct, and the proof of Theorem 10.1 gives the algorithm
to uniquely determine the rational point $P_{i}^{o}$ for each $a_{i}$ .

This completes the proof of Theorem $(E_{6})$ .

REMARK 10.6. AS we have seen above, the cases for $E_{6}$ and $E_{7}$ can be
treated exactly in the same way as the case for $E_{8}$ , and thus, for the purpose
of just proving Theorem $(E_{6})$ or $(E_{7})$ , the last two sections could have been
spared by pointing out the analogy.

However, we have chosen to give the detailed formulation in each case,
allowing some repetition. The reason for this is as follows. We think that
each pair of Theorems 8.3 and 8.4, 9.3 and 9.4, 10.3 and 10.4, constitutes the
fundamental theorems for the algebraic equations of type $E_{r}$ for $r=8,7,6$ ,

which are comparable to the classical theory of the generic algebraic equations
(cf. Introduction). As such, these results will have ample applications (see e.g.
[S4] for an application to the deformation of singularities). Moreover, for $r=6$

or 7, they are closely related to the algebraic equation for the 27 lines on a
cubic surface or the 28 double tangents to a plane quartic curve, and our results
based on the Mordell-Weil lattices will throw some new light on these classical
topics, which we hope to discuss in some other occasion (cf. [S6]).

REMARK 10.7. We have greatly benefited from the recent progress of a
personal computer, which enables a mathematician like me without too much
knowledge of computer to use it for the useful purpose. We have used it both
in carrying out the elimination process in the cases $(E_{r})$ and in constructing
numerical examples.

It should be noted that our method is safe against the possible errors caused
by a computer or a software (we have encountered some bugs, indeed), because
we have a safety check: after all, a rational point obtained must satisfy the
equation of a given elliptic curve ! For instance, take Example $(E_{8})$ in \S 3 and
check whether or not the coordinates $(x, y)$ of the points $P_{i}$ satisfy the equa-
tion $y^{2}=x^{3}+\cdots$ given there. If we made any mistake in the course of com-
puting the fundamental invariants of the Weyl group or in determining the
rational points $P_{i}$ , there would be little chance for such a point to satisfy the
given equation.
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Addendum (June 12, 1991).

I) Some of questions mentioned at the end of the Introduction have since been
settled.
Page 676, Paragraph (2): For the Galois representations of type $E_{6},$ $E_{7},$ $E_{8}$ ,

see the article [S6, \S 6-7].
Page 677, Paragraph (4): Indeed, this is the case. We now have an effec-
tive version of N\’eron’s construction; see [S7].

II) I would like to thank Professor N. Elkies who has kindly made several
comments on this paper in his letter dated July 25, 1990. With his per-
mission, let me include here some of his remarks which might be helpful
to other readers. (A few minor points have been incorporated in the text).
a) The reader should be aware of “the consistent use of the same notation
for a vector (such as a root or dual root vector) in the space containing a
root system, and the inner product of that vector with a generic vector in
the same space”. It is expected tbat the reader will get used to it, since
this is a useful point of view.
b) $P$age 695, Lemma 6.2: “This partition of 24 minimal vectors of $D_{4}$

into three sets of 8 is the well-known partition of the twenty-four units
in the Hurwitz quaternions into the three cosets of the normal subgroup
$\{\pm 1, \pm i, \pm J,\underline{t}k\}$ , each forming an orthogonal frame for $R^{4}$ .
c) Page 700, paragraph (ix): “I suspect that the facts about $E_{6}^{*}$ that permit
this construction will not be familiar to many readers of this paper; at any
rate they were new to me. But it’s easy to derive them directly from the
fact that $E_{6}$ is a root lattice of discriminant 3: the inner product gives
rise to a nondegenerate $((1/3Z)/Z)$-valued quadratic form on $E_{6}^{*}/E_{6}\cong Z/3$ ;
the short vectors of $E_{6}^{*}$ must all be in the two nontrivial classes of $E_{6}^{*}/E_{6}$ ,
and divided equally between them. The Weyl group permutes each of the
two classes because it is generated by reflections $urightarrow u-(\alpha, u)\alpha\equiv umod E_{6}$ .
Provided $u$ and $u’$ are in the same class $mod E_{6},$ $(u, u’)mod 1$ is independent
of the choice of $u,$ $u’$ and is either 1/3 or 2/3, but the latter cannot occur,
for then if $u_{1},$ $u_{2},$ $u_{3}$ are any minimal vectors of $E_{6}^{*}$ in the same class $mod E_{6}$

we would have $(u_{i}, u_{j})=6_{ij}-1/3$ whence $u_{1}+u_{2}+u_{3}=0$ , so the minimal
vectors would span only a rank-2 sublattice of $E_{6}^{*}$ , which is ridiculous.”
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