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\S 0. Introduction.

Following [3], [6] let $\Theta^{m.n}$ be the set of $h$ -cobordism classes of pairs $(S^{m}, K)$

consisting of an oriented homotopy $n$-sphere $K$ embedded in the oriented m-
sphere $S^{m}$ . It forms an abelian group under connected sum of pairs and the
inverse element of $(S^{m}, K)$ , denoted by $-(S^{m}, K)$ , is given by reversing both
orientations of $S^{m}$ and $K$. In case $m-n\geqq 3$ and $n\geqq 5,$ $\Theta^{m.n}$ can be regarded as
the isotopy classes of such pairs $(S^{m}, K)$ by the $h$ -cobordism theorem for pairs.
Henceforth we will assume $m-n\geqq 3$ and $n\geqq 5$ .

The group $\Theta^{7n.n}$ is well understood by the work of J. Levine [6]. A result
of [6] says that $\Theta^{m,n}$ has a free part of rank one if and only if $n+1\equiv 0(mod 4)$

and $3(n+1)\geqq 2m$ , and is finite otherwise. Moreover Levine’s work implicitly
says that in case $3n\geqq 2m$ , there is a homomorphism called the signature of knots

$\sigma:\Theta^{m,n}arrow Q$

and that

(0.1) the kernel of $\sigma$ is finite.

When there is a Seifert surface for $K,$ $\sigma(S^{m}, K)$ is defined as the signature
of the Seifert surface. It is easily checked that the value is independent of the
choice of a Seifert surface (here we need the assumption $3n\geqq 2m$). Moreover
it immediately follows from the definition that the signature of a Seifert surface
is additive with respect to connected sum of pairs. Every knot does not have
a Seifert surface, but certain times connected sum of it necessarily has a Seifert
surface. Hence one can extend the domain of $\sigma$ to the whole group $\Theta^{m.n}$ by
virtue of the additivity property of signature with respect to connected sum.

In this paper we intend to extend the domain of $\sigma$ to a more general family
of pairs $(M, F)$ consisting of a connected, closed, oriented $m$-dimensional smooth
manifold $M$ and a connected closed oriented $n$ -dimensional smooth submanifold
$F$ of $M$. We require this additivity property:

(AP) $l((M_{1}, F_{1})\#(M_{2}, F_{2}))=l(M_{1}, F_{1})+l(M_{2}, F_{2})$ .
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A conclusion of this paper is that such an invariant $l$ extending $\sigma$ can be defined
on a family $\overline{\Gamma}^{m.n}$ (see \S 1) of pairs $(M, F)$ , but Theorem A stated below tells $\ovalbox{\tt\small REJECT}$

us that there is no such $l$ defined on the whole family of pairs.
We shall exhibit three aPplications of our invariant 1. Another aPplication

will be given in [10].

For a pair $(M, F)$ we set

$I(M, F)=\{(S^{m}, K)\in\Theta^{m,n}|(M, F)\#(S^{m}, K)\cong(M, F)\}$

where $\cong$ indicates that there is an orientation preserving diffeomorphism of
pairs. $I(M, F)$ is a subgroup of $\Theta^{m.n}$ . This is a natural extension of the
inertia group $I(M)$ of a smooth oriented manifold $M$ to pairs. The inertia group
$I(M)$ is always finite (at least if $m\neq 3,4$) because the group of diffeomorphism
classes of oriented homotopy $n$ -spheres is finite [5]. In contrast to this, $\Theta^{m.n}$

is often infinite as remarked before. Therefore the following problem arises
(see also [11]).

PROBLEM. IS $I(M, F)$ finite
Needless to say, this problem has a sense only when $3(n+1)\geqq 2m$ and $n+1$

$\equiv 0(mod 4)$ . The first statement of the following theorem is a direct consequence
of (0.1) and (AP), and the latter tells us that one cannot extend $\sigma$ , preserving
the additivity property (AP), to the whole family of pairs.

THEOREM A. (1) If $(M, F)\in\overline{\Gamma}^{m.n}$ then $I(M, F)$ is finite.
(2) There is an example of a Pair $(M, F)$ such that $I(M, F)$ is infinite.
The second application is to splitting of Levine’s exact sequence of codi-

mension 3 knots. Levine [6] established a long exact sequence relating the
group $\Theta^{m.n}$ to well studied homotopy groups. In case $n+1\equiv 0(mod 4)$ , the long
exact sequence reduces to a short exact sequence:

$\partial_{3}$

$(*)$ $0arrow Zarrow\Theta^{m,n}arrow\pi_{n}(G_{m-n}, SO_{m- n})arrow 0$

(see [6, (3) of (2.2)]). As far as the author knows, little is known concerning
the group extension of this exact sequence (cf. [7, \S IV], [8]).

THEOREM B. Suppose $n+1\equiv 0(mod 4)$ . Then
(1) the composition $l\cdot\partial_{3}$ is multiplicafion by 8,
(2) if $m-n=3$ , then $l(\Theta^{m,n})\subset Z$.

The following corollary immediately follows from Theorem B.

COROLLARY. Suppose $n+1\equiv 0(mod 4)$ and $m-n=3$ . Then
(1) If $\pi_{n}(G_{3}, SO_{3})$ is of odd order, then the above exact sequence $(*)$ splits.
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(Ex. $n=7$ see [7, p. 182].)
(2) The p-component of $\Theta^{m,n}$ is isomorPhic to that of $\pi_{n}(G_{3}, SO_{3})$ if $p$ is

an odd prime.

