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The purpose of this paper is to study the mutual dependence of Kervaire
classes for normal maps of a real projective space $P^{n}$ .

A smooth free involution $T$ on a homotopy sphere $\Sigma^{n}$ defines a homotopy
equivalence $\varphi:\Sigma^{n}/Tarrow P^{n}$ whose normal invariant is denoted by $\nu(\varphi)\in[P^{n}, F/O]$ .
By restricting $\nu(\varphi)$ to a subspace $P^{m}\subset P^{n}$ , we obtain a surgery obstruction that
lies in Wall’s surgery obstruction group $L_{m}(Z/2, (-1)^{m+1})$ which is isomorphic
to $Z/2$ unless $m\equiv 1mod 4([12], 13A)$ . Suppose that $M^{m}$ is an even dimensional
smooth manifold and let $f\in[M, F/O]$ be a normal map. Then the Kervaire
obstruction for $f$ is given by the Sullivan’s characteristic variety formula $([10]\rangle$

as follows:
$c(f)= \langle V(M)^{2}\sum_{i}f^{*}H^{*}K_{2i}, [M]\rangle$ ,

where $V(M)$ is the total $Wu$ class of $M^{m},$ $[M]$ is the $mod 2$ fundamental homo-
logy class in $H^{m}(M^{m}, Z/2),$ $K_{2i}\in H^{2i}(F/TOP, Z/2)$ is the Sullivan-Kervaire class
and $H:F/Oarrow F/TOP$ is the natural map.

When $m$ is even, the formula above enables us to write down the surgery
obstruction for $\nu(\varphi)|P^{m}$ in terms of the Kervaire classes of $\nu(\varphi)$ . Giffen, in
his works on Brieskorn involutions on homotopy spheres bounding parallelizable
manifolds ([4], [5]), showed that in these examples all the Kervaire classes in
different degrees (up to the dimension of the manifold) are either all zero or
all nonzero. So we may ask if simultaneous vanishing or non-vanishing of the
Kervaire classes occurs for arbitrary free involutions on a homotopy n-sphere
$\Sigma^{n}$ that bound a parallelizable $(n+1)$-manifold when $n\equiv 1mod 4$ .

Another motivation for the present work comes from the problem of Dover-
mann, Masuda and Schultz ([3], 4.12). They ask for a reasonable estimate of
$M(q)$ such that the restriction map

[$CP^{m}$ , Cok $J_{(2)}$ ] $arrow$ [$CP^{q}$ , Cok $J_{(2)}$ ]

is trivlal for all $m\geqq M(q)$ . Actually they proved

THEOREM ([3], 4.8). Let $i+1=2^{N}$ . Then there exists an $M$ such that the
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Kervaire class of degree $4i+2$ vanishes for any $f\in$ [ $CP^{m}$ , Cok $J_{(2)}$ ] if $m\geqq M$.

Their result was improved and completed by Stolz ([11]). He proved that
$M$ can be taken to be 3 $\cdot$ $2^{N}-1$ . In [3], there is a question if similar statements
hold even when $CP^{n}$ is replaced by $P^{n}$ . But unlike the case of $CP^{n}$ , since the
$J$-map $KO(P^{n})arrow JO(P^{n})$ is injective, the stable vector bundle of the surgery data
for $P^{n}$ alone, regardless of the bundle map, does not determine the Kervaire
classes. So a statement similar to Theorem I of [11] is not possible. How-
ever, we can prove an analogue of Theorem II of [11].

THEOREM A. For any $f\in$ [ $P^{n}$ , Cok $J_{(2)}$ ], we have

$\lambda^{*}H^{*}(K_{2^{r+1_{-2}}})=0$ ,

if $n\geqq 3\cdot 2^{r}-2$ . Here $\lambda$ : Cok $J_{(2)}arrow F/O_{(2)}$ and $H:F/0_{(2)}arrow F/TOP_{(2)}$ are natural
maps.

