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1. Introduction.

The purpose of this paper is to investigate some fundamental properties for
an occupation time of a measure-valued branching diffusion process X(¢#). The
process X(t) arises as a high density limit of a critical branching Brownian
motion on R? (see Dawson and Watanabe [7]), hence X(t) may be considered
as a model describing an evolution of population with spatial migration.

One of the most important problems is concerned with the limiting distri-
bution of the process X(¢) as t—oo. It is well-known that if the initial state
X(0) is a finite measure, then the total mass process of X(¢) is equivalent to a
one-dimensional continuous state critical branching process and hence extinction
occurs almost surely. But if X(0) has an infinite total mass, then interesting
phenomena arise. Namely, assuming that X(0) is the Lebesgue measure on R?,
Dawson proved the following :

(i) If d<2, then X(¢) converges vaguely to the zero measure as t—oo in
probability.

(ii) If d=3, then the distribution of X(¢) converges weakly to a non-trivial
stationary distribution as f—oo.

Furthermore, under the same initial condition, Iscoe obtained the following

t
limit theorems for the occupation time process Y(t)*—-g X(s)ds.
0

(iii) If d=1, then P(lim,_. Y (¢, K)<oo)=1 for every compact set K.

(iv) If d=2, then P(lim,.. Y(#, G)=o0)=1 for every non-empty open set G.

(v) If d=3, then P(lim,..Y(¢)/t=A(vaguely))=1, where A denotes the
Lebesgue measure on R¢,

However, since the above results (iii) and (iv) seem rather crude, we would
like to investigate more detailed properties for the occupation time process Y(t).

It is well known that the Brownian local time is often used to characterize
the limiting process concerning an occupation time of a one-dimensional Brownian
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motion (cf.[2], p.137). For the measure-valued branching diffusion process
X(@), if Y(#) has a density with respect to the Lebesgue measure, the density
process Y(t, x) would play a role of the Brownian local time, therefore, the
limiting process for a suitably rescaled process of Y(¢) could be characterized
by means of Y(¢, x). Indeed, it will be justified in the case d<3.

The main purpose of this paper is to show the existence of a density
process Y(¢, x) for the occupation time process Y(¢), to investigate some smooth-
ness properties of Y(¢, x), and to prove two limit theorems for rescaled processes
of Y(¢t). In Section 2 the results will be summarized, and the following sections
3 to 6 will be devoted to the proofs. The first four theorems are concerned
with the existence of the density process and its smoothness. The last two
theorems are concerned with scaling limit theorems for Y(¢). states
that X(¢, dx) has a jointly continuous density X(¢, x) with respect to the Lebesgue
measure, which was proved in [5]. In we show that the occupation
time process Y(f, dx) has a jointly continuous density Y(f, x) with respect to
the Lebesgue measure when d<3, for which we need a smoothness condition
for the initial state in the case d=2 or 3. will be proved in Section 3.
Theorem 3 states that Y(¢, x) is lower semi-continuous in general when d=2 or
3, which will be proved in Section 4. Furthermore, we can discuss the differ-
entiability of Y(¢, x) when d=1. By [Theorem 1, Y(¢, x) clearly is continuously
differentiable in ¢. In we show that Y(t, x) is differentiable in x
also, which will be proved in Section 5. Theorems 5 and 6 are limit theorems
for the rescaled process of Y(¢), which will be proved in Section 6 by applying
the preceding theorems together with a scaling property of Y(¢).

The author would like to express his thanks to the referee for his valuable
advices.

2. Summary of results.

Let C(R?) be the Banach space of bounded continuous functions on R? with
the usual sup norm |-|| and Cx(R?) be the subspace of C(R?) whose members
have compact support. For any Radon measures # and » on R?¢, pu<y means
that p(A)<v(A) holds for any Borel set A of R%. A Radon measure g on R?
is said to be atomless if p({x})=0 for any x=R¢. The Lebesgue measure is
denoted by 4. We denote, by |x|, the Euclidean norm of xeR? Let M,(R?),

»=0, be the space of all Radon measures on R? such that S(l+lx[)‘1’p(dx)< oo,

We set M(RY)=\_Jpzo M,(R%).
For a function ¢ and a measure g we use the notations
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@1 p, ¢ = S¢<x>y<dx>,
2.2) (pu)dx) = ¢(x)u(dx),
2.3) () = (Bx—y)ped).

