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Let &rxi(n, 1) be the set of C* function germs: (R", 0)—(R,0) for
k=1,2, .-, o, w, and let 4(n, 1) be the set of holomorphic function germs:
(C*, 0)—(C, 0). If for two function germs f, g€&ri(n, 1) (resp. H(n, 1)) there
exists a local homeomorphism ¢:(R", 0)—(R", 0) (resp. o :(C", 0)—(C™", 0))
such that f=g-o, we say that f is C’-equivalent to g and write f~g. We
shall not distinguish between germs and their representatives.

Consider the polynomial function f:(R?, 0)—(R, 0) defined by

f(x, y) = 2*+3xy*+y*.
Then we see that

3 20 ( i ) 3 20 29 (1i) 3 2
x343x Y2 ~— x34+-3x y¥ 4y~ x4 20,
Here we interpret the above equivalences as follows (see [6], Example 4.3 also):

(i) Put w=72f0)=x*+3xy*. Then w is C’equivalent to f. This
follows from the Kuiper-Kuo theorem (see in §3).

(ii) Put z=x*4+y?*. Then z is C’-equivalent to f. Since z is weighted
homogeneous of type (1/3, 1/29) with a finite codimension and the weight of
the term 3xy?° is 1/3420/29>1 (see V.1 Arnol’d [1]).

In the complex case, the equivalence (i) does not hold. For w is weighted
homogeneous of type (1/3, 1/30) with an isolated singularity and the weight of
the term y*° is 29/30<1. Furthermore y*¢&M(0w/0x, 0w/dy). Therefore w is
not C’-equivalent to w+y*=/f (see M. Suzuki or A.N. Vartenko [18]).
(Of course, we can also see this directly by considering the C°-type of w~(0)
and f~'(0), as germs at 0=C?) Even in the real case, the equivalence (i) does
not hold, if we replace plus by minus (i.e. w=x*—3xy%).

PROBLEM. Is there a unified discription for explaining the above interpre-
tations ?
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The purpose of this paper is to give a weighted form of the Kuiper-Kuo
type theorem for real analytic functions of at most three variables as an answer
to the above problem, and the corresponding result for holomorphic functions
of general n variables (n#3). We shall describe the results and corollaries in
§1, and prove them in §3. In §2, we shall apply the real result for the above
example, and explain our results.

The author would like to thank Professors M. Oka, M. Suzuki, and C.T.C.
Wall for useful communications.

§1. Main results.

Let @* (resp. R*) denote the set of positive rational numbers (resp. positive
real numbers). For a=(a;, -+, a,)EQ*X -+ XQ" with min,;c,a;=1, we define
the subset of Q* by

I@)={3}a;B; | BENU(0} ASj<m), fit - +Baz1}.

Which can be expressed as
I(a) = {a(l), ---, a(N), -},  a@)<a(i+1).

We put dy=a(N-+1)—a(N)>0. Note that dy is constant for all large N.
Let a(N)eI(a), and f, g be C® functions where

f(X) = > Aﬁxlﬁl xnﬁn and g(x) — 23796171 xnrn.
pe®B el

We say that f and g are a(N)-equivalent, if
ZAﬂxlﬂl ‘oo xnﬁn — EBrxlrl ann

where the summation in the left side member (resp. the right side member) is
taken over all elements 8B with a;8;+ - +a.f.<a(N) (resp. all elements

rel’ with a7+ - +a.7.<a(N)). This relation 5 Is an equivalence relation.

Then we denote by J2¥(n, 1) the quotient set of &r,i(n, 1) and by 72 f(0)
the equivalence class of f by the relation —~ We identify 73V f(0) with its
polynomial representative

SAgx,fre x,fr where fEB, aifi+ - +anBr<a(N).
B

Let feé&rvin, 1) such that 0=R™ is a singular point of f. For a(N)e
I(a) with a;<a(N) (1=5<n), we define

Sacns ) = (| 240

(a(N)-1)/Ca(N)-ay)

FEREE I

of
axn(x)

(a(N)—l)/(a(N)—a,ﬂ)

near 0= R".