Let $B\subset[P^{n}, F/O]$ be the set of normal cobordism classes given by the
Brieskorn involutions. In the exact sequence

[ $P^{n}$ , Cok $J$ ] $arrow[P^{n}, F/O]arrow[P^{n}, BSO^{\otimes}]arrow 0$ ,

$B$ is mapped surjectively onto [ $P^{n},$ $B$SO] ([5]). Hence the set $B$ and the image
of [ $P^{n}$ , Cok $J$ ] generate the whole set $[P^{n}, F/O]$ using the $H$-space structure
of $F/O$ . For each element of $B$ , the Kervaire classes of different degrees either
vanish or do not vanish simultaneously and as to an element coming from
[ $P^{n}$ , Cok $J$ ], all the Kervaire classes $H^{*}(K_{2^{r+1_{-2}}})$ for $3\cdot 2^{r}-2\leqq n$ always vanish.
Thus Theorem A implies

THEOREM B. For a normal maP $f\in[P^{n}, F/O]$ , the following conditions are
equivalent if $n\geqq 3\cdot 2^{r}-2$ .

a) $f^{*}H^{*}(K_{2})=0$

b) $f^{*}H^{*}(K_{2^{\mathcal{T}+1_{-2}}})=0$ .

The assumption for $n$ is best possible. In fact, when $r=2$ and $n=9$ , there
exists $f\in[P^{9}, F/O]$ with $f^{*}H^{*}(K_{2})=0$ and $f^{*}H^{*}(K_{6})\neq 0([7])$ .

We shall give a geometric application of Theorem B. Let $n$ be an integer
such that $n\equiv 1mod 4$ and neither $n-1$ nor $n+3$ is a power of 2. Consider a
smooth free involution $T$ on a homotopy $n$ -sphere $\Sigma^{n}$ bounding a Parallelizable
manifold. Then we have a homotopy equivalence $\varphi:\Sigma/Tarrow P^{n}$ . The normal
map $\nu(\varphi)$ of $\varphi$ extends to a normal map $f:P^{n+1}arrow F/O$ since $\Sigma$ bounds a paral-
lelizable manifold. Then $\Sigma^{n}$ is diffeomorphic to the standard (resp. Kervaire)

sphere if and only if the surgery obstruction for $f$ is zero (resp. nonzero). Let
$e$ be the 2-order of $n+3,$ $i.e$ . $n+3=2^{e}(2s+1)$ for some integer $s$ . By the
characteristic variety formula, the surgery obstruction of $f$ is zero (resp. non-
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zero) if and only if the class $f^{*}H^{*}K_{2}e_{-2}$ is zero (resp. nonzero). From the as-
sumption that $n+3$ is not a power of 2, we have $n\geqq 3\cdot 2^{e- 1}-2$ . It is known
that the Browder-Livesay desuspension obstruction for the involution $T$ coincides
with the surgery obstruction for $\nu(\varphi)|P^{n-3}$ ( $[8]$ , III.3). The vanishing of this
obstruction is equivalent to the vanishing of the class $f^{*}H^{*}K_{2^{q_{-2}}}$ , where $q$ is
the 2-order of $n-3$ . And by the assumption, $n\geqq 3\cdot 2^{q-1}-2$ also holds. Theorem
$B$ implies that the two classes $f^{*}H^{*}K_{2}e_{-2}$ and $f^{*}H^{*}K_{2^{q_{-2}}}$ vanish or do not
vanish simultaneously. Thus we have deduced

COROLLARY C. Let $n\equiv 1mod 4$ and suPPose that neither $n-1$ nor $n+3$ is a
power of 2. Then any smooth free involution on the standard sphere $S^{n}$ desu-
sPends. Equivalently any free involution on the Kervaire n-sphere does not desu-
spend.

Before we proceed further, let us fix the notations that wlll be used in
later sections. First we have the fibrations of classifying spaces:

$SF_{(2)}arrow F/0_{(2)}arrow BSO_{(2)}\pi V$

Cok $J_{(2)}arrow F/0_{(2)}arrow BSO_{(2)}^{\otimes}\lambda\beta$

and
${\rm Im} J_{(2)}arrow BSO_{(2)}^{\otimes}arrow BSO_{(2)}\psi^{3}-1$ .

These sequences are combined to give the commutative diagram

Cok
$J_{(2)}v^{\lambda}|,$ $-CokJ_{(2)}\downarrow\lambda$

$SF_{(2)}\underline{\pi}F/O_{(2)}-BSO_{(2)}$
$V$

$\downarrow e$ $\downarrow\beta$ $||$

${\rm Im} J_{(2)}-BSO_{(2)}^{\otimes}BSO_{(2)}\underline{\psi^{3}-1}$ .

