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0. Introduction.

0.1. Let G be a finite group acting linearly on a finite dimensional vector
space V over a finite field F,. Let {v,, ---, v,} be a complete set of representa-
tives of V/G, Vi=Gv;, K;=Zsv;), R: G-GL(M) a complex representation, and
M; the set of K;-fixed vectors in M. For each meM;, there exists one and
only one M-valued function R; , on V,; such that R; ,(v;)=m and R; »(gv)=
R@)R; »(v) for g=G and veV,. We extend R;, by zero to the whole
space V.

0.2. Our first problem is to know if the vector valued functions R; , are
similar in property to the complex powers of a relatively invariant polynomial
function on a prehomogeneous vector space over the complex or real number
field. (A rational representation of an algebraic group is called a prehomo-
geneous vector space, if the representation space has a Zariski open orbit.)

Let VV be the dual G-module of V, and define, in the same way as above,
{vY, -, v}, M}, and M-valued functions R} .. (1=:/=n',m'&M]) such that
Rl n/(gV)=R(g)R} w (V) for g and vVeVV. Asis easily seen, the Fourier
transform of R; ., is a linear combination of these R} ,.’s. Provisionally in
the introduction, let us assume that M, and M are one dimensional and spanned
by m, and mg respectively. Then the Fourier transform of R, n, is a linear
combination of Rg, », and {R} mi | 120/, meM}.}. Hence if m, and m] are
given, the coefficient ¢(R) of R(,,mé is uniquely determined.

Our first problem is, more precisely, the evaluation of the coefficient ¢(R).
See (2.4) and (3.4) for our result, where we calculate the value of ¢(R) for some
examples. In many cases, we can say from the value of ¢(R) that the Fourier
transform of R, =, is, in fact, equal to c(R)R{),mé. See (2.6).

0.3. Our second problem is to understand character sum analogues of the
Fourier transforms of complex powers of relative invariants of non-reductive
prehomogeneous vector spaces in terms of the vector valued relative invariants
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of reductive prehomogeneous vector spaces. Here we call a prehomogeneous
vector space reductive if the algebraic group acting on it is reductive.

In [10; Chapter 3], two examples (examples 8 and 9) of non-reductive pre-
homogeneous vector spaces are studied, where explicit forms of the Fourier
transforms (in the sense of tempered distribution) of products of complex
powers of relative invariants are given, e. g.,
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for yeM,(R) such that Q;(y)>0 (1=/<n). Here

Q={xeM,(R)| P(x)>0 (1=i=n)},
dx: z;l—_!:dxij, <x|y>:Tr(xJ/);

Py(x)= det<xaﬁ)1§a,ﬁsi; Qj(y) = det (yaﬂ)n—j+lsa,ﬂ§n ’

and, (2r+v/ —1)° and Q (v —1y)* stand for (2x)*exp(s7+v —1/2) and exp(szv/—17/2)-
Qi) respectively. We shall show, in section 4, that a character sum analogue
of and a similar formula can be obtained from formulas describing the
Fourier transforms of vector valued functions R; , on the ‘reductive prehomo-
geneous vector spaces’ discussed in sections 2 and 3.

0.4. Analogous problem over the real or complex number field is discussed
by Rubenthaler-Schiffmann (for finite dimensional representations), and by
Bopp-Rubenthaler [2] (for infinite dimensional representations). As is always
the case for (finite dimensional) complex representations of finite reductive
groups, our result can be regarded as a finite field analogue of the study of the
infinite dimensional case.

The present author profitted much from conversations and communications
with H. Rubenthaler, to whom the author would like to express his hearty
thanks.

1. Preliminaries.
We keep the notations of (0.1).

LEMMA 1.1. Assume that an M-valued function S on V satisfies

S(gv) = R(&)S(v)  (g€G,veV).
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Then S is a linear combination of {R; n | 0<i<n, meM,}.

PROOF. It is enough to note that S(v,)eM,.

1.2. Let VV be a G-module, and (): VVXV—F, a non-degenerate pairing
such that <{gvV|gv>=<{vV|v). Let ¢=Hom(F,, C*)—{1} and define the Fourier
transform of a complex vector valued function ¢ by

F(o)vV) = E/ eP(V]vy)  (VEVY).

