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§1. Introduction.

The purpose of the present study is to get isometric minimal immersions of
S™+k(1) into spheres which are extensions of isometric minimal immersions of
S™(1) into spheres and to find some properties of such immersions.

Let S*~*(») denote the sphere of radius r centered at the origin in R*. An
isometric minimal immersion f, s: S™(1)—S""(r) is expressed by

fasw) = 3 fAWE

where {&,, ---, &,} is an orthonormal basis of R® and u=S™(1). By a theorem
of Takahashi f4 (A=1, .-, n) are spherical harmonics of degree s,

Af4 = A /4, As=s(s+m—1).

Let {e;, ---, ¢n4+1} be an orthonormal basis of R™*' and S™(1) be the unit sphere
in R™*! so that we can put u=u’e; using summation convention. To an eigen-
function f of A with Af=A4;f, there corresponds a unique harmonic polynomial
F= Fil...isxil e xls
of degree s such that
flu) = Fy .. utt - u's.

The harmonic polynomial F then is viewed as a symmetric harmonic tensor of
degree s, satisfying

i) F(vy ++, vs) is symmetric in vy, -+, v

ii) ;F(eiy €iy Usy " ’ vs) = 0
where v,, -+, v;eR™,

Thus, to an isometric minimal immersion f, s there corresponds a set of »
symmetric harmonic tensors {F!, ---, F*}. Let V(m, s) denote the vector space

of symmetric harmonic tensors of degree s on R™''. Then we know that
dim V(m, s)=n(m, s) is given by

n(m, s) = Cs+m—D(s+m—2)/(sl(m—1)!),
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and n=n(m, s). If we take a basis {H?, ---, H*} of V(m, s) satisfying
S HAWH(w)dwn, = c342,
S§m(1)

where ¢ is a certain number given later, then the corresponding isometric
minimal immersion A, s: S™(1)—S™"Y(») such that A, (u)=2>H*(u)é, is called
a standard minimal immersion [3, §5] and the basis {H?, ---, H"} is called the
standard basis.

IMI(m, s) and SMI(m, s) denote respectively the set of isometric minimal
immersions fnm.s and the set of standard minimal immersions h, s, hence
SMI(m, $)CIMI(m, s). fm.s and fn.s are called equivalent if there exists an
orthogonal transformation g=O(n) on R" such that f, ,=gcfm.s Hence
SMI(m, s) is the unique equivalence class of standard minimal immersions in
IMI(m, s).

To describe the equivalence we introduce the symmetric tensor product
B(m, $)=V(m, s)QV(m, s). Any element of B(m, s) is given by

;BbABHA\@HB ’ bag =bgy.

Let (FY, -, F*) and (F%, .-, F») correspond respectively to fm., and fn .
Then these are equivalent if and only if S,FAQFA=3,F4QF4 as it is easy
to see [3,8§3]. Thus, to the set SMI(m, s) there corresponds the element
SV HARQHA of B(m, s). To describe the relation between IMI(m, s) and SMI(m, s)
we consider

C = %(FA(X)FA—HA@HA) e B(m, s).

It is to be noticed that, if we take a set {F?, ---, F*}CV(m, s) at haphazard,
it may happen that there exist no f, s=IMI(m, s) corresponding to this set.
When there exists an [, sIMI(m, s) corresponding to the given set {F?, ---, F"}
C satisfies

(a) Clw, w, v, ~-,v;v,,v)=0 w, veR™!,

The set of elements of B(m, s) satisfying (a) is a subspace of B(m, s) and is
denoted by W(m, s). It is known that when C&=W(m, s) is given, 2 JHAQH*+C
can be put 4 F4QRF4 with the set {F?, ---, F*} corresponding to an [, &
IMI(m, s) if and only if C belongs to a certain compact convex body L{m, s)
in W(m, s) [1,38]. Precisely, the equivalence classes of isometric minimal
immersions are known to be parametrized by L(m, s) [1]. It is explained in
§7 as well.

The purpose of the present paper is to give an injective homomorphism
A:W(m, s)>W(m-+Ek, s) such that

) AL(m, s) = Lim+Fk, s)NAW (m, s)
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which amounts to giving a method of obtaining extensions of f, s belonging to
IMI(m-+£k, s). These extensions are denoted by Ext:fn. . Extension is natural
in the sense that it keeps equivalence classes by (8). Obviously a standard one
is extended to a standard one. Furthermore, some properties of f, s are
inherited to its extension. Though not many examples of non-standard minimal
immersions have been known, we can find many examples systematically from
known ones.