The topology of M,(R?) is defined as follows; {ga}n.; converges to g as
n—oo if limy.wlfta, ¢§>=<g, ¢> holds for any ¢=Cr(R%) and ¢(x)=(1+|x]|)"?.

Let p=0 be fixed. Then for any peM,(R?) there exists a unique diffusion
process, or strong Markov process with continuous sample paths (P,, X(f)) on
the state space Mp(R?) such that X(0)=g and the transition function is character-
ized by the following Laplace functional

(2.4) E.[exp(—<X(®), ¢>)] = exp(—<y, u(t))),
ve MRY), =0, ¢=Cx(R?), ¢=0,

where u(f)=u(t, x) is the solution of

ou A 1, _
(2.5) T u(0)=¢.
See Iscoe [3] and Appendix in Konno and Shiga [5].
First we mention a result of Konno and Shiga [5].

THEOREM 1([5]). If d=1 and p=M(R) then there exists a family of non-
negative random variables {X(t, x), t>0, xR} such that the following (i) and
(ii) hold (P,-a.s.); ;

(i) X, x) is jointly continuous in t>0 and x<R,

(ii) for every ¢=Cx(R) and t>0,

XA), ¢y = gxu, X)f(x)dx.

Set
2.6 v = | X(s)s,
2.7) pux) = b, x) = @ty Rexp(—|x|?/@1), >0, xeRY,
(2.8) a(x)=gt, )= | pix)ds, 120, xeRe

Our first result is
THEOREM 2. Let d<3 and p=M(R*). When d=2 or 3 we assume that
2.9 (pgeX(x) is jointly continuous in t=0 and x=R°.

Then there exists a family of nonnegative random variables {Y(t, x), t=0, xR?¢}
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such that the following (i) and (ii) hold (P,-a.s.);
(i) Y@, x) is jointly continuous in t=0 and x=R*?,
(il) for every ¢=C x(R*) and t=0,
), ¢ = |Y(t, g
Moreover, for any R>0 there exists ¢(R)>0 such that
(2.10) E [exp(|0Y (¢, x)|)] < o
holds for every t<R, x&R?® and |0|<c(R).

We shall prove this theorem in Section 3.

REMARK 1. If d=1 and p=M(R) then (2.9) is always satisfied by Prop-
osition 3.1 in Section 3.

PROPOSITION 1. Let d=2 or 3 and pu(dx)=g(x)dx. Then (2.9) is satisfied if
one of the following conditions holds,

(1) gx)=CA+1x|)? holds for some C>0 and p=0,
(i) glx)y=lx—al~? for some a=R? and 0<p<2.

This will be proved at the end of Section 3.

If d=2 or 3, for a general p=M(R®) we obtain a weaker result than
[Theorem 2. To this end we prepare a lemma which asserts that Y (¢)—Y(e),
t=e¢, has a continuous density for every fixed &>0.

LEMMA 1. Let d=2 or 3 and p=M(R*). Then for any fixed €>0 there
exists a family of nonnegative random variables {Y (t, x), t=¢e. x=R?} such that
the following (i) and (ii) hold (P,-a.s.);

(1) Y.(t, x) is jointly continuous in t=¢ and x< R?,

(ii) for any ¢=Cx(R?) and t=e,

S:(X(s), $>ds = Syea, ©P(x)dx.

This will be proved in Section 4.

We extend Y.(¢, x) by defining
(2.11) Y, 2)=0, t<e, x=R°.
Then Y.(t, x) increases as ¢ decreases. Hence we can define
(2.12) Y, x)= Eiirgl Yt x), t=0, xeR°.

THEOREM 3. Let d=2 or 3, p=M(R?) and Y(t, x) be given by (2.12). Then
the following (i) and (ii) hold (P,-a.s.);
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(i) Y, x) is jointly lower semicontinuous in t=0 and x< R4,
(ii) for every ¢=Cx(R?) and t=0,

v, ¢ = [re, ngeodx.

Moreover, Y(t, x) can be modified to be continuous on the set of continuity points
for (pge)(x).

The above theorem will be proved in Section 4.

REMARK 2. Let g be given by one of the following (i) and (ii);

(i) d=2 or 3 and p=d,,

(ii) d=3 and p(dx)=|x—a| Pdx for some 2<p<3.
Then it is easy to see that (ug;)a)=co, >0, but (gg.)(x) is continuous on
[0, o) X(R*—{a}).