Let $K_{4i+2}\in H^{4i+2}(F/TOP, Z/2)$ be the Kervaire class. The image of $K_{4i+2}$

by the map $H^{*}:$ $H^{4i+2}(F/TOP, Z/2)arrow H^{4i+2}(F/O, Z/2)$ will be denoted by $k_{4i+2}$ ,

which is known to vanish unless $i+1$ is a power of 2 ([2]). We shall write
$\tilde{k}_{4i+2}=\lambda^{*}(k_{4i+2})\in H^{4i+2}(CokJ_{(2)}, Z/2)$ . In degree 2, $\tilde{k}_{2}=0$ since Cok $J_{(2)}$ is 5-
connected. We shall always work in the 2-local category and all the cohomo-
logy coefficients are $Z/2$ and will be omitted. For a positive integer $m$ , let
$\alpha(m)$ be the number of l’s in the dyadic expansion (binary expression) of $m$ ,

and let $ord_{2}(m)$ denote the 2-order of $m,$ $i.e$ . $r=ord_{2}(m)$ if $m=2^{r}\cdot(2s+1)$ for
some integer $s$ . Let $A$ be the $mod 2$ Steenrod algebra and its augmentation
ideal composed of the set of elements of positive degrees is denoted by $I(A)$ .
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\S 2. Reduction of the problem.

We shall reduce the proof of Theorem A following the line of Stolz [11].

Let $f\in$ [ $P^{n}$ , Cok $J_{(2)}$ ] and consider the oriented (2-local) stable spherical fibra-
tion $\eta f$ over the reduced suspension of the real projective space $\Sigma P^{n}$ that has
$\lambda’\circ f$ as the characteristic map. Then we have

PROPOSITION 1. The Stiefel-Whitney class $w_{t}(\eta_{f})$ vanishes for all $i>0$ .

This is equivalent to saying that the Thom class $U(\eta_{f})$ of the spherical
fibration $\eta f$ is annihilated by all elements of $I(A)$ . In particular, Proposition 1
implies that the Adams’ secondary cohomology operation $\Phi_{i.j}$ is defined for
$U(\eta_{f})$ .

PROPOSITION 2. For all $r$ satisfying $3\cdot 2^{r}-2\leqq n,$ $\Phi_{\gamma.r}(U(\eta_{f}))$ vanishes uith
zero total indeterminacy.

These two propositions together with the following key result of Hegen-
barth and Heil give our result.

THEOREM H-H ([6]). Let $h:\Sigma SFarrow BSF$ be the adjoint of the identity map
of $SF$ and let $p:BSF^{\sim}arrow BSF$ be the fibration induced by $\Pi_{i>0}w_{i}:BSFarrow$

$\Pi_{i>0}K(Z/2, i)$ . Then there exists a class $\epsilon_{r+1}\in H^{2^{T+1}-1}(BSF, Z/2)$ such that
(1) $\tilde{p}^{*}(\epsilon_{r+1})\cup U(\tilde{\gamma})=\Phi_{r.r}(U(\tilde{\gamma}))mod$ zero indeterminacy and
(2) $h^{*}(\epsilon_{r+1})=\sigma\pi^{*}(k_{2^{\gamma+1_{-2}}})$ ,

where $\tilde{\gamma}$ is the Pull-back of the universal spherical fibration 7 over $BSF$ to $BSF^{\sim}$

by $\beta$ and $a$ is the usual susPension.

PROOF OF THEOREM A FROM PROPOSITIONS 1 AND 2. Let $f\in$ [ $P^{n}$ , Cok $J_{(2)}$ ].