§ 2 is given preparatorily to the essential part of the paper beginning with
§3. In §2.1 we recall a relation between S™(1) and S™**(1). The way of
deduction used there gives in §2.2 a formula for the integral over S™+*(1) of
some function on S™(1). Inner products ( , )m and (, )n. ms+r are defined. We
begin to give the notion of extension in §3. Extension of a symmetric tensor
T on R™' is defined. When a tensor 7 on R™*+! is obtained by extension,
T is denoted by ext,T. It is proved that harmonic tensors are extended to
harmonic tensors. An inner product [ , ] is defined which is invariant by
extension. Thus we can construct an orthonormal basis of V(m-+£k, s) with
particular relation to an orthonormal basis of V(m, s). In §4 extension of a
standard minimal immersion is treated. h,.; s obtained by extension of /A,
is denoted by Extyh, .. In §5 we construct from an immersion f, s=IMl(m, s)
an immersion f,.: sSIMI(m+£k, s) which we call an extension of f. s Then
fma+r,s is denoted by Ext,fn.. . As a result we get an injective homomorphism
A:W(m, s)»W(m-+k, s) for which we prove the following theorem; A satisfies

AL(m, s) = Lim+k, s NAW(m, s).

In §6 we consider the distance between the image of S™(1) by an isometric
minimal immersion [, s and the image of the same S™(1) by Ext,fn.s. Some
other result concerning the shape of Ext,fn, (S™**(1)) is also obtained. We
prove in §7.1 that when an immersion f, =IMI(m, s) is given, there exist an
orthonormal basis of R™ and a standard minimal immersion k4, . such that the
tensors F4 and H“ associated with fn. s and h,, s satisfy F4=qa4H4 where a4
are non negative numbers. In §7.2 we consider the relation between f, (S™(1))
and hn (S™1)) when FA=a4H* is satisfied, setting down some additional
condition, and in §7.3 we consider the effect of extension. We introduce another
notion of distance, denoted by d(fum.s, hm,s), between images of S™(1) by fan.s
and by hns in §7.4. In §7.5 we define the distance d(f .. s SMI(m, s)) and
prove in §7.6

d(fm.s SMI(m, s)) = d(Exty fm,s, SMI(m+£, ).

In §8 we prove that / leaves invariant the isotropic property.

ACKNOWLEDGEMENT. The author wishes to express his hearty thanks to
the referee whose suggestion helped him in improving the paper to a great



242 Y. Muto

extent.

§2. Preliminaries.

2.1. Let ¢4 denote the volume of S%1) and dwy; the volume element of
S4(1). We recall the relation among dwgms:, dwn, dwe-; and also that among

Cm+ry Cm, Cr-1 understanding c,=2.
The unit ball b in R™***! is given by

(124 o +(Xme )+ )+ -+ () £ 1,
where we can put
Xq = YUgSIN G, a=1, -, m+1,

yp=rvgcosl, B=1, -, k,
Uy, ", Umes, V1, o+, U being considered to be such that

(U’ + s +(Un1)? = @)+ -+ =1

and 0=<r<1. Taking local coordinates ¢,, :--, ¢, for S™1)and ¢, -:-, ¢,-; for
Sk-1(1), we get
My vveeeennnns My mies
(%1 s Xmary V1o = V) | T
07, 0, @1, =y Py Dy o0y Proy) | e
Mm+k+1.1 """"" Mm+k+1.m+k+1
where
M, o = u,siné, M, mi1vg =vgcosl,
M; o = ugscosé, M;, mi1:p = —vgsiné,

Moiz,a = (Qua/0¢p2)sin 0, Myi mi1ss =0,
Musoipa =0, Moyszsp meres = (Ovp/0g,)cos 6,
A=1, - ,m, p=1, -, k—1.
Thus we have, for the volume element db of the unit ball,

db = r™**dr d@sin™0 cos* 0 dwdw;_,,
and get
AdWnir = dondw;..Sin™0 cos* 1040,

Cmar = Im p-1CmCr-1,
where

nl
Imogor = SO *sin™6 cos*~160 d6.

2.2. As an application of the above formulas we get the following lemma

for S™**(1) expressed as
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(£ + - F(Xme)* F @)+ -+ =1

and a homogeneous polynomial P,(x)=PFP.s(xy, -+, xm41) Of degree 2s.
LEMMA 2.2.1. For the integral of P,x) we have
2.2.1) [Pt domen = Losim,sseas| Pastirdon,

where u is the unit vector of R™ as dw, indicates.

PrOOF. Here and also in what follows the domain of integration is not
explicitly shown when the volume element is written. The following calculation
proves the lemma.

nl
SPQS(xme — SD ZSPZS(u sin 6)sin™8 dw,cos* 0 dw,_,d0

= S:lngzs(u)dwmdwk_lsinz“mﬁ cos* 10 db

= [28+m.k—lSPZS(u)dmedwk—l- g.e.d.
Let {ey, -+, em+r+1} De an orthonormal basis of R™***! and R™*!' be the
subspace spanned by e,, -, en4;. Consider the projection P: R™**+'—»R™*!
given by Pe,=e,, -+, Peqi1=€mn4y, Penss=0, -, Pep.py;,=0. Then we get as

an application of the following corollary.
COROLLARY 2.2.2. We have
(2.2.2) (Ty, Tohmmes = \Tu(PA, -, POT(PA, -+, PU)dwn s
= Losim, k-1Ck-1(T1, To)m s
i ranging over S™**(1).