The final application is to a problem posed by Bredon. In [2, p. 340] he
introduced an abelian group $\Theta_{n}^{m}(0<n<m)$ consisting of $L$ -equivalence classes of
smooth involutions $T$ on oriented homotopy $m$-spheres $\Sigma$ with oriented fixed
point set $F$ of dimension $n$ . The correspondence: $(\Sigma, T, F)arrow(\Sigma, F)$ induces a
map from $\Theta_{n}^{m}$ to $\overline{\Gamma}^{m,n}$ identified by $L$ -equivalence relation. It turns out that $l$

is invariant under $L$ -equivalence; so 1 induces a homomorphism from $\Theta_{n}^{m}$ to $Q$

provided $3n\geqq 2m$ . The involution $T_{k}$ : $(z_{0}$ , $\cdot$ .. , $z_{2n+1})arrow(z_{0}$ , $\cdot$ .. , $Z_{2k},$ $-z_{2k+1}$ , $\cdot$ .. ,
$-z_{2n+1})$ on the Brieskorn manifold defined by

$W_{3}^{4n+1}=\{(z_{0}, z_{2n+1})\in C^{2n+2}|z_{0}^{3}+z_{1}^{2}+\cdots+z_{2n+1}^{2}=0\}\cap S^{4n+3}$

determines an element of $\Theta_{4k-1}^{4n+1}$ if we choose orientations on $W_{3}^{4n+1}$ and the fixed
point set $W_{3}^{4k-1}$ . Bredon asked if it is of infinite order and observed that this
is the case when $k=n$ ([2, p. 341]). We see that $l(W^{4n+1}, W^{4k-1})$ is non-zero,
which implies

THEOREM C. $(W_{3}^{4n+1}, T_{k}, W_{3}^{4k-1})$ is of infinite order in $\Theta_{4\succ 1}^{4n+1}$ if $3k>2n+1$ .

This paper is organized as follows. We define the invariant 1 in Section 1
and verify that it agrees with $\sigma$ on $\Theta^{m.n}$ in Section 2. In Section 3 we esta-
blish a product formula. The above three applications are discussed in Sections
4, 5, and 6 respectively.

Throughout this paper we work in the $C^{\infty}$ category and the following con-
ventions will be used.

CONVENTIONS. (1) A pair $(M, F)$ means that $M$ is a manifold, $F$ is a
submanifold of $M$, and both are closed, connected, and oriented.

(2) Given an oriented manifold $W$ , the boundary $\partial W$ of $W$ will be oriented
as follows. Let $(w_{1}, \cdots , w_{m})$ be an orthogonal frame such that the m-form
$w_{1}\wedge\cdots\wedge w_{m}$ represents the orientation of $W$ and $w_{1}$ is outward normal to $W$ .
Then we orient $\partial W$ by the $(m-1)$-form $w_{2}\wedge\cdots\wedge w_{m}$ . In this convention the
fundamental (resp. cofundamental) class of $(W, \partial W)$ (resp. $\partial W$) goes to that of
$\partial W$ (resp. $(W,$ $\partial W)$) via the connecting homomorphism in homology (resp. coho-
mology).

ACKNOWLEDGEMENT. The author is grateful to the referee for pointing
out several mistakes in an earlier manuscript.
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\S 1. Definition of the invariant $l$ .
AS explained in the introduction, a Seifert surface plays a role in the defini-

tion of $\sigma:\Theta^{m.n}arrow Q$ . The definition consists of two steps:
(1) TO see when a knot bounds a Seifert surface.
(2) TO check that the signature of a Seifert surface is independent of the

choice of a Seifert surface.
It is natural to adopt the same definition as $\sigma$ for a general pair $(M^{m}, F^{n})$ .

Although the second step does not work without any condition on $(M, F)$ , it is
not so difficult to seek a sufficient condition on $(M, F)$ so that the second step
works. However we encounter a serious problem at the first step. Needless
to say every pair $(M, F)$ does not have a Seifert surface. At least the homology
class represented by $F$ in $H_{n}(M;Z)$ must be zero if there is a Seifert surface
for $F$. Therefore certain conditions must be imposed on $(M, F)$ . But it seems
difficult to find an explicit sufficient condition on $(M, F)$ so that a Seifert surface
for $F$ exists. We shall explain this in more detail.

When we try to construct a Seifert surface for $F$ in the same way as in
the case of a knot, we first assume the normal bundle $\nu$ of $F$ is trivial. As
usual we identify $\nu$ with an open tubular neighborhood of $F$ in $M$. Hence
choosing a trivialization of $\nu$ gives a map $f$ from the boundary of $M-\nu$ to
$S^{m-n-1}$ . If $f$ extends to a map from $M-\nu$ to $S^{m-n-1}$ , then the inverse image
of a regular value in $S^{m-n-1}$ by the extended map gives a Seifert surface for
$F$. This extension problem is not so easy in case $m-n-1\geqq 2$ , because the
obstruction grouP $H^{q+1}(M-v, \partial(M-v);z_{q}(S^{m-n-1}))$ to extending $f$ is non-trivial
in general as so is $\pi_{q}(S^{m-n-1})$ .

TO avoid this difficulty we proceed in the following way, which is motivated
by the work of Montgomery-Yang [15] (see also [9]). Suppose the normal
bundle of $F$ is trivial and $F$ is null cobordant, say $F$ bounds a compact manifold
$Y$ of dimension $n+1$ . Then we do “surgery” of $M$ along $F$ using $Y$ . If there
is a Seifert surface for $F$, then the $(n+1)/4$-th $L$ -class of the resulting manifold
should be closely related to the signature of the Seifert surface via the signature
theorem. Thus we are led to define $l(M, F)$ using the $(n+1)/4$-th $L$ -class. This
procedure does not require the existence of a Seifert surface. Philosophically
speaking we moved from an internal invariant ( $i$ . $e$ . the signature of a Seifert
surface) to an external invariant. Our definition involves ambiguity at the
surgery step. It turns out that some conditions are necessary to ensure the
well-definedness.

NOW we shall carry out this idea. Throughout this paper all (co)homology
groups will be taken with rational coefficients unless otherwise stated. We
consider the family $\Gamma^{m.n}$ of oriented diffeomorphism classes of pairs $(M, F)$
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satisfying these conditions:
(C1) The normal bundle $v(F)$ of $F$ is trivial.
(C2) There is an oriented, connected, and compact manifold $Y$ such that

$\partial Y=F$ (as oriented manifolds) and the restriction map $H^{4S-1}(Y)arrow H^{4S-1}(F)$ is
surjective for $2s\leqq m-n$ .