Then the composition
$\Sigma P^{n}\Sigma SFBSF\underline{\Sigma(\lambda’\circ f)}\underline{h}$

classifies $\eta f$ . From Proposition 1, we have a lift $\tilde{f}:\Sigma P^{n}arrow BSF^{\sim}$ of $h\circ\Sigma(\lambda’\circ f)$

and the map $M(\tilde{f}):M(\eta_{f})arrow M(\tilde{\gamma})$ of Thom spaces. Then we have

$\Phi_{r.r}(U(\eta_{f}))=M(f)^{*}\Phi_{r.r}(U(\tilde{\gamma}))=M(f)^{*}(\tilde{p}^{*}\epsilon_{r+1}\cup U(\tilde{\gamma}))$

$=F^{*\tilde{p}^{*}\epsilon_{r+1}\cup U(\eta_{f})=(\Sigma(\lambda’\circ f))^{*}h^{*}\epsilon_{r+1}\cup U(\eta_{f})}$

$=(\Sigma(\lambda’\circ f))^{*}\sigma\pi^{*}k_{2^{r+1_{-2}}}\cup U(\eta_{f})$

$=\sigma f^{*}\lambda^{\prime*}\pi^{*}k_{2^{\gamma+1_{-2}}}\cup U(\eta_{f})=\sigma f^{*}(\tilde{k}_{2^{\mathcal{T}+1_{-2}}})\cup U(\eta_{f})$ .
Thus it follows that $\Phi_{r.r}(U(\eta_{f}))=0$ if and only if $f^{*}(\tilde{k}_{2^{T+1_{-2}}})=0$ . Therefore
from Proposition 2, the proof of Theorem A is complete.
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\S 3. The vanishing of the Stiefel-Whitney classes.

Let $x\in H^{1}(P^{n})$ be the cohomology generator. The following lemma is im-
mediate from the formula

$Sq^{i}(x^{j})=(\begin{array}{l}ji\end{array})x^{i+f}$ .

LEMMA 3. Let $i<$ ] and $b\in A$ be of degree $j-i$ . Then $b$ maPs $H^{i}(P^{n})$ to
zero if $\alpha(i)<\alpha(])$ or $ord_{2}(i)>ord_{2}(j)$ holds.

Let $f\in$ [ $P^{n}$ , Cok $J_{(2)}$ ]. Since Cok $J_{(2)}$ is 5-connected, it is clear that $u_{i}f(\eta_{f})$

$=0$ for $i<6$ .
LEMMA 4. For any $f\in$ [ $P^{n}$ , Cok $J_{(2)}$ ], $w_{8}(\eta_{J})$ vanishes.

PROOF. $H^{7}(CokJ_{(2)})$ is generated by $Sq^{1}\tilde{k}_{6}$ (see $e$ . $g$ . $[7]$ ). Suppose that
$w_{8}(\eta_{f})$ is not zero. Then $(\lambda’\circ f)^{*}\sigma^{*}(w_{8})=x^{7}$ where $a^{*}:$ $H^{*}(BSF)arrow H^{*}(SF)$ is the
cohomology suspension. Since $(\lambda’)^{*}\sigma^{*}w_{8}$ must be nonzero, we have $(\lambda’)^{*}a^{*}w_{8}$

$=Sq^{1}\tilde{k}_{6}$ . On the other
$f^{*}\lambda^{\prime*}a^{*}w_{8}=f^{*}Sq^{1}\tilde{k}_{6}=Sq^{1}f^{*}\tilde{k}_{6}=0$

since $Sq^{1}H^{6}(P^{n})=0$ . This is a contradiction.

Recall that for a stable spherical fibration $\eta$ , the Stiefel-Whitney class $w_{i}(\eta)$

is characterized by
$Sq^{i}(U(\eta))=w_{i}(\eta)\cup U(\eta)$ ,

where $U(\eta)\in H^{0}(M(\eta))$ is the (stable) Thom class.

LEMMA 5. Let $\eta$ be a stable spherical fibration over $\Sigma P^{n}$ with $w_{2^{j}}(\eta)=0$

for $0\leqq j\leqq 3$ . Then $w_{t}(\eta)=0$ for all $i>0$ .

PROOF. Let $u=U(\eta)\in H^{0}(M(\eta))$ be the Thom class. Since the elements of
the form $Sq^{2^{j}}$ generate $A$ as an algebra, we have only to show that $Sq^{2j}u=0$

for all $j>0$ . Assume that $Sq^{2}ju=0$ for all $j\leqq r(r\geqq 3)$ . We use a famous de-
composition of $Sq^{2^{r+1}}$ by secondary cohomology operations due to Adams [1]:

$Sq^{2^{r+1}}u=\Sigma a_{\ell,j.r}\Phi_{i,j}(u)$ , $a_{\ell,j.r}\in A$ ,

where $\deg(a_{i.j.r})=2^{r+1}-2^{i}-2^{j}+1$ and the summation runs over $0\leqq i\leqq_{J}\leqq r$ ,
$i+1\neq j$ . We have $\Phi_{i.j}(u)\in H^{2+2}if_{-1}(M(\eta))$ which has $generato_{2}r_{T+}a_{1}x^{2^{f_{+2}f_{-2}}}\cup u$ and
$a_{i.f}$ . . maps $\Phi_{i,j}(u)$ into $H^{2^{r+1}}(M(\eta))$ whose generator is $ax$ $-1_{\cup u}$ By the
inductive assumption, $a_{i,j,r}$ annihilates $u$ and so

$a_{i.j.r}(ax^{z^{j_{+2}j_{-2}}}\cup u)=\sigma(a_{i,j.r}x^{2^{\{}+21- 2})\cup u$ .
This is zero by Lemma 3, since $\alpha(2^{r+1}-1)=r+1>\alpha(2^{i}+2^{j}-2)$ . Therefore each
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term $a_{i,j,r}\Phi_{t,j}(u)$ must be zero. Thus the proof is complete.

\S 4. Proof of Proposition 2.

Let $\{h_{i}=[\xi_{1}^{2^{i}}]\}_{i\geqq 0}\in Ext_{A}^{1*}(Z/2, Z/2)$ be the set of generators and $(C(r), d(r))$

be the partial minimal resolution of $Z/2$ by a free A-module:

$arrow c_{s^{arrow}}^{d_{3}}c_{2^{arrow}}^{d_{2}}c_{1^{arrow}}^{d_{1}}c_{0^{arrow Z/2}}^{\epsilon}arrow 0$ .
$C_{0}$ is a free $A$-module on one generator $c$ of degree $0$ . $C_{1}$ is free on generators
$\{c_{i}\}_{0\leqq i\leqq r}$ and $d{}_{1}C_{i^{=}}Sq^{2^{t}}c$ . Actually $C_{1}$ can be constructed as follows. By the
minimality assumption, we have the identification

$Z/2\otimes_{A}C_{1}\cong$ Tor4$(Z/2, Z/2)=Hom(Ext_{A}(Z/2, Z/2),$ $Z/2)$ .

Take $c_{i}\in C_{1}$ so that $\{1\otimes_{A}c_{i}\}_{0\leqq i\leqq r}$ form a basis dual to $\{h_{i}\}_{0\leqq i\leqq r}$ . Similarly, let
$C_{2}$ be a free $A$-module on $\{c_{i.j}\}_{0\leqq i\leqq j\leqq r.i+1\neq j}$ so that $\{1\otimes_{A}c_{i.j}\}$ becomes a basis
of $Tor_{A}^{2}(Z/2, Z/2)$ dual to $\{h_{i}h_{f}\}$ . From the Adem relation, we pick up two
relations:

$R= \sum_{k0\leq\leqq r}Sq^{2^{r+1_{-2}k}}Sq^{2^{k}}=0$ ,

and
$R’=Sq^{2^{r}}Sq^{1}+(Sq^{2}Sq^{2^{r-1_{-1}}})Sq^{2^{r-1}}+Sq^{1}Sq^{2^{r}}=0$ .

These relations induce $\Phi_{r.t}$ and $\Phi_{0.r}$ . To be precise, put

$z= \sum_{0_{\leq}k\leqq r}Sq^{2^{r+1_{-2}k}}c_{k}$ ,

and
$z’=Sq^{2^{\mathcal{T}}}c_{0}+Sq^{2}Sq^{2^{r-1_{-1}}}c_{r-1}+Sq^{1}c_{r}$ .

LEMMA 6. $(Z, d_{1})$ (resP. $(z’,$ $d_{1})$) defines the secondary oPeration $\Phi_{r.r}$ (resP.
$\Phi_{0.r})$ .