Here T, and T, are symmetric tensors of degree s on R™ ' (T, To)m. m+s
is defined by this formula, while (T, T:). is defined by

(Ty, To)m = STl(u, o, W) To(u, -, u)dwn .

§3. Extension of tensors on R™*' to those on R™**+!,

In §2 we considered P: R™***'—>R™*!, Since R™*!is a subspace of R™*#+!
when P9, seR™***! is considered as a vector of R™***! it is sometimes written
as P¥ if necessary. Naturally we have PPpy=P7.

DEFINITION 3.1. Let T be a symmetric tensor of degree s on R™*! and ¥,
a vector in R™**+!, Then the symmetric tensor 7' on R™***! defined by
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(3.1) T(@,, -, 9) = T(Pt,, -, Py)
is called the extension of T and is denoted by ext,T.

It is easy to see that a tensor T on R™**+1 is the extension of a certain
tensor T on R™*! if and only if

(3.2) TP, -, Poy=T
since PPy=Py.
It is also easy to see that we have
(exty Ty, exXteTo)mer = (T1, To)m. mr
for symmetric tensors 7; and T, on R™*'. Furthermore we have
lext, T, ext,T,] = [T,, T.]
where [T, T,] is defined by

("71; M) ﬁs)

%
[Tl) TZ] = ZTl(eily T eis>T2<eily ) eis)
1
>¥ indicating summation where each of 7, -, 7; ranges over 1, ---, m-1.

LEMMA 3.2. T=ext,T is a symmetric harmonic tensor on R™ **' i{f and
only if T is a symmetric harmonic tensor on R™%,

Proor. We take an orthonormal basis of R™ **! asin §2.2 and use indices
i=1, .-, m+1 and p=m-+2, ---, m+k+1. If T is harmonic, we have

ZT(ei, ei: v, "';U):O, UERm+1.

Then, since Pe;=¢; and Pe,=0, we get
ZT(ei’ €4 ﬁy Ty, 27)—*—%7‘(@1)7 €p,s ﬁ’ ) 5)

T

- 27‘(91‘, éq, ﬁﬁy ) ﬁﬂ): ZT(eiy Ciy Pﬁr T Pﬁ):O

2

which shows that T is harmonic. We can easily see that the converse is also
true. g.e.d.

Let us take a basis {77, ---, T*™ 9} of V(m, s) orthonormal in the sense
of tensors, that is, in the sense of inner products [ , ]. Then the set
(T4, -, Tromo) where TP=ext,T* (P=1, ---, n(m, s)), is orthonormal as well
in V(m-+k, s). Hence, supplementing this with symmetric harmonic tensors
TY (X=n(m, s)+1, -, nim+Ek, s)) suitably chosen, we get a basis {7~“1, e
Tromtb. o) of V(m-+k, s) orthonormal in the sense of tensors. This satisfies

(3.3) (T4, T’B)m” = (slm+E—D1/Qs+m=+E—1)Dcp, 048
A, B=1, -+, n(m+E£k, s).
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To get this formula we can use the formulas (H4, HB),=c48, [H4, HB]=c'048
satisfied by the basis {H*, ---, H*“™ ®} of V(m, s) corresponding to a standard
minimal immersion A, [3,85]. ¢ and ¢’ are computed according to the
formulas given in [3, p. 3227, thus

¢ = (r(m, $))cn/n(m, s), ¢ =mN2s+m—33I/s(s+m—1)!,
so that we get
(3.4) (T4, T®),, = (c/c")0*E = (s!m—I)/(2s+m—1D))c, 645,

Replacing m with m+k, we get

REMARK. We consider [, s: S™(1)—S™™9-1y(1m, s)).

§4. Extension of standard minimal immersions.

We take an orthonormal basis {T, ---, T"™ %} of the space V(m, s) and
the orthonormal basis {77, -, Tm+5.9) of the space V(m—+£k, s) as in §3.
Then the harmonic tensors H!, ---, H*™® and H?, .-, H"™+% wwhich are
taken as

H? = (CI)I/ZTP’ H'P — (5/)1/27*19, ﬁX — (5r)1/2"]"‘X
are associated with standard minimal immersions A, s and h,., s respectively
since they satisfy

[H?, H?] = ¢'67°, [ﬁA, ]?13] — I5AB

for P, Q=1, ---, n(m, s) and A, B=1, ---, n(m-+Ek, s). The immersion Anis s
obtained in this way is called the extension of hn. s and is denoted by Extihn, ;.

85. fmar s obtained as an extension of [, ;.

As was stated in §4, we have a standard minimal immersion iz s
corresponding to a standard minimal immersion %, s such that HP=(¢")/*T¥,
HP=(¢")%ext,T*, hence

(5.1) HP = (/¢ 2ext, HE.