(C3) The homology class $[F]$ represented by $F$ is zero in $H_{n}(M)$ .
(C4) If $n+1=4k$ , then the k-th $L$ -class $L_{k}(M)$ of Mvanishes in $H^{n+1}(M)$ .
Let $D^{q}$ be the unit disk of $R^{q}$ equipped with the natural orientation. Let

$\phi:(F\cross D^{m-n}, F\cross\{0\})arrow(M, F)$ be an orientation preserving embedding. We
consider the product of $M$ with the unit interval $I=[0,1]$ . Identifying $M\cross\{1\}$

with $M$ naturally, we glue $Y\cross D^{m-n}$ to $M\cross I$ via $\phi$ . We shall denote the
resulting manifold by $\overline{M}(\emptyset, Y)$ and give it the orientation induced from $Y\cross D^{m-n}$ .
The triad $(\overline{M}(\emptyset, Y);M\cross I,$ $Y\cross D^{m-n})$ yields a Mayer-Vietoris exact sequence:

(1.1) $H^{n}(Y\cross D^{m- n})\oplus H^{n}(M\cross I)arrow H^{n}(F\cross D^{m- n})arrow H^{n+1}(\overline{M}(\phi\delta Y))$

$arrow H^{n+1}(Y\cross D^{m-n})\oplus H^{n+1}(M\cross I)$ .
$11$

$0$

Since $H^{*}(F\cross D^{m-n})$ is isomorphic to $H^{*}(F)$ via the projection map, we regard
the cofundamental class $[F]^{*}$ of $F$ as an element of $H^{n}(F\cross D^{m-n})$ . Note that
(C3) is equivalent to the injectivity of the coboundary map $\delta$ in (1.1).

LEMMA 1.2. If $n+1=4k$ , then there is a unique rational number $l’(\overline{M}(\emptyset, Y))$

such that
$L_{k}(\overline{M}(\emptyset, Y))=l’(\overline{M}(\emptyset, Y))\delta([F]^{*})$ .

PROOF. Let $i:M\cross Iarrow\overline{M}(\phi, Y)$ be the inclusion map. By the naturality
of characteristic classes ([14]) we have

$i^{*}L_{k}(\overline{M}(\emptyset, Y))=L_{k}(M\cross I)$ .

Via the projection map to the first factor $H^{*}(M)$ is isomorphic to $H^{*}(MxI)$

and $L_{k}(M)$ goes to $L_{k}(M\cross I)$ . On the other hand, $L_{k}(M)$ vanishes by (C4).

These show that $i^{*}L_{k}(\overline{M}(\emptyset, Y))$ vanishes. This together with the exactness of
(1.1) proves the lemma. Q. E. D.

Although the value $l’(\overline{M}(\phi, Y))$ depends on the choice of $Y$ , we can prove

THEOREM 1.3. The difference Sign $Y-l’(\overline{M}(\emptyset, Y))$ is independent of the
choices of $\phi$ and $Y$, where Sign $Y$ denotes the signature of $Y$.

DEFINITION 1.4. We define $l(M, F)=SignY-l’(\overline{M}(\phi, Y))$ in case $n+1$ is
divisible by 4 and $l(M, F)=0$ otherwise.
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PROOF OF THEOREM 1.3. Let

$\phi_{+},$ $\phi_{-}:$ $(F\cross D^{m- n}, F\cross\{0\})arrow(M, F)$

be orientation preserving embeddings. Let $Y_{+}$ and $Y_{-}$ be oriented manifolds
as in (C2). Take the product of $M$ with the interval $J=[-1,1]$ . As before
we identify $M$ with $M\cross\{1\}$ (resp. $M\cross\{-1\}$ ) naturally and regard $\phi_{+}$ (resP. $\phi_{-}$ )

as an embedding to $M\cross\{1\}$ (resp. $M\cross\{-1\}$ ). We glue $Y_{+}\cross D^{m-n}$ and $Y_{-}\cross$

$D^{m-n}$ to $M\cross J$ via $\phi_{+}$ and $\phi_{-}$ respectively. If we cut the resulting manifold,
say $W$, at the level $0$ , it decomposes into two pieces. They can be identified
with $\overline{M}(\phi_{+}, Y_{+})$ and $ffi(\phi_{-}, Y_{-})$ respectively. Thus taking the orientation into
account, we obtain $W$ by pasting together $\overline{M}(\phi_{+}, Y_{+})$ and $-\overline{M}(\phi_{-}, Y_{-})$ along
$M\cross\{0\}=M$. Let $V$ be a closed submanifold of $W$ obtained by glueing $Y_{+}$ and
$Y_{-}$ to $F\cross J$ via $\phi_{+}$ and $\phi_{-}$ respectively. We abbreviate $F\cross\{1\}$ (resp. $F\cross\{-1\}$ )

as $F_{+}(resp. F_{-})$ . The triples $(W;Y_{\pm}\cross D^{m-n}, M\cross J)$ and (V; $Y_{\pm},$ $FxJ$ ) yield a
commutative diagram of Mayer-Vietoris exact sequences:

$H^{n}(F_{\pm}\cross D^{m-n})\underline{\delta_{W}}H^{n+1}(W)arrow f^{*}H^{n+1}(Y_{\pm}\cross D^{m- n})\oplus H^{n+1}(M\cross J)$

$\langle$ 1.5)
$\downarrow$ $\downarrow]^{*}$

$0||$

$\downarrow$

$H^{n}(F_{\pm})\underline{\delta_{V}}H^{n+1}(V)$
$H^{n+1}(Y_{\pm})\oplus H^{n+\iota}(F\cross J)$

$||$ $||$

$0$ $0$

where the vertical homomorphisms are induced by the inclusion maps.

LEMMA 1.6. $L_{k}(W)=l’(\overline{M}(\phi_{+}, Y_{+}))\delta_{W}([F_{+}]^{*})-l’(\overline{M}(\phi_{-}, Y_{-}))\delta_{W}([F_{-}]^{*})$ where
$[F.]^{*}$ are regarded as elements of $H^{n}(F_{\pm}\cross D^{m- n})$ via the $Pro_{J}$ ection map to the
first factor as before and $\delta_{1V}$ is the coboundary map in (1.5).

LEMMA 1.7. Let $j:Varrow W$ be the inclusion maP. Then
(1) $j^{*}L_{k}(W)=L_{k}(V)$ ,
(2) $]^{*}\delta_{W}([F_{+}]^{*})=j^{*}\delta_{W}([F_{-}]^{*})=[V]^{*}$ .

We shall take these lemmas for granted for the moment and complete the
proof of the theorem. We restrict the identity in Lemma 1.6 to $V$ . Then it
turns into

$L_{k}(V)=(l’(\overline{M}(\phi_{+}, Y_{+}))-l’(\overline{M}(\phi_{-}, Y_{-})))[V]^{*}$

by Lemma 1.7. On the other hand it follows from the signature theorem and
the additivity property of signature ([1, p. 588]) that

$L_{k}(V)[V]=SignV=SignY_{+}$–Sign $Y_{-}$ .