Let {vY, ---, vy.} be a complete set of representatives of VV/G, VY=GvY, K=
Ze(Y) and M} the set of Ki-fixed vectors in M. Define M-valued functions
Ri » 0Zi'<n’, meM}) in the same way as in (0.1).

LEMMA 1.3. The Fourier transform of R; . is a linear combination of
{R}, n |0Zi'<Sn", meM.}.

Proor. By (1.1), it is enough to note that
F(Ri,n)MgV) = R(QF(Ri,n)vY)  (§EG, VWEVY).
LEMMA 1.4. Let X(g)=Tr R(g). Then
[ K|~ 2 X(k)=dim M,.
rEK

Here and below |—| means the cardinality.

1.5. Let (RY, MV) be the contragradient representation of (R, M) and {):
MVXM—C the natural pairing. By (1.4), the dimension of the space MY of
K,-fixed vectors in MV is equal to dim M, Moreover, as is easily seen,
<Oluyxm, is non-degenerate. Henceforth we assume that

(1.5.1) K,=Kj.

Let K=K,=K;,. By (1.3), we can define a linear endomorphism C(R) of
M,=M; by

F(Ro, m)vY) = C(R)m (meM,).
Then

(1.5.2) | K] ‘13§G<mvl glmyP(<vY| glved) = <m¥| C(R)|m>

for meM, and mVeMY. Here glm=gm, i.e., mV|g=g 'm"Y etc. Let I be the
complete set of representatives of K\G/K and, for xG, define an element [ x]
of the group ring CG by

x]=1K|" 2 g.

gcKxK

Then can be written as



120 A. Gyoja

g§1<mvl LglIm>PvY| glvey) = <mV|C(R)|m) .
Hence

(1.5.3) 2 Tr (R(Le Dyl g lvey) = Tr(C(R)| Mo) -

Note that here naturally appears a representation of the Hecke algebra
HG, K)={xeCG | kyxk, = x (ky, ke K)}.
1.6. Let B be a subgroup of G, 8: B—~GL(N) a complex representation of
B such that N has a non-zero BN K-fixed vector, and M=ind(#|B—G) the set
of N-valued function m on G such that m(bx)=80(b)m(x) for any b=B and x&G.
Define a G-action R on M by (R(g)m)x)=m(xg). For a BNK-fixed vector n,
in N, let m, be the element of M such the m(bk)=6(b)n, for b=B and k€K,

and m,=0 on G—BK. Then m, is a non-zero K-fixed vector of the representa-
tion space of (R, M). By the definition of the endomorphism C(R) of M,,

C(R)m, = ZI,Ro,mo(v)gb((v\({lv))
= | K| "1§}(R(g)m0gb(<v},/lglvo>) .

Define N-valued functions f, and fY on V, and VY by
Folxve) = fY(xvY) = mo(x)

for x=G, and denote their zero extensions to the whole spaces by the same
letters. Assume that C(R) is a homothetic transformation, i.e.,

(1.6.1) C(R) = ¢(R)x(identity)
with a scalar ¢(R). Then

c(R) f¥(xvY) = c(R)mo(x) = (C(R)mo)(x) = | K| “gamo(xg)tﬁ(@}{lg [ve>)

=|K 1"g§;mo(g)¢(<v¥l x7Hgu) = 2 folv)p(lavy|v)).

eV

Thus we get the following lemma.
LEMMA 1.7. With notations and assumptions as above,
F(f)=cR)Y on VY.

REMARK 1.7.1. Even without assuming that K,=K;, we can obtain (1.7).
This assumption is used to define the algebra structure of H(G, K).

REMARK 1.7.2. If dim M,=dim M{=1, then assumption (1.6.1) is automatically
satisfied. More generally, if the following conditions are satisfied, then (1.6.1)
becomes valid:
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(1) For any irreducible constituent (R,, M,) of (R, M), the space M¥ of
K-fixed vectors in M, is at most one-dimensional.

(2) Moreover, ¢(R,) is the same for any irreducible constituent such that
dim Mf=1.

REMARK 1.7.3. If (1.6.1) is satisfied, then by the definition of ¢(R), we get

F(Ro,m)=c(R)R;,m on VY.

Hence ¢(R) is a generalization of ‘the coefficient ¢(R) of R} » in (R, =) con-
sidered in (0.2).