REMARK 1. If O=R"™ is an isolated singular point of H=72¥>f(0), then
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we have a;<a(N) (1=<j<n). Therefore 0,n,H(x) and Gqcx>f(x) are defined.

NOTATION. Let a;(al, e, @p)EEQRTX - XQT. We put

x| = ,\/lx1|2/01+ R 2

for x=(x,, =+, x2)=R"™.

Let J(2[0,1]) be an open interval. Given a germ of C¢ function
F:(R"x ], {0} xXJ)—(R, 0). Let us consider the family of germs f,:(R", 0)—
(R, 0), s&]J where fy(x)=F(x, s). We say the family {f;|s€J} or F:(R"X],
{0} x J)—=(R, 0) has no coalescing of critical points, if there exists a>0 such that

lgrad fo(x)| =0 for 0<|x|<a and s&].

Put A={0} X JCR"XJ. Suppose F is non-singular outside 4. Then the pair
(R*XJ—A, A) is called (ap)-regular at (0, s)e A, if for any sequence of peints
{pn} in R*X J—A tending to (0, s)e4 such that the plane T, F (F(pn))
tends to z, we have tDA. The pair (R"X J— A4, A) is called (ag)-regular, if it
is (ap)-regular at any (0, s)e4. In the complex case, we can define the concept
of no coalescing of critical points and (ap)-regularity similarly.

Now we state the main results in this paper.

PROPOSITION. Let HEJ2M(n, 1), GEEoi(n, 1) with j2MG(0)=0, and let
F(x, s)=H(x)+sG(x) for s=]. If there exist C, a>0 and ¢>1—0by such that

[éa(N)H(x)l gC]xlaa(N)-e fOT’ lx]<a:

then F has no coalescing of critical points. Furthermore the pair (R*"X J—A, A)
1s (ap)-regular.

THEOREM 1. Let HE 3N (n, 1) where n<3. If there exist C, a>0 and
e>1—0x such that

100wy H(x)| = C|lx]8¢ for |xl<a,
then for any GE&r,i(n, 1) with jaNG(0)=0, H+G is C’-equivalent to H.

REMARK 2. (1) If 0R" is a regular point of H, then for any GE&,(n, 1)
with 73MG0)=0, H+G is C’-equivalent to H (any a<Q*X --- XQ* and
a(N)eI(a)). This follows from the implicit function theorem.

(2) Since 1=0y>0, we have e>1—0,5=0.

(3) In [7], the author proposed a partition problem on real analytic
functions. In attempt to solve it, we have obtained this theorem.

(4) Thanks to J. Bochnak-].-J. Risler [2] and T.C. Kuo [12], we think the
system of weights in rational numbers only.

PROBLEM. Does the above theorem also hold for n=4? (See Remark 5 in
§ 3 also.)
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Let [ ] denote the Gauss symbol.

COROLLARY 1. Suppose He Ji¥(n, 1) (n<3) satisfies the hypothesis of
Theorem 1. Then H+G is C'-equivalent to H for any GEEracnriean, 1) with
72N G(0)=0,

REMARK 3. If a;Bi+ - +anfBr=a(N), then B+ -+ +B,<[a(N)]. There-
fore we can define J2¥(n, 1) in &rry(n, 1) for k=[a(N)], [a(N)]+]1, .

In this paper, a polynomial H(xy, -, xn)=ges Csx,P1 -+ x,Pn is called

weighted homogeneous of type (a,/7, -, a./r) Where 7, a; (1=<7<n)=Q", if
: — ot ®Xn =
in a; = 1 and ~ Bt - + ” Bn=1

for any multiindex B=(8,, -, B.)E3.

COROLLARY 2. Let H:(R™ 0)—(R,0) (n<3) be a weighted homogeneous
polynomial of type (a,/r, -, a,/r) with an isolated singularity, and let
GE&Crr1nin, 1) such that jrIMGO)=sendpx Pt x.Pn.  If Sii(a;/r)B;>1
(resp. 2%y(a;/r)B;=1) for any BEB, then H+G is C'-equivalent to H (resp.
then there exists €>0 such that H4sG is C’-equivalent to H for |s|<e).