PROOF. Let $p_{k}$ : $C_{k}arrow Z/2\otimes_{A}C_{k}\cong Tor_{k}^{A}(Z/2, Z/2)$ be the natural Projection
and put

$\theta=p_{k}\circ d_{k}^{-1}$ : $Kerd_{k-1}arrow Tor_{k}^{A}(Z/2, Z/2)$ .
From [1], Lemma 2.2.2, we have

$h_{i}h_{j}( \theta z)=\sum_{\leqq 0k\leqq r}\xi_{1}^{2^{i}}(Sq^{2^{r+1_{-2}k}})h_{j}(1\otimes_{A}c_{k})=\xi_{1}^{2^{i}}(Sq^{2^{\gamma+1_{-2}j}})$ ,

which is nonzero if and only if $i=$] $=r$ . This shows that $\theta z$ is dual to $h_{r}^{2}$

proving that $(z, d_{1})$ defines $\Phi_{r.t}$ . Similarly, we have

$h_{i}h_{j}(\theta z’)=\xi_{1}^{2^{i}}(Sq^{2^{r}})h_{j}(1\otimes_{A}c_{0})+\xi_{1}^{2^{i}}(Sq^{2}Sq^{2^{r-1_{-1}}})h_{j}(1\otimes_{A}c_{r-1})$

$+\xi_{1}^{2^{i}}(Sq^{1})h_{j}(1\otimes_{A}c_{r})$ .
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Since $\xi_{1}^{2^{i}}$ is primitive, the second term in the right hand side of the above ex-
pression is zero. The term $\xi_{1}^{2^{i}}(Sq^{2^{\gamma}})h_{j}(1\otimes_{A}c_{0})$ is nonzero if and only if $i=r$ and
$j=0$ and $\xi_{1}^{2^{i}}(Sq^{1})h_{j}(1\otimes_{A}c_{r})$ is nonzero if and only if $i=0$ and $j=r$ . This shows
that $(z’, d_{1})$ defines $\Phi_{0,\gamma}$ .

LEMMA 7. Let $\eta$ be a stable spherical fibration over $\Sigma P^{n}$ with vanishing
Stiefel-Whitney classes. Then both $\Phi_{r.r}U(\eta)$ and $\Phi_{0.r}U(\eta)$ have total indeter-
minacy zero.

PROOF. For $\Phi_{r.r}U(\eta)$ , the indeterminacy is contained in
$\Sigma Sq^{2^{T+1_{-2}k}}H^{2^{k_{-1}}}(M(\eta))$ .

This is zero since
$Sq^{2}(ax^{2^{k}-2}\cup U(\eta))r+1_{-2^{k}}=0$ for $k\leqq r$ .

AS to $\Phi_{0.r}(U(\eta))$ , the total indeterminacy is

$Sq^{2^{r}}H^{0}(\Lambda l(\eta))+Sq^{2}Sq^{2^{r- 1_{-1}}}H^{2^{r-1_{-1}}}(M(\eta))+Sq^{1}H^{2^{\gamma}-1}(\lambda l(\eta))$ ,

which is also zero.

LEMMA 8. Let $\eta$ be as in Lemma 7 and suppose that $\Phi_{j,j}(u)=0$ for all $j<r$

and $\Phi_{0.j}(u)=0$ for all $J\leqq r$ for some integer $r>0$ , where $u$ is the Thom class of
$\eta$ . Then we have $\Phi_{r.r}(u)=0$ .

PROOF. Let
$z_{r.r.r}=\Sigma b_{i.j}c_{\iota.j}$ $(b_{i.j}\in A)$

be an element of $C_{2}$ such that $\theta z_{r.r.r}$ is dual to $h_{r}^{3}$ where the summation runs
over $OSi\leqq j\leqq r,$ $i+1\neq j$ as usual. $z_{r.r.r}$ induces a relation

$b_{r.r} \Phi_{r.r}(u)+_{0i}\sum_{<\triangleleft\leqq r.i+1\neq j}b_{i.j}\Phi_{i.j}(u)=0$ ,

where $b_{t.f}$ has degree 3 $\cdot$ $2^{r}-2^{i}-2^{j}(>0)$ and maps $H^{2^{i}+2^{j}-1}(_{\perp}4I(\eta))$ to $H^{3\cdot 2^{r}-1}(M(\eta))$ .
Since $\alpha(2^{i}+2^{f}-2)=i<\alpha(3\cdot 2^{r}-2)=r$ , it follows that $b_{i},{}_{j}H^{2^{t}+2^{j}-1}(_{1}lf(\eta))=0$ by
Lemma 3. Hence $b_{r.r}\Phi_{r.r}(u)=0$ . On the other, we have

$1=h_{r}^{3}(\theta z_{r.r.r})=\xi_{1}^{2^{\Gamma}}(b_{r.r})$

and this implies that $b_{r}$ . $.=Sq^{2^{r}}+decomposables$ . This shows that $b_{r.r}$ maps
$H^{2^{r+1_{-1}}}(M(\eta))$ isomorphically onto $H^{3\cdot 2}"-1(M(\eta))$ proving that $\Phi_{r.r}(u)=0$ .