2. Fourier transform of R; , (first example).

2.1. Let A=GL, (with a split Fgstructure)) G=AXA, V=VV=M, and
WV vy=Tr(@"-v). Here and below, we denote algebraic varieties defined over
a finite field F, by a boldfaced letter and the set of its rational points by the
same lightfaced letter unless otherwise stated. Define G-actions on ¥V and VV
by (g1, g:v=g1wgz" and (g,, £:vV=g.wVg7" respectively. Let v,=vY=diag(0, -,
0,1, -+, 1), where zeros appear ¢ times. Then V/G=VV/G={v,, vy, ---, vx} and
K=K,=K}{ is the diagonal of AX A. Hence by (1.4), an irreducible CG-module
M has a non-zero K-fixed vector if and only if it is of the form

M= NQNY(=End(N)),

where N is an irreducible CA-module and NV its dual. If M is of this form,
M, is one-dimensional and spanned by the identity in End(XN), which we shall
denote by m,. If the matrix representation R: G—GL(M) is given by

R((g1, 82)) = S(g.)QSU(g2) (S(g)eGL(N), SV(g)EGL(NVY)),
then, for gV such that det g+0,

(2.1.1) Ry, my(8) = Ro, m,((g, Do) = R(g, L)m, = S(g),
and
(2.1.2) R{, m(8) = Ri, mo((g™1, wY)= R(g™*, L)my = S(g7").

Denote the zero extension of S to the whole space V by the same letter. By
(2.1.1) and [2.1.2), the coefficient ¢(R)=c(SQSY) of Rj m, in F(Ro m,) satisfies

(2.1.3) F(SNg) = c(SQSV)S(g™")  (8€EGvs = GLA(Fy)).

Let Y be the character of S. Considering the trace of at g=v(=1,),
we get

(2.1.4) S Y(@)(Tr(g) = c(R)Y(1).
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The left hand side of is evaluated by T. Kondo [7]. Let us recall his
result.

2.2, First, we need to review the character theory of GL,(F,) due to J.A.
Green [5].

2.2.1. For a prime power ¢, let @, be the set of rational numbers whose
denominators are relatively prime to ¢, and {¢> the multiplicative group generated
by ¢. Then {g¢)> acts on (Q/Z), =Q,/Z so that ¢-(xmod Z)=(¢xmod Z). De-
note by f(a) the length of a <{¢>-orbit a in (Q/Z),.

A partition is a non-increasing sequence A=(4,, 4,, --) of non-negative inte-
gers A; such that almost all A;’s are zero. Let P be the set of partitions, |1]=
A for AP, and P(n, g¢) the set of P-valued functions 4 on O0(¢Q)=(Q/Z), /<{¢>
such that

> fla) Aa)] =n.

as0 @

2.2.2. Let A be GL, with a split Fjstructure. Let F, be an algebraic
closure of F, and fix an isomorphism (Q/Z), = F;. Then the conjugacy classes
{cla(x) | x€ A} of A are in one-to-one correspondence with P(n, q¢). For A<
P(n, g), let a4 be a representative of the corresponding conjugacy class.

223. If F  fr isan extension of F' ./» the norm mapping induces an injection
Hom(F ;y, C*)»Hom(F s, C*). Fix an isomorphism (Q/Z)q,sl_ig;Hom(qu,Cx).
Then the irreducible character of A are in natural one-to-one correspondence
with P(n, q¢). For T¥=P(n, q), let R¥): A-GL(M¥)) be a corresponding irre-
ducible representation. An element a of lim Hom(F},, C*) can be regarded as
an element of Hom(F s, C*), which we shall denote by @,.

2.24. For ¥ =P(n, q), let C=C¥) be the centralizer in 4 of the semisimple
part of ay, W) the Weyl group of C(¥), T(w) a maximal torus of C(¥) cor-
responding to weW (), and (%) the (one dimensional) character

O0T)= TI 0,°det
ac0(q)

of
C¥= II GLHF(a)I(quca)) .
ac0(q)

The Weyl group W) is isomorphic to

H @l Tl
ac0(Q

where &, is the p-th symmetric group. For a partition A of p, Z; denotes the
irreducible character of &, corresponding to 4, e.g., Z,» is the trivial character
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and Z,», is the signature. Let

ZZF = I ZW((X) .

as0@

2.2.5 ([8]). For T<P(n, q), the character of R(¥) is
(=13 )| 3 Zy(w)RFET,

wew (¥

where R%.,, denotes the Deligne-Lusztig (virtual) character [4].