REMARK 4 (J. Damon-T. Gaffney, [4], Corollary 5). If H has an algebrai-
cally isolated singularity, then the above corollary holds for general n variables

case. (See the proof of in §3 also.)

In the complex case, we define I(a), dy, J2¥(n, 1), dacwy, and | |, for a
given system of the weights a=(a;, -+, a,) with min, ;c,a;=1, similarly as in
the real case. Then we have the corresponding complex result to [Theorem 1.

THEOREM 2. Let HEJ2¥(n, 1) where n+3. If there exist C, a>0 and
e>1—0y such that

10acy H(x)| = Clx] 2" for |x|<a,
then for any G Jd((n, 1) with j3¥G(0)=0, H+G is C’-equivalent to H.

§ 2. Applications.

Let f:(R™, 0)—(R, 0) be a C® function with an isolated singularity. Then,
for any a=(a,, '+, a,)eQ*X - XQ* with min, ;c,a;=1, there exist a(N)e
I(a), C, a>0, and ¢>1—0y such that
|0acayH(x)| = Clx|2-e for |x|<a,

where H(x)=72% f(0). Therefore asserts that given any system
of weights, a C® function (n<3) with an isolated singularity has C° finite
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determinacy related to it.

29}/ // }

G
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Figure.

Let us go back to the example in the introduction. We can interpret the
equivalence (i) by applying with the system of weights a=(1, 1)
(a(N)=21), and the equivalence (ii) with &«=(29/3, 1) (a(N)=29). Furthermore
the theorem holds as e=1 in both cases. For a=(1,1) and a(N)=21 (resp.
a=(29/3, 1) and a(N)=29), let h€&,1(2, 1) with j2¥-Yh(0)=0. Then it follows
from the Kuiper-Kuo theorem and that if all coefficients of terms
of degree 21 (resp. 29) related to the weight a=(1, 1) (resp. a=(29/3,1)) in h
are sufficiently small, then f+h is C°-equivalent to f. Namely, f is controling
not only terms inside the shaded region in Figure, but also local terms on the
boundary in the meaning of C°-equivalence.

There are interesting works on the topological triviality of deformations of
a complex function germ, assuring certain conditions on the Newton boundary
(e.g. V.L Arnol’d [1], A.G. Kouchnirenko [8], M. Oka [15], J. Damon-T.
Gaffney [4], M. Buchner-W. Kucharz [3]). The works [3] and [4] contain
the corresponding real results, too. On the other hand, E. Yoshinaga has
established #-MAT (which is stronger than topological triviality) under assump-
tions on the Newton boundary in the real case ([19]). The approaches based
on the Newton boundary are very effective for the problem of topological
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triviality in the complex case. In fact, this is intrinsic in the semi-quasihomo-
geneous case (V.I. Arnol’d [1I], M. Suzuki [16], A.N. Var&enko [18]). But
the above example shows that this is not necessarily so in the real case.
Therefore our results on C° determinacy of analytic functions are formulated
in terms of an arbitrary system of weights, without using the Newton boundary.

§3. Proof of the results.

PROOF OF PROPOSITION. Let
G(}C) = 2 A,Bxlﬁl xnﬁn S 8[«:]("; 1)
BeB

with 73G(0)=0.

LEMMA 1. There exist K>0 and a neighborhood W of 0 in R™ such that
[G(x)| £ K|x|*M*y  in W.
PROOF. Put g=[a(N)+0x]. Note that ¢g+1>a(N)+dy and |x|.=]|x]| for
|x|<1. We denote by G,(x) the sum of all terms in G(x) with 8,4 -+ +8.=<gq,
and denote by Gu(x) the sum of the remainder in G(x). Then we have

G(x)=G(x)+Gy(x) and j2Gx(0)=0. Thus there exist K,>0 and a neighborhood
W, of 0 in R™ such that

3.1 |Ge(x)| = K| x| = Kol 2% in Wen{]x|<1}.

Let S(x)=x,%1- x,f» where XM,a;8;=2a(N)+dy. If we set K,=
maxz,:|S(x)| >0, then we have

@.2) - S| < Kyl x| 2%r for |x].<1.