PROOF OF PROPOSITION 2. AS for the total indeterminacy, the result is
already shown in Lemma 7. So we shall only prove that $\Phi_{r.r}(U(\eta_{f}))=0$ . Let
$u=U(\eta_{f})\in H^{0}(M(\eta_{f}))$ be the Thom class of $\eta f$ . We shall prove that for all $r$

such that $3\cdot 2^{r}-2\leqq n,$ $\Phi_{0,r}(u)=0$ and $\Phi_{r.r}(u)=0$ hold. The assertion is true for
$r=0$ . For $r=1$ , we have only to show that $\Phi_{1.1}(u)=0$ . But this follows from
the previous lemma. So we proceed inductively and assume that for $r\geqq 2$ we
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have shown $\Phi_{0.j}(u)=0$ and $\Phi_{j,j}(u)=0$ for all $j<r$ .
Case $r=2$ : Let

20, $0.a=b_{0.0}c_{0.0}+b_{0}.{}_{2}C_{0.2}+b_{1}.{}_{1}C_{1.1}$

be an element of degree 6 such that $\theta z_{0.0.2}$ is dual to $h_{0}^{2}h_{2}$ . Then by the induc-
tive assumption we have a relation

$b_{0.2}\Phi_{0.2}(u)=0$ .
On the other, since $0z_{0,0,2}$ is dual to $h_{0}^{2}h_{2}$ we have

$1=h_{0}^{2}h_{2}(\theta z_{0.0.2})=\xi_{1}(b_{0.2})$ .
Therefore $b_{0.2}=Sq^{1}$ and $b_{0.g}$ maps $H^{4}(M(\eta_{f}))$ isomorphically onto $H^{5}(M(\eta_{f}))$ .
Thus we must have $\Phi_{0.2}(u)=0$ . Hence by Lemma 8, we proved that $\Phi_{2.2}(u)=0$ .

The case when $r=3$ is similar. Just consider $z_{0.0.3}= \sum b_{i.j}c_{i.j}$ such that
$\theta z_{0,0,S}$ is dual to $h_{0}^{2}h_{3}$ .

Case $r\geqq 4$ : Consider the element

$z_{0.2.f}= \sum_{0\leqq i\leqq f\leqq r.i+1\neq f}b_{i.j}c_{i.f}\in C_{2}$

of degree $2^{r}+5$ such that $\theta z_{0.2,r}$ is dual to $h_{0}h_{2}h_{r}$ . The element $b_{i.j}$ is of
degree $2^{r}-2^{i}-2^{j}+5$ , so the term $i=.i=r$ does not appear. This element and
the assumption of the present lemma imply the relation

$b_{0.r} \Phi_{0.r}(u)+_{0<i\triangleleft\leqq}\sum_{r.i+1\neq j}b_{i.j}\Phi_{i.j}(u)=0$ .

We have $b_{i}.{}_{j}H^{2^{i_{+2}j_{-1}}}(M(\eta_{f}))=0$ from Lemma 3, since

$ord_{2}(2^{\ell}+2^{j}-2)>ord_{2}(2^{r}+3)=0$ .
Hence $b_{0.r}\Phi_{0.r}(u)=0$ . On the other hand, since

$1=h_{0}h_{2}h_{r}(\theta z_{0.2.r})=\xi_{1}^{4}(b_{0.r})$ ,
we have

$b_{0.r}=Sq^{4}+\mu Sq^{3}Sq^{1}$ $(\mu\in Z/2)$ .
This shows that $b_{0.r}$ maps $H^{2^{r}}(M(\eta_{f}))$ isomorphically onto $H^{2^{r_{+4}}}(M(\eta_{f}))$ . There-
fore $\Phi_{0.r}(u)=0$ and Lemma 8 implies that $\Phi_{r.r}(u)=0$ .
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