These two identities prove the theorem.
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PROOF OF LEMMA 1.6. Let $c:M\cross Jarrow W$ be the inclusion map. By the
naturality of characteristic classes and (C4) we have

$c^{*}L_{k}(W)=L_{k}(M\cross J)=0$ .
Hence the exactness of the sequence (1.5) implies that one can express

(1.8) $L_{k}(W)=a_{+}\delta_{W}([F_{+}]^{*})+a_{-}\delta_{W}([F_{-}]^{*})$

with rational numbers $a_{\pm}$ .
Remember that $W$ is obtained by pasting together $\overline{M}(\phi_{+}, Y_{+})$ and $-\overline{M}(\phi_{-}, Y_{-})$

along $M$. Restricting (1.8) to $\overline{M}(\phi_{+}, Y_{+})$ yields

$L_{k}(\overline{M}(\phi_{+}, Y_{+}))=a_{+}\delta([F_{+}]^{*})$

where $\delta$ is the coboundary map in (1.1). Since $F_{+}$ has the same orientation as
$F$, we conclude

$a_{+}=l’(\overline{M}(\phi_{+}, Y_{+}))$ .
Similarly, restricting (1.8) to $\overline{M}(\phi_{-}, Y_{-})$ and taking orientations into account,

we conclude
$a_{-}=-l’(\overline{M}(\phi_{-}, Y_{-}))$ .

These prove Lemma 1.6.

PROOF OF LEMMA 1.7. (1) Since the normal bundle $\nu(V)$ of $V$ in $W$ is of
dimension $m-n$ , the s-th Pontrjagin class $p,(v(V))$ of $\nu(V)$ vanishes by definition
for $2s>m-n$ (see [14, p. 174]). Hence it suffices to show $p_{s}(\nu(V))=0$ for $0<2s$

$\leqq m-n$ .
We consider the Mayer-Vietoris exact sequence of the triad obtained by

cutting $V$ along $F\cross\{0\}=F$. Since the resulting two pieces are homotopy equi-
valent to $Y_{\pm}$ respectively, we get an exact sequence

$H^{4S-1}(Y_{+})\oplus H^{4S-1}(Y_{-})arrow H^{4S- 1}(F)u^{*}arrow H^{4S}(V)arrow H^{4S}(Y_{+})\oplus H^{4S}(Y_{-})v^{*}$ .

By (C2) the above $u^{*}$ is surjective for $2s\leqq m-n$ and hence the above $v^{*}$ is
injective. On the other hand since $\nu(V)|Y_{\pm}$ is trivial by our construction,
$v^{*}(p_{s}(v(V)))=0$ for $s>0$ and hence $p_{s}(v(V))=0$ for 0<2s$m--n as required.

(2) Consider the diagram (1.5). Since $\delta_{V}([F_{+}]^{*})=\delta_{V}([F_{-}]^{*})=[V]^{*}$ as is
well known (see the conventions in the introduction), the assertion follows from
the commutativity of (1.5). Q. E. D.

THEOREM 1.9. Our invariant $l:\Gamma^{m,n}arrow Q$ satisfies the additivity property
(AP) in the introduction. Moreover $l(-(M, F))=-l(M, F)$ for $(M, F)\in\Gamma^{m.n}$ .

PROOF. We do boundary connected sum (of pairs) of $M_{1}\cross J$ and $M_{2}\cross J$ at
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the $-1$ level. The boundary of the resulting pair is diffeomorphlc to the dis-
joint union of $-((M_{1}, F_{1})\#(M_{2}, F_{2})),$ $(M_{1}, F_{1})$ , and $(M_{\mathfrak{g}}, F_{2})$ . We do surgery of
the same kind as before along $(F_{1}\cross\{-1\})\#(F_{2}\cross\{-1\})$ , $F_{1}\cross\{1\}$ , and $F_{2}\cross\{1\}$ .
Then an argument similar to the proof of Lemma 1.6 and to the last part of
the proof of Theorem 1.3 verifies the additivity property (AP).

The latter property is clear from the definition of $l$ . Q. E. D.

By virtue of the additivity property (AP) we can well extend the domain
of 1: $\Gamma^{m.n}arrow Q$ to the following semi-group $\overline{\Gamma}^{m,n}$ .

DEFINITION 1.10. $\overline{\Gamma}^{m,n}$ is the set of oriented diffeomorphism classes of
pairs $(M, F)$ such that certain times connected sum of $(M, F)$ with itself belongs
to $\Gamma^{m.n}$ .

\S 2. $l=a$ on $\Theta^{m.n}$ .
AS easily observed $\Theta^{m.n}$ is contained in $\overline{\Gamma}^{m.n}$ if $3n\geqq 2m$ . In this section

we verify that our invariant $l:\overline{\Gamma}^{m.n}arrow Q$ agrees with the signature invariant $\sigma$

(stated in the introduction) on $\Theta^{m.n}$ .
The set of all $n$ -knots in $S^{m}$ having a Seifert surface forms a subgroup

of $\Theta^{m.n}$ of finite index, so it suffices to check their agreement for any such
$n$ -knot in $S^{m}$ . Let $(S^{m}, K)$ be an $n$ -knot in $S^{m}$ having a Seifert surface. We
push the interior of the Seifert surface into $D^{m+1}$ bounded by $S^{m}$ to get a pair
$(D^{m+1}, U^{n+1})$ with $(S^{m}, K)$ as the boundary. Remember that by definition we
have

(2.1) $\sigma(S^{m}, K)=SignU$ .
The following theorem was motivated by this observation and is useful to
compute our invariant.

THEOREM 2.2. Let $(M, F)$ be a pair in $\Gamma^{m.n}$ such that $H^{m-n-1}(F)=0$ .
Suppose it bounds a pair $(L^{m+1}, E^{n+1})$ such that

(1) $L_{k}(L)=0$ in $H^{n+1}(L)$ when $n+1=4k$ ,
(2) the normal bundle of $E$ in $L$ is trivial.

Then $l(M, F)=SignE$ .
COROLLARY 2.3. $l$ agrees with $a$ on $\Theta^{m.n}$ (in case $3n\geqq 2m$ ).