2.2.6 ([4; 7.1]). In our case (A=GL,(Fy)),
R61"<w)(1) — (____l)scA)—s(T(w)) l Alq-n(n-x)/le(w)l -1 .

2.3. For a finite extension 2’ of 2=F, and for a multiplicative character
0’ of &', let G(0)=zer 0" (x)P(Try 2(x)). Let us describe the value of the
character sum

(2.3.1) 2 0T H(Te®))

teT (w)

in terms of G(8,). Assume that T(w)=II.T., where TaCGL.;y(a)'(qu(a)) and
To=ILF (s oo, v With Zic(a, 9)=[¥(@)|. Then by a formula of Davenport-
Hasse [3; (0.8)], is equal to

ILG(0ooNa o) = TL(—1)D1G(f ),
a,t a,i
where N,,; is the norm mapping from F ;e 0 t0 F rea>. Hence

(2.3.2) = G(W)(t)gp(’rr(t)) = (—1)T@) [T (—G(0,)) T @1,

teT(w)

THEOREM 2.4 (Kondo [7]). For G=GL,XGL, and V=VV=M,,
O RIQREN) = (=1 TT (=g G(0a)7 !
aco

(See (2.2.1) for O(q), f(a) and |—|, (2.2.3) for R(¥) and 6,, and (2.3) for
G(6.).)

2.5. Here we prove (2.4) by using the results of [4].
Let Y(¥) be the character of R(¥). For Y=Y ), the left hand side of

is equal to
FAIKY@) g1 Tro4

= | A|(=1)yD-scca» | W@ - I;w qu(wag‘(gg)lT(w)‘¢_1°Tr>A
weW ()
= | A|(= 1)@= e W@ T ZpwXO@)| o Trdrcw

wew (¥
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by (2.2.5) and [4; Proposition 7.11]. Here <{)>4 and {)p,> denote the usual
inner product of class functions. By this is equal to

[A[(=1y=cca W@ 3 Zy(w)| T(w)| (=1 T TI(— GG )T @,

wew (&)
On the other hand, by (2.2.6),
Y(@)A) = (=103 CI\W@) | 5 Zy(w)| Alg~"m=D2| T(w)| -

weW (¥)
X(._l)s(A)—s(T(w» .

Hence by [2.1.4),
(RHYQRT)) = (_l)su)qn(n_mzaelc-;l(q)(_Gw“»lwm)l

= g1 TT (—q PGB T
ac0

COROLLARY 2.6. The Fourier transform of the matrix valued function S=
R(¥) vanishes identically on {x<V |det x=0} if and only if G.#1 for any a such
that |¥(a)|>0.

PROOF. Since ¢ %™V/®F preserves the L%norm, S=0 on {x<V |det x=0}
if and only if
Il (=g /®rG0) 7Y@ =1.

aeo@)
This condition is equivalent to

0. %1, if |¥(a)|>0.

REMARK 2.7. Let R} be a fixed Deligne-Lusztig character of G. For any
irreducible constituent R of R% of the form R=R@QRT)V, the value of ¢(R)
is the same.

3. Fourier transform of R, , (second example).

3.1. Let G=GL,, (with a split Fi-structure), V=VV={veM,, | v*+v=0},
and <V|v)=—Tr(wV-v)/2. Here * means the transposition. Define G-actions
on V and VV by g-v=gvg* and g-vV=(g*)~'vg~! respectively. Let

wmi=(3, )

with 1, the identity matrix of degree n. Then the isotropy groups K, and KY
at v, and vy are both equal to the symplectic group K=Sp,,.

3.2. In order to calculate the constant ¢(R) in the above case, we need a
result of Bannai-Kawanaka-Song [1]. Here we shall review their result to the
extent of our direct concern, using the same notations as in (2.2).
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3.2.1. Let CG be the group ring of G, e=|K| '>,exk, H(G, K) the sub-
algebra ¢(CG)e of CG, and [x]=|K|'Z,exsxy for x=G.

3.2.2 ([6]). Consider A=GL,(F,) as a subgroup of G=GL,,(F,) by

1. 0
@ (0 a)
Then G is a disjoint union of Ka,K(A€P(n,q)), i.e., {Las] | A€P(n, q)} is a
linear basis of H(G, K). (See [1; 2.3.4].)