This suggests us a new correspondence between tensors on R™*! and those
on R™*+1 T—jext, T, where T is a tensor on R™*! and A is given by
. (m—+ k) (s4+m—1)! 2s+m+Ek—3)!
2 ’ [J— . .
-2 A= = Gotmt k=D 2s+tm_3)!

Minding such a correspondence we get the following theorem.

THEOREM 5.1. Let FF (P=1, ---, n(m, s)) be tensors associated with an
isometric minimal immersion fn.s. Taking the number A>0 given above, put
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tensors F4 (A=1, -, n(m+k, s)) on R™*+1 gs
FP) = epAFP(PD),
ﬁX(f}l) = EXI:IX(ﬁ) (X=n(m, $)+1, -, n(m+£k, s)),

where |ey|=1. Then there exists an isometric minimal immersion fmip <
IMI(m+k, s) such that F4 are associated with Fmar, s

PROOF. As we have

je5"

SFQF A @A™ =0,
X X
we get
2 FAFA@)— S A0 ) = 3 F0)F ()~ S A7 0)H ()
= 22[§ FP(Pﬁ)FP(sz)—gHP(Pﬁ)HP(Pw)]
= #C(P?, -+, PU; P, ---, PW)

where C=31p(FFRQFF*—HFRQHFP)=sW(m, s). Let us define a bi-symmetric tensor
C on Rmtk+1 by

(5.3) 5(5, e D@, e, W) = RC(PD, -, Py Pib, -, PW).
Then it is easy to see that C satisfies the conditions éEB(m—l-k, s) and (a)

with m replaced by m~+%. Thus C=Lim+k, s) and F4 are tensors associated
with an isometric minimal immersion. g.e.d.

shows that, if C belongs to L(m, s), then C obtained by
belongs to L(m-+£k, s).

DEFINITION 5.2. An element C of W(m-k, s) obtained from an element C
of W(m, s) by (5.3), with 4% given by (5.2), is called the extension of C and is
denoted by AC. A induces a mapping A:W(m, s)»>W(m+£k, s).

THEOREM 5.3. A is an injective homomorphism such that

AL(m, s) = Lim~+k, YNAW(m, s).

PrOOF. From we get

AL(m, s) & Lim+k, s)YNAW(m, s).

If the set {F?; P=1, ---, n(m, s)} is linearly dependent, then so are the set
{FP: P=1, -, n(m, s)}, and hence the set {F4; A=1, -, n(m+Ek, s)} as well.
Thus we have

A0L(m, s) COL(m~+k, YNAW (m, s),

which proves the theorem, since L is a convex body. g.e.d.

DEFINITION 5.4. In Theorem 5.1 we may put e,==+1 for each of
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A=1, -, n(m+k, s) arbitrarily. This is a natural result of the notion of
equivalence. When ¢ =1 for every A, the resulting fn,.: ;is called an extension
of fn.. s and is denoted by Ext,f. .

When f. s is given, there still exist many extensions Ext, f..  since there
exists some degree of freedom in the choice of HZ.

As an application of [Theorem 5.1l and [Theorem 5.3, we get a corollary of
the following theorem due to Mashimo [2].

THEOREM A. Let s be an integer s=4. Then there exists an isometric
minimal immersion of S*(1) into S¥TFNr), ¥r?=3/s(s+2). Let s be an even integer
s=6. Then there exists an isometric minimal immersion of S*(1) into S*(r), r*=

3/s(s+2).

COROLLARY B. [If s=4, there exists an isometric minimal immersion of a (3+k)-
sphere into a 2s+1+n3B+k, s)—n(3, s))-sphere. If s is even and =6, then there
exists an isometric minimal immersion of a (3-+k)-sphere into an (s+n(3+k, s)—
n(3, s))-sphere.

§6. Distance between an isometric minimal immersion and its extension.

6.1. Let Ext,f, s be an extension of an isometric minimal immersion fn, s.
We define the ground distance d. ... between f, s and Ext,f,., sin the follow-
ing way. We can consider that f, (S™(1)) lies in R*™® and Exty fn,{(S™*(1))
lies in R™"¢™+% % where R™"™® is the subspace of R"™*+# % generated by the
first n(m, s) vectors of a fixed orthonormal basis of R*™** % We consider
the distance d, m+r(u) between f, (u) and Ext,f, s(#) where ueS™(1),
#eS™*(1) with Pii=u. The relation Pii=u simply means that # belongs to
R™N\S™*(1)=S™(1) and #i=u. Under this circumstance R*™ % and S™(1)
are called the ground space and the ground sphere respectively.