PROOF. Let $(S^{m}, K)$ be an $n$-knot having a Seifert surface. We note
$H^{m-n-1}(K)=0$ because $m-n-1\neq n,$ $0$ . By construction the normal bundle of
$U$ in $D^{m+1}$ is trivial, so the pair $(D^{m+1}, U)$ satisfies the condition of Theorem
2.2. It follows from (2.1) and Theorem 2.2 that

$\sigma(S^{m}, K)=SignU=l(S^{m}, K)$

as required. Q. E. D.
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The rest of this section is devoted to the proof of Theorem 2.2.

SteP 1. Let $\phi:(F\cross D^{m-n}, F\cross\{0\})arrow(M, F)$ be an orientation preserving em-
bedding which extends to an embedding: $(E\cross D^{m-n}, E\cross\{0\})arrow(L, E)$ . Let $Y$

be the same as before. The boundary of $\overline{M}(\emptyset, Y)$ consists of two connected
components. One of them is diffeomorphic to $M$. We shall denote the other
one by $M(\emptyset, Y)$ .

Consider the Mayer-Vietoris exact sequences of the triads $(\overline{M}(\emptyset, Y);MxI$,
$Y\cross D^{m-n})$ and $(M(\emptyset, Y);M-\mathring{N},$ $Y\cross S^{m-n-1})$ where $\mathring{N}$ denotes the interior of
$N=\phi(F\cross D^{m.n})$ :

$H^{n}(M\cross I)\oplus H^{n}(Y\cross D^{m-n})$
$H^{n}(F\chi D^{m- n})\underline{\delta}H^{n+1}(\overline{M}(\emptyset, Y))$

(2.4)
$\downarrow$ $\downarrow$

$\downarrow$

$H^{n}(M-\mathring{N})\oplus H^{n}(Y\cross S^{m-n-1})\underline{\Phi}H^{n}(F\chi S^{m-n-\iota})arrow\delta’H^{n+1}(M(\emptyset, Y))$

where the vertical maps are restrictions. We will use the same notation $[F]^{*}$

for the pullbacks of cofundamental class $[F]^{*}\in H^{n}(F)$ by the projection maps
$F\cross D^{m-n}arrow F$ and $F\cross S^{m-n-1}arrow F$. By definition we have

$L_{k}(\overline{M}(\emptyset, Y))=(SignY-l(M, F))\delta([F]^{*})$ .
Restricting this to $M(\emptyset, Y)$ yields

(2.5) $L_{k}(M(\emptyset, Y))=(SignY-l(M, F))\delta’([F]^{*})$ .
CLAIM 2.6. $[F]^{*}\in H^{n}(F\cross S^{m-n-1})$ is not contained in the image of $\Phi$ in

(2.4). Hence $\delta’([F]^{*})$ is non-zero.

PROOF. Let $i_{1}$ (resp. $i_{2}$ ) $:F\cross S^{m-n-1}arrow M-\mathring{N}$ (resp. $Y\cross S^{m-n-1}$ ) be the inclusion
map. By definition $\Phi(\alpha, \beta)=i_{1}^{*}\alpha-i_{2}^{*}\beta$ . Let $[F]$ be the homology class of
$H_{n}(F\cross S^{m-n-1})$ represented by $F\cross\{x_{0}\}(x_{0}\in S^{m-n-1})$ . We note that

$i_{1^{*}}[F]=0$ and $i_{2}.[F]=0$ .
In fact, since we have

$H_{n+1}(M, M-\mathring{N})\equiv H_{n+1}(N, \partial N)$ (excision)

$\cong H^{m-n-1}(N)$ (Lefschetz duality)

$\cong H^{m- n-1}(F)$

$=0$ (by assumption),

the homomorphism $H_{n}(M-\mathring{N})arrow H_{n}(M)$ induced by the inclusion map is injective.
This and the condition (C3) in \S 1 prove the former identity. The latter one
is obvious because $F$ is the boundary of $Y$ . Hence for any $\alpha\in H^{n}(M-\mathring{N})$ and
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$\beta\in H^{n}(Y\cross S^{m-n-1})$ we have

$\langle\Phi(\alpha, \beta), [F]\rangle=\langle i_{1}^{*}\alpha-i_{2}^{*}\beta, [F]\rangle=\langle\alpha, i_{1^{*}}[F]\rangle-\langle\beta, i_{2^{i}}[F]\rangle=0$

where $\langle$ , $\rangle$ denotes the usual pairing of cohomology and homology. However
$\langle[F]^{*}, [F]\rangle=1$ , in particular non-zero, so the claim follows.

SteP 2. Consider the Mayer-Vietoris exaxt sequeces of the triads $(L\cup Y\cross$

$D^{m-n}$ ; $Y\cross D^{m-n},$ $L$ ) and $(E\cup Y;Y, E)$ :

$\Phi_{L}$ $\delta_{L}$

$H^{n}(Y\chi D^{m-n})\oplus H^{n}(L)arrow H^{n}(F\cross D^{m-n})arrow H^{n+1}(L\cup Y\cross D^{m-n})$

(2.7) 1 $\downarrow$ $1^{arrow}H^{n+1}(Y\cross D^{m-n})\oplus H^{n+1}(L)0||$

$H^{n}(Y)\oplus H^{n}(E)\underline{\Phi_{E}}H^{n}(F)\underline{\delta_{E}}H^{n+1}(E\cup Y)arrow H^{n+\iota}(Y)\oplus H^{n+1}(E)$

$||$ $|1$

$0$ $0$

where the vertical maps are restrictions. Since the boundaries of $E$ and $Y$ are
both $F,$ $\Phi_{E}$ is the zero map. On the other hand the middle vertical map is an
isomorphism. It follows from the commutativity of (2.7) that $\Phi_{L}$ is the zero map.

CLAIM 2.8. $L_{k}(LuY\cross D^{m-n})=(SignY-l(M, F))\delta_{L}([F]^{*})$ .

PROOF. By the naturality of characteristic classes $L_{k}(L\cup Y\cross D^{m-n})$ goes
to $L_{k}(L)$ via the restriction map to $L$ . But $L_{k}(L)=0$ by the assumption, so
one can express

$L_{k}(L\cup Y\cross D^{m-n})=a_{L}\delta_{L}([F]^{*})$

with $a_{L}\in Q$ . We note that $M(\emptyset, Y)$ is the boundary of $L\cup Y\cross D^{m-n}$ . Hence
restricting the above identity to the boundary component $M(\phi, Y)$ , we get

$L_{k}(M(\phi, Y))=a_{L}\delta’([F]^{*})$ .