We can discuss the differentiability of Y(¢, x) in the case d=1. We denote,
by D.f(x) (resp. Dif(x), Dzf(x)), the derivative (resp. right derivative, left
derivative) of f(x). If d=1 then D.Y(t, x)=X(t, x) is continuous on (0, o)X R
by [Theorem 1.

THEOREM 4. If d=1 and p=M(R) then the following (i) and (ii) hold
(Py-a.s.);

(i) Z@, x)=Y(, x)—E[Y(t, x)] is differentiable with respect to x,

(ii) DLZ(t, x) is jointly continuous in t=0 and x=R,

(2.13) DiE LY (t, x)]—DzE[Y(, x)] = —2u({x}), t>0, x<R.

In particular, if p is atomless, then D E,[Y(t, x)] is continuous and so Y(t, x)
is differentiable with respect to x and D.Y(t, x) is continuous (P,-a.s.). More-
over, for any R>0 there exists ¢(R)>0 such that

(2.14) E [exp(|0D.Z(t, x)|)] < oo
holds for every t<R, xR and |6|<c(R).

We shall prove this theorem in Section 5.

Finally we shall study the continuous process ({Y(¢), ¢>, Y(¢, a)) for some
fixed g=Cx(R%) and a=R? in the case d<3. Let W" be the space of all
continuous functions from [0, c0) to R" endowed with the topology of uniform
convergence on each finite interval. For any continuous process (P, X(t)), P¥
denotes the probability measure on W™ induced from P by X=(X(#)). Two
continuous processes (P;, X(¢)) and (P,, Y()) are said to be equivalent if P{¥ and
PY coincide. A family of continuous processes {(P,, X,(t)), p>0} is said to be
convergent to a continuous process (P, X(f)) as p—oo if PXe converges to P¥
weakly as p—oo.
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For any peM(R?%) and p>0 we define u(p-)eM(R?) by

(2.15) <plp), ¢ =<p, ¢l ).
Hence if p=ga then we have
(2.16) plo) = pig(p)A.

THEOREM 5. Let d<3 and p=M(R*). When d=2 or 3 we assume that
(2.9) holds. Then for every fixed ¢=C (R*) and a=R?, the family of continuous
processes

(sz,u(p*l-); Pd_4(<Y(Pzt); ¢>) Y(Pzt, a)))’ .0>0:
converges to the continuous process (P,, (K4, ¢>, DY(¢, 0)) as p—oc.

THEOREM 6. If d=1 and p=M(R) is atomless, then for any fixed < C x(R)
and a<R the family of continuous processes

(Prsaco1r 07([(V(07t, )=V (o°t, p()dx, DY (o', @), 00,
conrerges to the continuous process (P#, (gxgb(x)dx, l)DzY(t, O)) as p—oo.

REMARK 3. If p(dx)=|x|?>"%A(x)dx, where X is an indicator function of a
cone in R¢, then by we have p?u(p~'-)=p. Hence, in Theorems 5 and 6,
the probability laws of the rescaled processes coincide with the original ones.

REMARK 4. Theorem 5 implies that the rescaled process p¢~*Y(p?*t) under
Pyoucp-1.5 converges as p—oo to the measure valued process Y(¢, 0)4 under P,,
and an analogous statement holds for Theorem 6 also.

We shall prove the last two theorems in Section 6.

3. Proof of Theorem 2.

We shall prove Theorem 2 by showing the following three propositions.
Set

@3.1) Yat, @) = |pala—0Yt, dv).

PrOPOSITION 3.1. If pe=M(R?) then for any t=0 and a<R* we have
(3.2) Lim E,[Y(t, )] = (zg.)(a).

If d=1 then (puq.)x) is jointly continuous in t=0 and x<R°.
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Set
(3.3) Zi(t, x) =Y, x)—E,[Ya(t, x)].

PrOPOSITION 3.2. If d<3, p=M(R?) and (2.9) holds for d=2, 3, then for
any t=0 and a=R?® there exists

3.4) l.IiL.rgl.Zh(t, a) = Z(t, a) with respect to P,.
For the existence of a continuous version of Z,(t, x), by Totoki’s theorem
it suffices to get the following estimates.

PropOSITION 3.3. If d<3, p=M(R?) and (2.9) holds for d=2, 3, then for
each n=1 there exist positive constants a, B, ¢, such that

3.5) EL1Zot, a)—Zt, b)1“1 < cala—b|2+1+F,
(3.6) E,L1Zot, 6)—Zi(s, @)|“] < calt—s| 446,

hold for every 0<s, t<n and |al, |b|Zn.