Then, since we have put ¢,=1, we get

EXty fm,o(i1) = FP()ep+FX(i0)ex = AFP(w)ep+H*(il)ox,
where ép lie in the ground space and &y are vertical to the ground space. On

the other hand we have f, J{(u)=FF(u)ép. Thus the distance dn, n.z(u) is
given by

(6.1.1) (dm, mr(w)) = g(ZFP(u)—FP(u))Z+§(ﬁX(ﬁ))z.
Since the right hand side becomes
;(ZFP(M)W-? (Jfl""(ﬂ))2+(1—2/1@(1"””(10)2

which is equal to
(rim+k, $)*+A—=22)(r(m, 5))?,
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where »(m, s) (resp. r(m+k, s)) is the radius of the sphere on which f, (S™(1))
(resp. Exty fm.s(S™*#(1))) lies, dn, m+z(u) does not depend on u and is denoted
simply by dum. m+s.

Thus we have the following definition and theorem.

DEFINITION 6.1.1. dp m.r is called the ground distance between f, s and
its extension Exty fm s

THEOREM 6.1.2. The ground distance dgn m+r between f, ;=IMI(m, s) and
its extension EXt, fm s is given by
(6.1.2) A, mr = (r(m+k, $)P+(1—=22)(r(m, s))*)"/*

where A is the positive number given by (5.2). Furthermore the ground distance

does mnot depend on the choice of the immersion fn s and is determined only by
m, k and s.

Now let us consider the distance between the ground space and the image
of the ground sphere by the extension Ext,f. s Clearly the square of the
distance is given by Jx(H *(#))* for each point. On the other hand we have

(6.1.3) (r(m+k, ) = lzg(FP(u))“r;(ﬁX(ﬁ))z = A(r(m, S))2+§(F1X(ﬁ))2,

hence
;(ﬁX(a»z = (rim-+k, $))P—22(r(m, s))?.

This admits us to give the following definition and theorem.

DEFINITION 6.1.3. Let Ext,f. s be an extension of f, ;=IMI(m, s) and let
% be the position vector of a point of the ground sphere, hence f=Pi. As the
distance between the point Ext, f. (#) and the ground space does not depend
on #, it is called the ground distance between the extension EXxt,f. . and the
ground space.

THEOREM 6.1.4. Let fu. s be an immersion <IMI(m, s). The ground distance
between Exty fn s and the ground space is given by
(6.1.4) ((rim+k, $)?—A%(r(m, s))*)'/*
hence depends only on m, k and s.

We give two examples where s is less than 4, hence all immersions are
standard minimal immersions.

ExaMmMpPLE 1. s=2,m=2, k=1. Then we have n(2,2)=5, n(3, 2)=9,
(r(2, 2))2=1/3, (»(3, 2))2=3/8. We take variables «x, y, z in R® and variables
x, v,z tin R*. Then we can choose

H'==xy, H'==xz, H'=yz, H'=(1/2)(x"-y",
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HS = 12—1/2(x2+y2_222)
as a standard basis of V(2, 2). As A=1 in this case,

HA'=H', HA*=H* HA*=H*, H‘=H', H'=H', H'=uzt,

H? = yt, H® = zt, H? = 24-12(x2 4 y24-22—312)
can be considered as a standard basis of V(3, 2) extended from the basis of
V(2, 2) given above. The image of the ground sphere is obtained when we
put ¢=0, hence x%+y*+2z?=1, hence H*=H"=H*=0 and H°*=24-'2, Thus we
get d, s=24"'%, The ground distance between the extension and the ground
space is also 2412,

ExampLE 2. s=3,m=2, k=1. Then we have =n(2, 3)=7, n(3, 3)=16,

(2, 3))*=1/6, (r(3, 3))*=1/5. We take the same variables as in Example 1 and
can choose

H'=axyz, H? = bx(y?—2z?%), H?® = by(x*—2%),
H* = bz(x*—y?), H® = ¢x(2x*—3y*—32%),
H® = cy(2y*—3x2—32%), H" = ¢cz(222—3x*—3y?),

with a=(5/2)'?, b=a/2, c=24"%, as the standard basis of V(2, 3). As we get
A*=24/25 in this case,

H'=2H', .., H'=2H", H®*=2axyt, H*=iaxzt,
A =2ayzt, H"=2(x*—y%), H*=3"22bH(x*+y*—22",
H® =5"12%(x2 43222 —1?),  HY" =57"x(x’+y'+2*—5t%),

H* =5"1y(x’+y*+2°—56%),  H' =57"2(x*+y*+2*—5t?)

can be taken as a standard basis of V(3, 3) extended from the ’basis of V(2,3
given above. Putting =0 we get
H =2, -, H'=2H", Ht=--=H"*=0,

~

Av=51x, HA®=51y, H®=5"z,

After some computation we get (d,, 5)?=11/30—(4/5)6"/%, The ground distance
between the extension and the ground space is 1/5.
All these results coincide with [(6.1.2) and [(6.1.4).