Compare this with (2.5). Then it follows from Claim 2.6 that

$a_{L}=SignY$ $l(M, F)$ .

Step3. We restrict the identity of Claim 2.8 to $E\cup Y$ . Since $\phi$ is chosen
so that it extends to a trivialization of the normal bundle of $E$ in $L$ , the normal
bundle of $E\cup Y$ in $L\cup Y\cross D^{m-n}$ is also trivial. Hence $L_{k}(L\cup Y\cross D^{m-n})$ goes
to $L_{k}(EUY)$ via the restriction map to $E\cup Y$ . Consequently we get

(2.9) $L_{k}(E\cup Y)=(SignY-l(M, F))\delta_{E}([F]^{*})$ .

Here we should make mention of an orientation on EVY. Remember that
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$\partial Y=F$ as oriented manifolds. We give $E\cup Y$ the orientation induced from $Y$

so that the induced orientation on $E$ is different from the original one on $E$ .
Hence it follows from the additivity property of signature that

(2.10) Sign$(E\cup Y)=Sign$ $Y$ –Sign $E$ .

Moreover, by the definition of $\delta_{E}$ , we have

(2.11) $\delta_{E}([F]^{*})=[EVY]^{*}$ .

NOW we evaluate both terms of (2.9) on the fundamental class of $E\cup Y$ .
Then the left term turns into Sign $Y$ –Sign $E$ by the signature theorem and
(2.10), and the right term turns into Sign $Y-l(M, F)$ by (2.11). This shows
that $1(M, F)=SignE$ , which Proves the theorem. Q. E. D.

\S 3. A product formula.

The result of this section will be used in [10] but not used in the follow-
ing sections; so the reader may skip this section.

Given a pair $(M, F)$ and a closed oriented manifold $N$ of dimension $r$ , their
product yields a new pair $(M, F)\cross N=(M\cross N, F\cross N)$ . Suppose $(M, F)$ belongs
to $\Gamma^{m.n}$ . Then the product pair does not necessarily belong to $\Gamma^{m+r.n+r}$ . In
fact, taking product preserves the conditions $(C1)-(C3)$ but not (C4). A neces-
sary and sufficient condition for the product pair to belong to $\Gamma^{m+r.n+r}$ is

$L_{u}(M\cross N)=0$

where $4u=n+r+1$ . By the product formula of $L$ -class we have

$L_{u}(M \cross N)=\sum_{0\leqq u- j\leqq r/4}L_{j}(M)\cross L_{u-j}(N)$ .

Hence a sufficient condition for the product pair to belong to $\Gamma^{m+r.n+r}$ is

(3.1) $L_{j}(M)=0$ for n+1$47‘ $\leqq n+r+1$ .

If the product pair belongs to $\Gamma^{m+T.n+r}$, then it is natural to ask how the value
$1((M, F)\cross N)$ can be described in terms of $1(M, F)$ and $N$. The following
theorem answers this question.

THEOREM 3.2 (Product formula). Let $(M, F)$ be a Pair in $\Gamma^{m,n}$ and $N$ a
closed, connected, and oriented manifold of dimension $r$ . SuPPose $M$ satisfies the
condition (3.1). Then we have

$l((M, F)\cross N)=l(M, F)$ Sign $N$ .
REMARK 3.3. This identity makes sense only when $n+r+1$ is divisible by

4, because otherwise the values in both sides vanish by the definition of 1 and
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signature.

PROOF OF THEOREM 3.2. Let $\phi$ and $Y$ be the same as in the previous
sections. The Mayer-Vietoris exact sequence of the triad $(\overline{M}(\emptyset, Y);Y\cross D^{m-n}$ ,
$M\cross I)$ implies that the restriction map $i^{*}:$ $H^{q}(\overline{M}(\phi, Y))arrow H^{q}(M\cross I)$ is an isomor-
phism for $q>n+1$ (cf. (1.1)). This together with (3.1) shows

(3.4) $L_{j}(\overline{M}(\emptyset, Y))=0$ for $n+1<4_{J}\leqq n+r+1$ .

For the product pair $(M, F)\cross N$ we choose the product embedding $\phi$ Xid:
$(F\cross D^{m-n}, F\cross\{0\})\cross Narrow(M, F)\cross N$ and take $Y\cross N$ as an oriented manifold bound-
ed by $F\cross N$. Then the manifold obtained by doing surgery of $M\cross N$ (in the sense
of \S 1) using $\phi\cross id$ and $Y\cross N$ is exactly $\overline{M}(\emptyset, Y)\cross N$. Hence it follows from
the definition of $l$ that

(3.5) $L_{u}(\overline{M}(\emptyset, Y)\cross N)=(SignY\cross N-l((M, F)\cross N))\delta([F\cross N]^{*})$ .

On the other hand since $L_{i}(N)\in H^{4i}(N)=0$ for $4i>r$ , we have

(3.6) $L_{u}( \overline{M}(\emptyset, Y)\cross N)=\sum_{n+1\leqq 4j\leqq n+r+1}L_{j}(\overline{M}(\phi, Y))\cross L_{u-j}(N)$

by the product formula of $L$ -class (remember that $4u=n+r+1$ ). We distinguish
two cases.

Case 1. The case where $n+1\neq 0(mod 4)$ . In this case $l(M, F)$ vanishes by
definition. Hence it suffices to verify

(3.7) $l((M, F)\cross N)=0$ .

Since $n+1\neq 0(mod 4),$ $(3.4)$ and (3.6) imply that $L_{u}(\overline{M}(\emptyset, Y)\cross N)$ vanishes. Hence
we have $1((M, F)\cross N)=SignY\cross N$ by (3.5). Here

(3.8) Sign $Y\cross N=SignY$ Sign $N$

and Sign $Y=0$ as $\dim Y=n+1\not\equiv 0(mod 4)$ . These verify (3.7).