We shall show after the proof of Proposition 3.3

PROOF OF PROPOSITION 3.1. It is needed to estimate several moments of
Y(@#). We use the following expression of Laplace functionals, which is found

in Iscoe [3]
(B.7)  E.[exp(—<Y (1), )] = exp(—<g, v(t)>), t=0, ¢=Ck(R?), $=0,

in which v(#)=uv(¢, x) is the solution of

3.8) %%z %v—%vzm, 2(0) = 0.

We define
(3.9 Pig) = [pulx=9(0dy, Q) = o380,
(3.10) (uPdx) = (up))dx,  (pQo(dx) = (ugo)(x)dx.

Then we have
CP., ¢ = <, Pig> = \(up)(x)p(x)dx,

Qe 85 = <1, Qi = |(pa)w)p(x)dx.

By (3.7) and we obtain
(3.12) BV @, $51 =, Q)
(3.13) LY (- pQu, 971 = | <, Pi-sQug)ods.

(3.11)
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Hence we have
(3.14) BLYut, 0] = | ds[pla—nyp(dx),

and follows easily.
We remark that for any p=0 there exists C=C(p»)>0 such that

(3.15) [x]2p(x) < Cer-@2,
(3.16) I+ 1x)Ppu(x) < Cte2(14-1)P,

hold for every ¢>0 and x&R? Then it is easy to see that if p= M(R?) then
there exist p=0 and C>0 such that

3.17) (ep)(x) £ Ct22(1+0)P(1+|x )P,  t>0, xeR<.
Hence if d=1 and p=M(R) then we have
(3.18) lim (¢g:)(x) = 0

uniformly on each compact set of R. Thus the latter part of [Proposition 3.1
follows.

PROOF OF PROPOSITION 3.2. Set
t+h
(3.19) 4en) = Prgi() = | puwds.
Then by we have
t
(3.20)  EL[(Z.(t, a)—Z(t, a))’] = Sow, P;_o(gs,n(a—+)—gs.e(a—+))ds.

Since limy_oq;, n(x)=¢.(x) it suffices to show that

3.21) lim{ <p, Pr-sgona—)—gu(a—)ds = 0.

We remark that

(3.22) Ge,1(x)—qe(x) = (Pogn)(x)—qn(x),

(3.23) P(Psgn)(x) £ PiPoqn(x) Psgnll = Prasqn(x)Psgn(0).
Hence it suffices to show that

(3.24) | (#Pig)@)Paga)ds,

(3.25) [ aslpoana—ryax

converge to 0 as h—0. We remark that
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(3.26) gu(x) = S:dsS:dr(Zn(r-i—s))“d” o r’:s  x).

Then it suffices to show that and
h h —de t 7q .
(3.27) Sodrgodq(r—l—q) / So(yp(s—l—————r o ))@ds
converge to 0 as h—0. But by the continuity of (¢g.)(x) it suffices to show that
t s+h
(3.28) Sodsg pdirgy

(3.29) S:drS:(rJrq)“d’qu

converge to 0 as A—0. But this follows from the assumption d<3. Thus we
have shown [Proposition 3.2,

Before proceeding to the proof of [Proposition 3.3 we shall give some
remarks. By (3.7), and a routine work we have

(3.30 E,Lexp(0<Y (0-Qu, 901 = exp(2 3 () <et, va(0)),
where v,(t), n=2, are determined by
{ vl(t> - Qt¢ ’
(3.31) ast
val) = 5 | AP soa(Iona(s)),  nZ2.

Then by 2.5) and the Markov property we have
(332) E,Lexp(6<Y (-+5)— Y(5)—pQuast1Qu, $9)] = exp(2 3 (7) e, vas, 1)),

where v,(s, t), n=2, are determined by

{ vi(s, 1) = Pa(2),

(3.33) n=1ps
val(s, 1) = Pwa()+ = SodrPs—r(vk(r, Dn-e(r, 1),  n=2.