3.2.3 ([4; Theorem 4.2]). Let R% be the Deligue-Lusztig (virtual) character
of A associated to a maximal torus T of A and §Hom(T, @;)=Hom(T, C*)).
Let s and u be the semisimple and unipotent part of an element x of A. Then
Ri(x)= 3 QZ% (w)b(ysy™),
Yy

€A/Z(8)
ySy-ler

where Qgiﬂ’,y(u) are Green plynomials. (See [1; 1.2] for Green polynomials.)
3.24 ([1; 5.3.2]). Let x=su and (T, 8) be as in (3.2.3), and
{RE (X ez = 2 {Q29 (u)}eg2b(ysy™).

Yy<EAIZ (8)
ysy-lel

Define a function X4 on H(G, K) by

(Laq]) = {Icl(an| RE(a )/ RED}gugz »

which is called the basic function. (See [1; 3.2]).

3.2.5 ([1; 4.1.1]). For a partition A=(4,, 4;, ---), 24 denotes the partition
(224, 245, ). For TeP(n, g), define 20<=P(2n, g) by (2¥)Xa)=2¥(a)). The
G-module M(2) (2=P(2n, ¢)) has a non-zero K-fixed vector if and only if Q=27
for some T'=P(n, q). (See (2.2.3) for M(2).)

3.2.6 ([6]. The set of K-fixed vectors in M(2¥) is a one-dimensional vector
space. (See [1; 2.3.5].)

3.2.7 ([1; 3.4]). The character of (RQ2¥)|xw. ), M2Y)) is given by
Tr(RCY)|HG, K))= X e(wXFe)

wew (¥
with some rational coefficients e(w). (Here we have written 8(¥) for 8(%)| T(w).)
Although an algorithm for determining these coefficients e(w) is given in sec-
tion 6 of [1], all that we need is that they satisfy
> e(w)=1

weW ()
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[1; 6.2.2].

3.3. Now let us calculate the constant c¢(R(2¥)). By (3.2.2) and
(3.2.7),

3.3.1) (RE¥)= = )Tr(R(ZW)([aA]))gb(@}{IaAlvo>)

AeP(n,q

= 3 ew) 3 MO LasDd(Tr(ay)).

wew (¥) AePn, )

(Note that, by (3.2.6), dimM,=1 and C(R)=c(R) in our case.) For A<P(n, q),
let s, and u, be the semisimple and unipotent part of a, respectively. Let
P(n, q) be the set of A=P(n, ¢) such that a, is semisimple and, for & = Py(n, q),
(&) the set of A€P(n, g) such that s, is conjugate to ag. Choose the repre-
sentatives a4 so that s,=az for A€(5). Then, writing § and T for @) T(w)
and T(w),

(3.3.2) 3 X[Las(Tr(an)

AeP(n,q)

= 2 3 (=15 Mgrr=DRIT || Z (@) 7 RE(a 1) }gmg2p(Tr(ag))
EePs(n, @) de®
— (_I)S(A)—s(T)qn(n-l) ] T | 4g?
X X > 3 A1 Zoe(ua)| QG (U} -g20(yazy~)H(Tr(as)) .
BePg(n,q) ded) 35;4/6:(155)1'
Here recall that C(&)=Z4(az)=Z(s4) and note that Zs(a)=Zzc p(us)=Zcz(u4).
By [4; (7.11.4)],

(3.3.3) AGZ(m{ | Zeo(un)| ' QKy (umtanae = I T | glee »

By (3.3.2) and
(3.3.49) %X‘%(EGA])sb(Tr(aA))-—'(—1)““"““(1"‘”"’ 2 X 0(yasy)P(Tr(as))

EePg(n,q) yEA/C(5)

yagy~ler
= (,._l)s(A)—S(T)qn(n-l) 3 0(1)¢(Tr(t)) - (_l)nqn(n—-l) TI ("G(ﬁa))'w(“)'_
teT ac0W

By and (3.3.4), we get the following theorem.
THEOREM 3.4. For G=GL,, and V=VV={veM,,|v*+v=0},
g MY I2(R2W)) = (=1 TT (—q /@PG0,) ¥
ae0(D

(See (2.2.1) for O(q), f(e) and |—]|, (2.2.3) for R(—) and 4., (2.3) for G(8,),
and (3.2.5) for 27.)