6.2. The distance d, m.: considered above is so to say the distance
between fn. (S™1)) and Ext,fm. {(S™1)). It is desirable to know more about
ExXty fn. (S™**(1)). When # is an arbitrary unit vector in R™+*+! let us take
P#i/|Pf) as the unit vector in R™*! corresponding to #. This allows us*to
consider the distance d(Ext:fm.s(8), fm.s(Pi/|Pi)=dn m+s(#) for which we
get

(dm, mas(@) = (1=22] Pu||*)r(m, s)}+((m+k, 5))°
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since we have FP(Pii)=| Pi|*F?(Pi/|Pi)).
The distance between the ground space and the image by the extension
Extyfm.s of S™*#(1) is also easy to compute. We get

((r(m+k, )P —(A| Pa|*r(m, s)*)>

Thus we get the following theorem.

THEOREM 6.2.1. Let fmis.s be an extension of fn. sSIMIm,s). Then the
distance between ExXty fn. (@), #SS™ *(1), and the ground space R™** is not less than

r(m+k, sX1—Qr(m, s)/r(m+Fk, s,

§7. Relation between an isometric minimal immersion and a standard
minimal immersion.

7.1. As we consider for a while only immersions of IMI(m, s), we use in
§7.1 and in §7.2 indices ranging as
A,B’C,...=1,...,n; P’Q’R’.-.zl’-..,p;
X’ Yr Z: e = P+1, e, n
where n=n(m, s) and p is an integer 1<p<n.
Let us recall that tensors F4 or H# associated with an fn, ,IMI(m, s) or
an hn,,=SMl(m, s) depend on the choice of the orthonormal basis {&,, -, &a}

of R*. As F4 belong to V(m, s)and {H!, ---, H"} is a standard basis of V(m, s),
we can put

(7.1.1) F4 = ;f“BHB,

where f42 are numbers making an nXn matrix f. On the other hand, for
C&W(m, s) there exists a symmetric matrix [¢4Z] such that

C = X c*BHARQHE.
is

We are going to study the behavior of the matrices [ f4%] and [¢4®] when we
choose a suitable basis of R®, a suitable immersion from the given equivalence
class [fn.s] and a suitable standard minimal immersion.

Taking a suitable basis {H?, ---, H*} and hence the corresponding standard
minimal immersion k., we have a diagonal form for C,

(7.1.2) C= §c4H4®H4.
If moreover C satisfies
C= ﬁ“..(F“@F“’—HA@H‘),

where F4 are associated with f, ,, we have
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%}F“‘@F“‘ = C+§HA®HA = %}(l—l—c‘)H‘@H“.

Thus we get
CA fCBJITA B — A A
A;A:‘.'Cf fCBHARQH _§(1+c YHARHA
and hence
(7'1’3) ?fCAfC’B —_ (l_I_CA‘)BAB, %(fCA)Z — 1+CA .

This shows that, whenever C belongs to L(m, s), we have 1-4c¢4=0 for each
of A=1, .-+, n. Conversely, if 14-¢4=0, then there exists an isometric minimal
immersion gn, s such that
GA = (1+CA)1/2HA
are the tensors associated with g, .. Thus the condition 14c4=0 (all A) is
the necessary and sufficient condition for C to belong to L(m, s), and this
condition is satisfied in our case. If 14+¢4=0 for some A, then we have
CedL(m, s).
Let us consider the relation between f, , and gn,,. As we have

G4 = d4H4, F4 =3 f4BHB
B

where d4=(1-4c4)"/?, we get, if d4>0 for all A,
FA —_ ;(fAB/dB)GB.

From this and we get
?(fAB/dB)(fAC/dC) — 630

and this shows that the matrix [f42/d®] is an orthogonal matrix. Thus gna,.
and fn, . belong to one and the same equivalence class.

If we have d?>0 but d¥=0 for P=1, -+, p and X=p-+1, ---, n, then we
get f4¥=0, GP=dPH?, GX¥=0, hence

FA J— ;fAPHP — ?(fﬁ?/dP)GP_i_?gAXGX ,
SI(FAP/d) F49/d) = 570

where we can choose g4¥ freely. Thus, when g4%¥ are chosen such that
[f4F/dF, g4%X] is an orthogonal matrix, g.., belongs to the equivalence class
of fm,s

Thus we have proved the following theorem.

THEOREM 7.1.1. Let an orthonormal basis of R™ be fixed, fn.. be an arbi-
trary isometric minimal immersion and h, . be a suitable standard minimal
immersion. Then there exists an isometric minimal immersion gn . belonging to
the equivalence class of fm.s such that tensors G4 and H*4 associated with Gm.e
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and hn, s respectively satisfy
GA = giH*4, g4=0.

The relation between F4 and G4 can be written
F4 = 3 q48G3, G4 = S qBAFB
B B

where a=[a4%] is an orthogonal matrix. Let {&, ---, &,} be the orthonormal
basis of R™ with respect to which F4, G4 and H4 are the tensors considered
above. Then taking another orthonormal basis {&i, ---, &,} such that

é‘:l = %aBAéB,

we get F42,=G4¢4. This shows that G4 are the tensors associated with f, ,
with respect to the new basis {&f, ---, é,}. Let h7,., be another standard
minimal immersion such that the tensors associated with A, , are H4 with
respect to the new basis, namely the tensors associated are Xza42HZ with
respect to the old basis. Then we can deduce from the equation G4=g4H4,
g4=0 the following theorem.