Since the number of terms in G,(x) is finite, the statement of this lemma follows

from and 3.2}
Let HEJ&¥>(n, 1) satisfy the hypothesis of [Proposition]

LEMMA 2. There exists a,>0 such that
|grad(HAGX| 2 £1xlam7 for |x]<ar.
PROOF. Put

o= (| Eeo | 2

Ca(N)-D/Ca(N)-ay)

(a(N)-l)/(a(N)-an))
e

‘axn( )i—l—. (x)l

We first show the following
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ASSERTION. There exists a,>0 such that

Baon(HHGXD)| 2 5IW(0)|  for |x|<as.

Assume that the assertion does not hold. Then, by the curve selection
lemma ([14]), there exists a C® curve 2: [0, p)—R" (0>0) with A(0)=0 such
that

x 1
3.3) [0acn (H+GYAD)| < 7|W(1(l‘))l for ¢>0.
Let us write
2,0 = a (Lt +a 2O+ o
where ai)#0 if 4,70 (for any 7)
di(l) = o it 4,=0 (I=5=n),

and put d=min,g;..{d;(1)/a;}>0.

By a similar argument as in Lemma 1|, there exist K, 6>0 such that
l G

Xj

(x)l < Klx|2*08-e  for |x|<b (1<j<n).

Therefore we have

(3.9 O(5o-(ie)) = dla)+dy—a)  (Sjs),

where O(Q()) denotes the order of Q in t.
Furthermore it follows from the hypothesis of that
10y HAWD)| = C1A®)]*¥¢ for t=0.

Therefore, by the curve selection lemma, there exists 2 with 1<%,<#n such that

o| 7w

< d(a(N)—e).

(a(N)—l)/(a(N)—ak))

Thus we have

(3.5) O( e (a1)) S dla(V)—eXa(N)—an)/(a(N)—1).

NOTE. For 1=<j<n, we have
d(a(N)—e)a(N)—a;)/(a(N)—1) < dla(N)+ov—aj,).
PROOF. Since ¢e>1—0y and a;=1, we have
(a(N)—e)/(a(N)—1) < (a(N)+0xy—1)/(a(N)—1)
= 14+0x/(a(N)—1) = 1+dx/(a(N)—a;) = (a(N)+dx—ay/(a(N)—a;).
It follows from Note and that for any & satisfying the condition [3.5),
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[0(15}1’2@)4‘ “X(l‘))l < d(a(N)—eXa(N)—a,)/(a(N)—1),

1 (| 32| + | g2 aen]) = dlatVr—exXa)—an)/(@(N)—D).

Therefore we have

(a(N)—I)/(a(N)-ak)>

Joq oH <z<t>>+ <z<t>> < d(a(N)—¢),

|o(( 2

On the other hand, for any j not satisfying the condition [3.5), we have
oH
O(Gx,

Therefore we have

)(a(N)-—l)/(a(N)—ak))

(Z(t))

< d(a(N)—e).

) > d(a(N)—eXa(N)—a)/(@N)—1).

(a(N)-1)/(a(N)-aj)>

J(\ )+ g i) > d(a(N)—¢),

)(a(N)—l)/(a(N)——aj)>

l((( <x<t>>1+| FPRC0) > d(a()—e).

The conditions [3.4), (3.6) and (3.7) contradict This completes the
proof of Assertion.

Now we show by using this assertion. For |x|<a,;, we have
Bacn HHGXD| 2 AW Z 518 H ()| = 5] 2] 27,
Thus there exists a,>0 such that
|8rad(H+ GX()| 2 |dacnHFGHR] = 5] x] o

for |x|<a,.
Let J(2[0,1]) be an open interval. Consider the C¢? function
F:(R*"x ], {0} x])—(R, 0) defined by

F(x, s)= H(x)+sG(x).
Then we have

LEMMA 3. There exists ao>0 such that
C
lgrad(;,s;F(x, s)[ = .Z_leaa(N)-g

for |x|<a, and s€]J. Furthermore {fs} has no coalescing of critical points.
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PROOF. By modifying the proof of Assertion, it is easy to see that there
exists a,>0 such that
a(sG)

(a(N)-1)/C(a(N)-ay)

®)|) :

Buaon(H+sGXD) 2 3| (| &

\ax,,< >l+\aé§f,f>

for |x|<a, and s€J. As in the proof of [Lemma 2, there exists a,>0 such that

)(a(N)-l)/(a(N)-a,p)

|grad.F(x, s)| = %lea““""e for |x|<a, and s€].