REMARK 3.5. We can deduce from (3.4) a consequence analogous to (2.6).

REMARK 3.6. Let R} be a fixed Deligne-Lusztig character of G. For any
irreducible constituent R of R% of the form R=R(2¥), the value of ¢(R) is the
same.
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4. Non-reductive prehomogeneous vector spaces.

In this section, we give explicit forms of f, and fY for two cases. (See
(1.6) for f, and fY.) The explicit forms of f, and fY in each case, combined
with (1.7), (2.4) and (3.4), give a character sum analogue (4.1.3) of or a
similar formula (4.2.3).

4.1. First, let us consider the case where A=GL,(F,), G=AXA, V=VV=
M, (F)), v,=vY=1,, K is the diagonal of AX A, B’ (resp. B”) is the group of
lower (resp. upper) triangular matrices in A, and B=B’'XB”. The G-actions
on V and VV are given by (a’, a”)v=a'va”"! and (a’, a”wW=a"vVa’'"* respec-
tively. Let §,=Hom(F;, C*) and define linear characters ¢’ and 6” of B’ and
B” by

’((bw)lsz an) -— H 0 (b i)
and
0" (bihsi.sen) = 11 004,
As usual, we define 0,0)=0. Let §=60'®R0” and (R, M)=ind(d|B—G) be
the representation of G defined in (1.6). Since ker @ contains BNK, we can

define C-valued functions f, and fY asin (1.6) by taking 1=C as n,. Let Pi(x)
:det(xaﬁ)lsa,ﬂsi and Qj(y):det(yaﬁ)n—jﬂsa.ﬁgn- Then

(4.1.1) fo = 01(P1)02(P2/P1) s G n(Pr/Pr-y)
and
(4.1.2) f{=0,Qn-1/Qn) 00-1(Q:/Q:)0,(1/Q1) .

By (1.7.2) and (2.7), the condition (1.6.1) is satisfied. From (1.7), (2.4),
and we get the following character sum analogue of [0.3.1};

(413) q—dimV/zxgvﬂl(Pl(x))ez(P2<X)) 0n( Pn(X) >¢(<y l x>)

P(x) Pry(x)
= 17 [ g7 606 Z22) - 0, (S2N)0,(51)

for yeVY{(=GL(Fy)).

4.2. Next, let us consider the case where G=GL.,(F,), V=VV={xe
Mon(F)l x+x*=0}, <x|y>=<y|x>=—Tr(xy)/2 for x€V and yVeVY,

7=(_) )eMiFy,

ve=v¥=diag(J, -+, J)€V, K=Sp..(F,), and B is the group of lower triangular
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matrices in G. Here * means the transposition. The G-actions on V and VV
are given by g-v=gvg* and g-vV=(g*)"'vg'. Let ;=Hom(F;, C*) (1<i=n)
and define a linear character of B by

O((biisissen) =TT 0:baivvicabar,si).

Let (R, M)=ind(@# |B—G). In the present case, the functions f, and fY given
in (1.6) can be written as follows: For a skew-symmetric matrix x=
(xa,ﬂ)lsa,ﬁszn; let
Py(x) = Pf((xaﬂ)lsa.ﬁgzi)
and
Qj(x) = Pf((xaﬁ)ZCn—j+1)sa, ﬂszn) ’

where Pf denotes the Pfaffian. Then

(4~2-1) fo=01(P1)02(P2/P1)"'0n(Pn/Pn-1)
and
(4-2-2) f})/ = 01(Qn—1/Qn) 0n—1(Q1/Qz)6n(1/Q1> .

By (1.7.2) and (3.6), the condition (1.6.1) is satisfied. Combining (1.7), (3.4),
(4.2.1) and [(4.2.2), we get

(4.2.3) —d'mmzo(P,( DA Pox) e On Fulx)_ Oy 1))
Py(x) Pnoi(x)

= (=11 [1(—¢"*G(0, »0(Qé;é(;;))"'0"‘1(&8;)0'1(@11(”)

for yeVY(=VVNGLy(Fy)).

4.3. In conclusion, let us consider an analogue of (4.2.3) over the real
number field R. The result of this number is the formula (4.3.4), whose gener-
alization is announced in [2]. Our argument here is similar to that of [10;
Example 8].