THEOREM 7.1.2. Let fn.s be an arbitrary isometric minimal immersion. If
we choose a suitable orthonormal basis of R™ and a suitable standard minimal
immersion hp,s, then the tensors F4 and H* associated with fn,s and hp, s
respectively satisfy

(7.1.4) F4 = q4H4, a*=0.
7.2. Assuming fa, s and h,,, satisfy the condition [7.1.4), we compute the

pointwise distance between [, (S™(1)) and A, (S™1)), namely d(fn, (%), An,(®))
where u is a unit vector in R™*!., For this distance p(u) we have

(p(w))? = gl(F“(u)—I‘l"(u))2 = ;J(CZ“—I)Z(H“‘(u))2
and also
(p(u))* = 2r2—2§ a(H4(u))? = 2;(1-—0“)(H A(u)).

As it is easy to see, p(u) coincides with min{d(fn,(u), hn,:®)); lvl=1} if o(u)
does not depend on u.
We can put

et =a; (A=n+ - +n+1, -, gt - +ny)
where =1, .-+, p, Zin;=n and a,>a,> - >a,=0. Let us define
(7.2.1) oiu) = g;(HA(u>>2

where X, means the sum for A=n,+ --- +n;_,+1, .-, n;+ --- +n;. Then we
have
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Sou) = 2(HA W)y =1,
2adfou) = Z(a*HYu)f =1r*,
(p(w)) = 2r*=22 aioi(u).

In some following paragraphs we consider the case where ¢,(u) do not
depend on u. Then putting ¢, (u)=0; we get from o;=(n;/n)r* because
offc=r’c,/n [3, §5], hence p(u)=p does not depend on u.

(7.2.2) o' = (1= & nay/n)r.
i=1 :
Thus we have obtained the following lemma and corollary.

LEMMA 7.2.1. Let fn .SIMI(m, s) and hn, +=SMI(m, s) be such that (7.1.4)
is satisfied and moreover the basis {HY, ---, H"} corresponding to hn s be such
that]lo(u) defined by (7.2.1) do not depend on usS™1). Then d(fm, (1), hm,(©))
=p is given by (7.2.2).

COROLLARY 7.2.2. Let hn,s be a standard minimal immersion with the
corresponding basis {H*, ---, H"} satisfying o(u)=a;. If ai, -+, ap are numbers
such that

;21 aSH*QH € Lim, 5),

then there exists an isometric minimal immersion fn. s satisfying (7.1.4) and such
that d(fm, (1), hm, (1)) does not depend on the unit vector u.

ExAMPLE 1. From the result we have got in [6, § 9], where some cases of
S3(1)—-S%(r), r*=1/8, are treated, we can easily deduce that there exists a standard
minimal immersion A, , with {H?, ---, H*®} such that

1 10 25
-—(3 S HAQHA—2 ) HA@HA) e L@, 4).
) ) 2 A=1 A=11
Then we have an isometric minimal immersion f;, such that
5

1/2
F4=q4H4, a1:___m___alo:(?) , gt = oo = g% = 0.

This satisfies

(@f i), ko) = (1—(2)") /4.

ExampPLE 2. We have the following C&0L(3, 4) as well,

C= —1(3 $ HagH-2  HAQHA)
3 A=1 A=11 *
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Then we can take f; , satisfying (7.1,4) for which the associated F4-arelgiven }
by

5\1/2
FAzaAHA, a":-.._—_aw—_-o, a11=--v=a25:(§-) ’
hence

(@ o), hoi0 = (1=(2) )4

7.3. Let us study about extensions of f,., and h, , when the conditions
of Lemma 7.2.1 are satisfied. fm+z.s and Ansz,s Which we take as extensions =
are such that the corresponding {F?, .., Fnm+r.o}y ang {H?, ..., Grim+k0)
satisfy
(7.3.1) Fe@) = AF5(PY), HF (@) = AH?(PD), P=1, -, n(m, s),

Fx@m)=HA*®), X=n(m, s)+1, -, n(m+k, s).
Then we have

FA = dAﬁA: A:l, Tty n(m'l'k; S),

af = a®, a¥ =1,

§fl) = (\%(ﬁr(ﬁ))z = 2o (Pfi) = 2| Pi|*0,,

SHEF@) = P —2|Pa|* Sow = (rtn+k, Y=L PI|*rm, 5)7,
hence 5(i)=d(fm+r.s(&), hmss,+(%)) is obtained from
| (p(@)* = FX@)—A @) = SEXa)—A7 @)
= Azip:(a” —1)"(HP(Pi))* = 2*| Pi||* p*

where p=d(fn, (), hm,(u)).
Thus we have proved the following theorem.