Case 2. The case where $n+1\equiv 0(mod 4)$ . In this case $r\equiv 0(mod 4)$ as. $n+$

$r+1\equiv 0(mod 4)$ . We set $n+1=4k$ and $r=4s$ . Then we have

(3.9) $L_{u}(\overline{M}(\emptyset, Y)\cross N)=L_{k}(\overline{M}(\emptyset, Y))\cross L_{s}(N)$

by (3.4) and (3.6). On the other hand we have

$L_{k}(\overline{M}(\phi, Y))=(SignY-l(M, F))\delta([F]^{*})$

by the definition of $1(M, F)$ and

$L,(N)=SignN[N]^{*}$



An invariant of manifold pairs 25

by the signature theorem. Substituting these for the right hand side of (3.9)

and using a well known formula $(\delta[F]^{*})\cross[N]^{*}=\delta([F]^{*}\cross[N]^{*})=\delta([F\cross N]^{*})$

(see [17, p. 250]), we get

$L_{u}(\overline{M}(\emptyset, Y)\cross N)=(SignY-l(M, F))$ Sign $N\delta([F\cross N]^{*})$ .
Comparing this with (3.5) and using the fact (3.8), we get the desired formula.

Q. E. D.

\S 4. Proof of Theorem A.

AS indicated in the introduction the statement (1) of Theorem A immediately
follows from the fact (0.1) and the additivity property (AP) of $l$ . As for the
statement (2) the following theorem, which is an immediate consequence of [10]
or [12], gives many desired examples.

THEOREM 4.1 ([10], [12]). Let $N$ be a closed, connected, and oriented mani-
fold of dimension $n$ . Then

$I(N\cross CP^{q}, N\cross\{x_{0}\})\otimes Q=\Theta^{n+2q.n}\otimes Q$ for $q\geqq 2$

where $x_{0}$ is a point of $CP^{q}$ .

We shall give another such example. Let $\Sigma^{m.n}$ be the subset of $\Theta^{m.n}$ con-
sisting of knots diffeomorphic to $S^{n}$ with trivial normal bundle. Note that
$\Sigma^{m.n}$ is a subgroup of $\Theta^{m.n}$ of finite index.

THEOREM 4.2. $I(S^{n}\cross S^{m-n}, S^{n}\cross\{y_{0}\})$ contains $\Sigma^{m,n}$ , where $y_{0}$ is a point of
$S^{m-n}$ . In particular

$I(S^{n}\cross S^{m-n}, S^{n}\cross\{y_{0}\})\otimes Q=\Theta^{m.n}\otimes Q$ .

PROOF. Let $(S^{m}, K)$ be an element of $\Sigma^{m.n}$ and consider the connected sum
$(S^{n}\cross S^{m-n}, S^{n}\cross\{y_{0}\})\#(S^{m}, K)$ . Look at the subset $(S^{n}\cross\{y_{0}\})\# K\cup\{x_{0}\}\cross S^{m-n}$

$(x_{0}\in S^{n})$ , which is exactly the wedge sum of $S^{n}$ and $S^{m}$ as $K$ is diffeomorphic
to $S^{n}$ . As easily checked, the complement of an open regular neighborhood of
the subset is contractible and hence diffeomorphic to the standard $m$-disk as
$m\geqq 5$ (remember that we always assume $m\geqq n+3\geqq 8$). Therefore one concludes

(4.3) $(S^{n}\cross S^{m-n}, S^{n}\cross\{y_{0}\})\#(S^{m}, K)\cong(S^{n}\cross S^{m-n}, S^{n}\cross\{y_{0}\})\#\Sigma$

where $\Sigma$ is a homotopy $m$-sphere and the latter connected sum is done away
from the submanifold $S^{n}$ .

On the other hand the ambient manifold must be diffeomorphic to $S^{n}\cross S^{n\iota-n}$

because it is the connected sum of $S^{n}\cross S^{m-n}$ and $S^{m}$ by our construction. These
mean that $\Sigma$ belongs to the inertia group of $S^{n}\cross S^{m-n}$ . But the group is trivial
([16]), so $\Sigma$ must be the standard sphere. This together with (4.3) proves the
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lemma. Q. E. D.

These examples show that we cannot drop the condition (C3) in \S 1. The
author does not know whether the other conditions are essentially necessary.

\S 5. Proof of Theorem B.

AS stated in the introduction, there is a Levine’s exact sequence:
$\partial_{3}$

$0arrow Zarrow C$ ” $narrow\pi_{n}(G_{m-n}, SO_{m-n})arrow 0$

where $n+1\equiv 0(mod 4)$ . By definition $\partial_{3}(1)$ is an $n$ -knot in $S^{m}$ having a Seifert
surface with signature 8. Hence the statement (1) of Theorem $B$ follows from
Corollary 2.3.

In the following we will assume $m-n=3$ and prove the statement (2) of
Theorem B. Let $(S^{m}, K)$ be an element of $\Theta^{m.n}$ . According to Levine [7, $p$ .
171] every codimension 3 knot has the trivial normal bundle; so there is an
embedding $\phi:K\cross D^{3}arrow S^{m}$ giving a trivialization of the normal bundle of $K$ in
$S^{m}$ . Since $K$ is a homotopy sphere, it bounds a compact oriented manifold $Y$ .
The manifold $\overline{S}^{m}(\emptyset, Y)$ obtained by doing surgery of $S^{m}$ using $\phi$ and $Y$ (see \S 1)
has two boundary components. One of them is $S^{m}$ . The other one is $S^{m}(\phi, Y)$

in the terminology of \S 2. We shall denote $S^{m}(\emptyset, Y)$ by $X$.
AS observed in \S 2 (see (2.5))

(5.1) $L_{k}(X)=(SignY-l(S^{m}, K))\delta’([K]^{*})$

where $\delta’$ ; $H^{n}(K\cross S^{2})arrow H^{n+1}(X)$ is the coboundary map as before. Consider the
Mayer-Vietoris exact sequence of the triad (X; $S^{m}-\phi(K\cross D^{3}),$ $Y\cross S^{2}$):

(5.2)
$H^{q-1}(K\cross S^{2})arrow H^{q}(X)H^{q}(S^{m}-\phi(K\cross\mathring{D}^{3}))\oplus H^{q}(Y\cross S^{2})\delta’\underline{(u_{1}^{*},u_{2}^{*})}$

where $u_{1}$ : $S^{m}-\phi(K\cross D^{3})arrow x$ and $u_{2}$ : $Y\cross S^{2}arrow X$ are both the inclusion maps.

LEMMA 5.3. $u_{2}^{*}$ : $H^{2}(X)arrow H^{2}(Y\cross S^{2})$ is an isomorphism.

PROOF. Consider the exact sequence of the pair (X, $Y\cross S^{2}$):
$u_{2}^{*}$

$H^{2}(X, Y\cross S^{2})arrow H^{2}(X)arrow H^{2}(Y\cross S^{2})arrow H^{3}(X, Y\cross S^{2})$ .