Let P; and Q; be the polynomials given in (4.2), V(R)=VV(R)={x&M,,(R)|
¥+ x=0}, <x|y>=<y| x>=—Tr(xy)/2 for xV(R) and yeVV(R),

Q={x€V(R)| P(x)>0, ---, P,(x)>0},
and

QV={yeVVR)| Q:3)>0, -+, Q.(3)>0}.

(In fact, 2=0V.) Let ¢ be a compactly supported C=-function on £V, s=
(sy, -+, Sz) complex numbers such that Re(s;)> - >Re(s,)>0, and

165, 9 = [ FODP () () ",
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where the measure dx on £ is given by dx=II;>;dx:;, and

FHp)x) = | TP p(y)dy

with dy=II:>;dy:;. Let U be the group of 2n by 2n lower triangular matrices
u=(u;;) such that u;=1 (1=57/<2n) and us;9:-:=0 (1=i=<n). Let D be the
group of matrices

t =diag(t,, 1,1, 1, -, t,, 1)

with #;,>0. Note that D normalizes U. Define the invariant measures on U
and D by
du= TI duijAnﬁdu2i+1‘2i and d*t = ﬁ dlogt;.
izj+2 i=1 i=1
If we define elements v, and vy of M,,(R) in the same way as in (4.2), then
v,€82 and VY& QV. Define isomorphisms DU=Q and UD=QV by tu—(tu)v(tu)*
and u’t'—(u’t"YvY¥(u’t’). Then

(4.3.1) I, @)= SDUEF(go)(tu)tiltiz e tgn(ty e b2 d tdu
— S t§1+2n-1 t,‘f”*"’""dxtdu
DU

X S UDso((u't’>*v}{(u’t’))eXp (— v/ =T@u)vo(tu)*|(u't' Yoy(u't’)y)

Xt -t t du’ .
By using repeatedly the formula

SRe‘/'—‘”dy = 276(y).

where d(x) is the Dirac’s delta function, we get
(4.3.2) SUeXP(—*/rR(fu)vo(fu)*](u’t’)*v\{(u’t'»)du
= ()"~ exp (—v/ =1 33t Tty 2+

(Here we omit the details of the calculation, which is elementary but com-
plicated.) By (4.3.1) and we get

I(S, go) = (zz)n(n—l)SDtil-f-Zn—l trf”+2"'ldxt
AL T Y ) n 41
x| eyt exp(—v=1 5 1)

(Frceeos)ei toavaw

Since
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S:tse—\/-_xtt'd logt = I'(s)t'-*e="v=1e2
we get

I(s, @) = (27r)"‘"””SUDQD((u’t’)*v\o/(u'7,"))_12"[1 ti=oid >t du’

||ﬂa

(F(s +2n—2i+1exp(—av —1(s;+2n—2i+1)/2))

e A ) Q) Y e

X I:%(F(si+2n—2z'+l)exp(—ﬂm<5i+2”"2i+1)/2)) )

Hence as tempered distributions

(4.3.3) Sg.e_v-‘xmwpl(x)sl %E\fg) (Pnni(xx)>>

= (2x)**-b IZI1 ([(si+2n—2i+1)exp(—av —1(s;+2n—2i+1)/2)))

<o) (o) o) "o

for y=RV. (Since Re(s;)> --- >Re(s,)>0, the zero extension of P{i(P,/P;) --
(Pn/P,-1)’n]o is a continuous function. Hence the left hand side has a meaning
as a Fourier transform of a tempered distribution. The equality means that
the support of the difference of the both sides is contained in the complement
of V. Of course, by the analytic continuation, we may drop the condition on
s.) The above formula can be written more neatly as follows;

(4.3.4) (27r\/ji)-n(2n-1)/2gge~<z|\/ 1y>P< )31 (Pz(x)) 2 ( P,(x) )s,ndx

Py(x) P 4(x)
v [(s;+2n—2+1) (W ZIyn
:<1=1 S(th:n’j; )(Q n((v 11y3)’)> h
(v =1yt _an41
@) (o) @I,

Here (2 /=1 and Q,(v/=1)" stand for (2r)'exp(s7v/=1/2) and explsv/=1j/2)-
Q;(v)® respectively. ;
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