Therefore follows immediately.

It follows from Lemmas 1, 3 that there exists a,>( such that
2K
|G/ Igrade, o F(x, $)] = =1 x]o*¥

for 0<|x|<a, and sJ. Therefore the pair (R*XJ—A, A) is (ap)-regular.
This completes the proof of Proposition.

REMARK 5. In general, it does not seem that the following properties hold.

(1) The pair (F-Y0)—A, A) is Whitney (b)-regular (see J. Mather [13]).

(2) Let us consider the Kuo vector field {v(x)} using F in the above proof
(see T.C. Kuo [10]). Then {v(x)} is a local Liapounov trivialization along A
at a point (0, s)e A4 (see T.C. Kuo [11], Appendix 2).

PROOF OF THEOREM 1. We recall King’s results ([5]) on no coalescing of
critical points:

LEMMA 4. If f;:(R", 0)—(R, 0) (n<3), se€R? is a continuous family of
germs of analytic functions with no coalescing of critical points, then there is a
continuous family of homeomorphism germs h,: (R™, 0)—(R™, 0) such that fo=Ffs°gs
for all s€R?.

REMARK 6. (1) Lemma 4 for n=5 does not hold.
(2) Lemma 4 in the complex case holds for n=3.

Let J (D[0,1]) be an open interval, and consider the function
F:(R*"X ], {0} xJ)—(R, 0) defined by

F(x, s)= H(x)+sG(x)
as above. Then it follows from Proposition and Lemma 4 that H+G is C°-

equivalent to H.

PROOF OF COROLLARY 1. We first recall the Kuiper-Kuo theorem (N.
Kuiper [9], T.C. Kuo [10]):
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'LEMMA 5. Let H& ] (n, 1). If there exist C, a, >0 such that
grad H(x)| Z Clx|"™  for |zl<e,
then H is C°-sufficient in E¢r41:(n, 1)‘2'. e. for any GEE;r (0, 1) with j7G0)=0,
H+G is C’-equivalent to H.
FacT. Put e;=e+4+0dy—1>0. Then we have
a(N)—e < [a(N)]—e.

Put z=/1*®"IH+G)(0). Then, by Remark 3, we have j2¥°z(0)=H. There-
fore it follows from that z is C’-equivalent to H. On the other hand,
by the proof of Lemma 2, we see that z satisfies the same hypothesis as H.
Therefore it follows from Fact and that z is C’-equivalent to H+G.
Thus H+G is C'equivalent to H.

Proor or COROLLARY 2. Let H: (R", 0)—(R, 0) be a weighted homogeneous

polynomial of type (a,/r, ---, @,/7) with an isolated singularity. Then we can
define
~ oH (r=-D/(r-ay oH (r=-D/(r-ap
aH(x)_({axl(x) y TN axn )

near 0=R". The next lemma follows from the proof of Theorem 3.1 in V.L

Arnol’d [1].

LEMMA 6. If H has an isolated singularity, then there exist C>0 and a
neighborhood U of 0 in R™ such that

|0H(x)| = Clxls"t in U.

REMARK 7. for homogeneous polynomials has been proved by
N. Kuiper ([9], Theorem 4B).

is an immediate consequence of [Theorem 1| (Corollary 1)) and
Here note that ‘Theorem 1l as e=1” holds in this case.

PROOF OF THEOREM 2. Let J (D[0, 1]) be an open interval, and consider
the function F:(C"XJ, {0} XJ)—(C, 0) defined by
F(x, s) = H(x)+sG(x).

Then we see that F has no coalescing of critical points, by using the same

argument as in the proof of Therefore it follows from Remark
6 (2) that H4+G is C’-equivalent to H in the case n#3.
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