Here we have isomorphisms

$H^{q}(X, Y\cross S^{2})\cong H^{q}(S^{m}-\phi(K\cross D^{\mathfrak{c}_{3}}), \phi(K\cross S^{2}))$ (excision)

$\cong H_{m-q}(S^{m}-\phi(K\cross D^{3}))$ (Lefschetz duality)

$\cong H^{q-1}(\phi(K\cross\mathring{D}^{3}))$ (Alexander duality)

$\cong H^{q-1}(K)$ .
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Therefore
$H^{2}(X, Y\cross S^{2})=H^{3}(X, Y\cross S^{2})=0$

as $K$ is a homotopy $n$ -sphere and $n\geqq 5$ . This together with the above exact
sequence proves the lemma. Q. $I$ . D.

By the above lemma there is a unique element $x$ of $H^{2}(X)$ such that $u_{2}^{*}x$

$=[S^{2}]^{*}$ where $[S^{2}]^{*}$ is the pullback of the cofundamental class of $S^{2}$ by the
projection map from $YxS^{2}$ to $S^{2}$ . Clearly $u_{2}^{*}x^{2}=0$ . On the other hand $S^{m}-$

$\phi(K\cross D^{o_{3}})$ is a cohomology 2-sphere by the Alexander duality; so $u_{1}^{*}x^{2}=0$ . Since
$H^{3}(KxS^{2})=0$ as $K$ is a homotopy $n$ -sphere and $n\geqq 5,$ $it_{-}^{\vee}\circ follows$ from the ex-
actness of (5.2) that $x^{2}=0$ and hence

(5.4) $x^{s}=0$ for $s\geqq 2$ .

By the coboundary formula (see [17, p. 252]) we have

$x\cup\delta’([K]^{*})=\delta’([S^{2}]^{*}\cup[K]^{*})=\delta’([K\cross S^{2}]^{*})=[X]^{*}$ .

Hence taklng the cuP Product of (5.1) with $x$ , we get

$x\cup L_{k}(X)=(SignY-l(S^{m}, K))[X]^{*}$ .

Therefore it suffices to prove the following integrality

(5.5) $\langle x\cup L_{k}(X), [X]\rangle\in Z$

as Sign $Y$ is an integer. By (5.4) $x=\tanh x$ . Hence the value in (5.5) agrees
with the signature of the codimension 2 closed submanifold of $X$ representing
the cycle dual to $x$ (see [4, Chap. 2, \S 9]). This shows (5.5) and completes the
proof of Theorem B.

\S 6. Proof of Theorem C.

Let $(\Sigma_{i}, T_{\ell}, F_{i})(i=1,2)$ denote an oriented homotopy $m$-sphere $\Sigma_{i}$ with a
smooth involution $T_{i}$ fixing an oriented $n$ -dimensional manifold $F_{i}$ (in fact, $F_{i}$

is a $Z_{2}$ homology sphere by Smith theorem). We shall say that $(\Sigma_{1}, T_{1}, F_{1})$ and
$(\Sigma_{2}, T_{2}, F_{2})$ are $L$-equivalent if there exists a smooth involution on $\Sigma_{1}\cross I$ whose
ends are equivariantly diffeomorphic to $(\Sigma_{1}, T_{1}, F_{1})$ and $(-\Sigma_{2}, T_{2}, -F_{2})$ as
oriented manifolds respectively. We denote by $\Theta_{n}^{m}$ the set of L-equivalence
classes of all oriented homotopy $m$-spheres with a smooth involution fixing an
oriented $n$ -dimensional manifold. Bredon [2, pp. 339-340] observed that en
forms an abelian group under equivariant connected sum provided $0<n<m$ and
$m\geqq 5$ .

We consider the subset en of $\Theta_{n}^{m}$ consisting of those elements which have a
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representative whose fixed point set has trivial normal bundle. Clearly it is a
subgroup of $\Theta_{n}^{m}$ . Let $(\Sigma, T, F)$ be a representative of an element of $\overline{\Theta}_{n}^{m}$ . Since
the normal bundle of $F$ is trivial and $F$ is a $Z_{2}$ homology $n$ -sphere, the pair
$(\Sigma, F)$ belongs to the family $\overline{\Gamma}^{m.n}$ if $3n\geqq 2m$ and $n\geqq 5$ . Hence we can assign
the rational number $l(\Sigma, F)$ to $(\Sigma, T, F)$ .

By an argument similar to the proof of Theorem 1.3 one can see that the
value $1(\Sigma, F)$ is invariant under $L$ -equivalence. Therefore the correspondence:
$(\Sigma, T, F)arrow l(\Sigma, F)$ induces a map: $\overline{\Theta}_{n}^{m}arrow Q$ , denoted again by 1. It is obviously
a homomorphism.

NOW we proceed to the proof of Theorem C. We first note that we may
replace the zero term in the equation defining $W_{3}^{4n+1}$ (see the introduction) by a
small non-zero number $\epsilon$ because those $Z_{2}$ manifolds are equivariantly diffeomor-
phic to each other. Then the pair $(W_{3}^{4n+1}, W_{3}^{4k-1})$ bounds a pair $(V_{3}^{4n+2}, V_{3}^{4k})$

defined by

$V_{3}^{4n+2}=\{(z_{0}, z_{2n+1})\in C^{2n+2}|z_{0}^{3}+z_{1}^{2}+\cdots+z_{2n+1}^{2}=\epsilon\}\cap D^{4n+4}$

$V_{3}^{4k}=V_{3}^{4n+2}\cap\{(z_{0}, z_{2n+1})\in C^{2n+2}|z_{2k+1}=\ldots=z_{2n+1}=0\}$ .

AS is well known, $V_{3}^{4n+2}$ is homotopy equivalent to $S^{2n+1}S^{2n+1}$ , the normal
bundle of $V_{3}^{4k}$ in $V_{3}^{4n+2}$ is trivial, and Sign $V_{3}^{4k}=\pm 2$ (see [13]). Hence it follows
from Theorem 2.2 that

$l(W_{3}^{4n+1}, T_{k}, W_{3}^{4k-1})=l(W_{3}^{4n+1}, W_{3}^{4k- 1})=SignV_{3}^{4k}=\pm 2$

which verifies Theorem C.
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