It is not difficult to justify and (3.32) for each fixed peM(R?),
o= Cx(R?) and s, t=0 if | 6| is sufficiently small. We shall apply and
(3.32) to prove [Proposition 3.3, We notice that if the continuous density Y(z, x)

exists then Y(¢, a) is written as S(?a(x)Y(t, x)dx where 0, is the delta function

at a. But and (3.32) may not have a meaning for ¢=4,. However [3.30)
and (3.32) hold even for a ¢=0, in a weak sense. To state this precisely we
introduce the following notion. For a random variable X, we say

(3.34) Elexp(6X)] = exp( g}l anO”)
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holds formally or we have formally (3.34), if E[|X|"]<c and

E[X"] = Dg(exp( é akﬁ”))

§=0

holds for every n=1, where {a,} is a sequence of real numbers. Then it is
easy to see that we have formally [3.30) and (3.32) for ¢=4.,. The following
lemma is often useful.

LEMMA 3.1. Let X be a random variable such that (3.34) holds formally.
(i) If for some integer N there exist v, b>0 such that

(3.35) la,| £br*,  for 1=<n<2N,
then there exists C=C(b, N)>0 such that
(3.36) E[X*N] < CrEY.
() If 22-1a,0% converges for some 6,>0 then
(3.37) Elexp(10X])] < o for 161<86,.

The proof of this lemma is easy and so we omit it.

Before proving we need two more lemmas. By [3.30), and the

definition of Z,(¢, x) we have formally that

@38  EJexp8(Zit, - Zit, )] = exp(2 5 (2) <, vatp),
where v,(f), n=2, are given by with
(3.39) vi(t, x) = qla—x)—q,(b—x).

LEMMA 3.2. Let d<3, choose a such that

(3.40) 0 < a <min{l, 2—d/2},
and set
(3.41) o, 1) = | s~ (pla—x)+pulb—x)ds.

Then for each R>0 there exist positive constants a,=a(R), n=1, 2, ---, such
that

(3.42) [valt, x)| £ anla—b|"*0(t, x)
holds for every t<R, a, b, x&R* and nz=1.

Before proceeding to the proof of this lemma we shall give some remarks.
It is easy to see that
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(3.43)  (P(x)+ DN Ps(x)+Ds(3)) = 3(Pe(x)Ds(x)+pe(3)Ds())

< 3 (p(2 *)+p( o ),

s, t>0, x, yeR®,
For any 0<ax1 there exists C=C(a)>0 such that

B.44) D)= = C | x—y | *(Por(x)+D2e(¥)), >0, x, yER®.

This is seen as follows. Set D(a)=max{2r*~*exp(—r?); »r=0}. Then for any
t=s=0 we have

exp(—s?)—exp(—1?) = g:Zr exp(—7r)dr < a *D(a)(t*—s*) < a *D(a)(t—s)*.
Then (3.44) follows from this and
D)= pu(y) = Bat)*(Par(x)— Pae( ) D2e(X)+ Dac(¥)).

PrROOF OF LEMMA 3.2. Since the case n=1 follows from (3.44) it suffices
to show ((3.42) in the case n=2 assuming that it holds for every 1<k<n—1.
Then we have

(3.45) 0] < 3 asan-sla—bl™| dsPiisY),  t<R.
We set z(t, x)=p:(a—x)+p.,(b—x) for a while. By (3.43) we obtain
2t 2t rs
= 2 ~Cd+2a)/4
(3.46) Bt 1) < 350 dsgo dr(rs)=ce+ z(—————r = x).

Then it follows that

t _ 9 t 28 28 cdezadsd . rq
(3.47) SodsPt_s(v(s) Yx) < BSodsgo drso da(ryt+oria(t—s+ L x)

2t 2t 2t
< 350 drSo dq(rq)“‘d“")“go (s, x)ds
_ Cl(mtz—cdna)/zszt(ps(a—x)—l—;bs(b——x))ds.
From this we have

(3.48) S:dSPt—s@(S)z)(x) < Cola)P=ca+®25(8, x)

and follows from
Combining Lemma 3.2 with (3.47) we obtain

LEMMA 3.3. If d<3 and a satisfies (3.40) then for any R>0 there exist
positive constants b,=b,(R), n=2, 3, ---, such that

(3.49) [valt, )| = bala—b|"*(ga(a—x)+qa(b—x))
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holds for every t<R, a, b, x€R? and n=2.

[3.5) in [Proposition 3.3 now follows from Lemma 3.3, Lemma 3.1, (i)
and the continuity of (ug.)(x).

Before proving we prepare two more lemmas. By (3.32) we have
formally that

350  Eexp@(Zt+s, a)-Zs, o] = exp(2 3 (7)< vals, 1),

where v,(s, t), n=2, are given by and with
(3.51) v, x) = q(a—x).