THEOREM 7.3.1. Suppose that fm., and hn,s satisfy the conditions of Lemma
7.2.1, while fnir s and hpmir,s ave extensions satisfying (7.3.1). Then the point-
wise distance p(A)=d(fmsr, (), Amsre, (%)) satisfies p(A)=A|Pi|*p where p=
A(fm, (1), hm,(u)) does not depend on u.

Then it is clear that, at the point # where P# vanishes, we have §(#)=0.
This shows that fnie,s(S™*(1)) and hnpsr, o(S™F*(1)) come in contact there. On
the other hand the pointwise distance d(fm+r.s(S™(1)), Amsr, s(S™(1))), where S™(1)
is the ground sphere, is equal to 2p.

74. Let M and N be submanifolds of a Euclidean space and ¢: M—N be
a suitable mapping. Then it is not unnatural to define the distance d(M, N)
from M to N by
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&, Wy = ((d(x, panrdo / fdo
where x&M and dw is the volume element of M. As a variation of such an

idea we define the distance d(fm.s An,s) as follows.

DEFINITION 7.4.1 The number d(fn. s, hn, s)=0 is defined by

27 cu(d( o P, O = (A s, B, )P0

and is called the relative distance or, simply, the distance between f, , and
ha, e

From (7.1.1) we get

(d(fm,ow), b, (W) = SUFAu)— HAw))* = 2r*—2 3 FAuw)H ()
= 2r‘—2§B fABH4(u)H B(u),

where A, B=1, ---, n. Then we get, by some computations [3, (5.1) and (5.12)],

S(d(fm.s(u): R, (W) dwn = 2r*cn—2Tr(f)/n)r cm .

This proves the following lemma.

LEMMA 7.4.2. The distance d(fm,s, hm,s) is given by
(7.4.1) (d(fm, 8 hm, o)) =Tr(d—f)
where 1 is the unit matrix of order n.

75. d(fm.s, hm.s) depends on h,, We now define and consider
d(fm.s, SMI(m, s)) where SMI(m, s) is the equivalence class of A, .

DEFINITION 7.5.1. d(fn.s, SMI(m, s)) is the least value of d(fn. s Am.s),
ha, =SMI(m, s).

We get d(fm.s, SMI(m, s)) when Tr(f) takes the largest value. From The-
orem 7.1.2, for any fn.. there exist an orthonormal basis of R® and a stand-
ard minimal immersion 4, ; such that
(7.5.1) F4 = qg4H4, a*=0.

If an arbitrary orthonormal basis of R™ and an arbitrary standard minimal
immersion are taken, we have an equation of the form

EB'JSABFB — aA§TABHB

instead of (7.5.1) where S=[S42] and T=[T42] are orthogonal matrices. Then
we have
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FA — ZfABHB, fAB — ZSCAGCTGB
B c

and consequently
Tr(f) = %(TS")CCa".

TS-' being an orthogonal matrix, no diagonal element is larger than 1. As a€
are nonnegative, we have

Tr(f) = §}a‘4.
This proves the following theorem.
THEOREM 7.5.2. The distance d(fm,s, SMI(m, s)) is given by d(fm.s) Am.s)
where fn.s and hy, s satisfy (7.1.4), hence
(d(fm,e SMI(m, s)))* = n—23 a“.

7.6. As an application we consider d(EXtyfn. s, SMI(m+£k, s)). We now

use indices ranging as follows,

P=1, -, nlm,s); X=nlm, s)+1, -, n(m+k, s);

A=1, -, n(m+k, s).
The orthonormal basis of R"¢™*® and h, s are supposed to be such that we
have FF=afPH¥, a®=0. Then, as we have shown in §5, we can take Ext, fn.s,
Extihn, s and the orthonormal basis of R™™+*.® guch that FP=qaPH?, FX=HX,
Thus we get

Fa=gafa

where @¥=a®, a¥*=1. This proves the following theorem.

THEOREM 7.6.1. Let Ext,fn. s be an extension of fm.s. Then we have
d(fm.ss SMI(m, s)) = d(Exts fm,s, SMI(m+£, s)),

namely, extension leaves invariant the distance between an isometric minimal
immersion and the equivalence class of standard minimal immersions.

§ 8. Isotropic property.

Isotropic property of isometric minimal immersions of spheres into spheres
was studied in and [8]. Isotropic property considered in the present paper
is defined as follows.

DerFINITION 8.1. Let C be an element of W(m, s). If C(v, =+, v, w, =+, w;
v, -+, v, W, -, w), which is r-linear in v, identically vanishes when r<2j+1,
then C is said to be j-isotropic.

Let CeW(m, s) and CW(m+k, s) be such that C=AC. Then we have
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LY

C(ﬁ, tty 17’ w: ) W H 5: Ty ij, w: tty 'lU)

= 'zzc(v: ey Uy, Wy v, WD, 0, U, W, o, ‘LU)

where v=P%, w=P®. This proves the following theorem.

THEOREM 8.2. The mapping A leaves invariant the isotropic property of

elements of W(m, s).
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