LEMMA 3.4. If d<3 then there exist positive constants a,, n=1, 2, ---, Such
that

(3.52) Va(t, X) < @ 1@ 4D -Dg, (a—x)
holds for every t=0, a, x&R? and n=1, and

(3.53) FO) =3 @07

has a positive radius of convergence.

ProOoOF. Since 3.52) is obvious in the case n=1, we show [3.52) in the
case n=2 assuming that it holds for every 1<k<n—1. By [3.31)] we have

(3.54) Dall) S 3 Qi tUDE-Du()
where

_ t 28 28 —de . rq .
(3.55) wt, x)-—godsgo drSo dg@r(r+g)*p(t—s+ e x).

By g+r=(¢r)''?, w is dominated by
2t 2t 2t
So drSO dq(qr)“““go psla—x)ds = Kt*=**qy(a—x)

where K=(1—d/4)722%-%/2, Hence we have shown [3.52). By the above argu-
ment, a,, n=1, may be determined by

(3.56) a,=1, an=K’I§akan_k, n=2.

Then f() satisfies F(@)—O=Kf(0), i.e., f(8)=(1—(1—4K6)'/>)/2K). Then
(3.53) follows.

LEMMA 3.5. If d<3 then for any R>0 there exist positive constants b,=b,(R),
n=1, 2, .-, such that
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(3.57) Uals, t, ) S bat PPy ())(x)
holds for every s, t<R, a, x&R® and n=1, where v,(t, x)=gs(a—x).

PROOF. Let R>0 be fixed and assume that s, t<R. Since the case n=1

is clear we show (3.57) in the case n=2 assuming that it holds for every
1£k<n—1. Set

{ wols, ) = Pwa(?),

(3.58) s
wals, D= drPo 0ar, ramar, ), 12kSn—1,

It suffices to show that there exists ¢(R)>0 such that
(3.59) wi(s, 1) < c(R)=DIP,(t)

holds for every 0<k<n—1. If k=0 then this is obvious by [3.52) If
1<k<n—1 then we have

(3.60) wi(s, H) < c(R)t‘”‘z)“S:drPs_T(Prvl(t))z.
But by we have

P, (Pot) < Pou)| @ro)y*dg,
and it follows that

(3.61) wi(s, 1) < c(R)t‘"‘Z)’zPsvl(t)‘zclrgzt”q—d/qu < e (RmD2Py (1),

Hence we have completed the proof.

PROOF OF OF PropOSITION 3.3. We assume that s, ¢, |a| <N holds for
some fixed N=1. We remark that

(3.62) Pai®)n) =" p (a—x)dr.
Then by the continuity of (pg.)(x) there exists C(N)>0 such that
(3.63) ’ g, P,(t)) £ C(N).

By n—1=n/2 for n=2 and there exist positive constants ¢,=c,(N),
n=2, 3, ---, such that

(3.64) {t, Vals, 1> = cqt™*
holds for n>2. Hence follows from (3.50) and Lemma 3.1, (i).
Proor oF [2.10). By we have
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(3.65) Y, va(1)) £ @ i@ 4P D(ugyay, n=1.

Then [2.10) follows from [Lemma 3.4, Lemma 3.1, (ii) and the continuity of
(g )(x) if we set s=0 in (3.50).

PROOF OF PROPOSITION 1. It suffices to show (2.9). To this end we have
only to show that

(3.66) lim (prge)(x) = 0
uniformly on each compact set of R¢. If p=0 then there exists C >0 such that
(3.67) [+ 151700 9)dy = [+ Lx4+225 170000y

= CA+02A+1x {1+ 151)7pu)dy

Hence [3.66) holds in the case (i). We shall show in the case (ii). To
this end we need a lemma, see Lemma 3.2 in [4]

LEMMA 3.6. If ¢ is a nonnegative and decreasing function on [0, o) then
(3.68) [pux—2g(1210dz < [putr—2)9(12)dz
holds for every t>0 and |x|=|y].

By this lemma we have

369 [Iy—al7ptz—ydy = [1912p00dy = 215170050,
Then follows easily in the case (ii) by p<2.

4. Proof of Theorem 3.

We shall first show Lemma 1 by following the argument used in Section 3.
By [3.11) and [(3.17)] we have

LEMMA 4.1. If d<3 then for each fixed t>0 and p=M(R%)
4.1) (pP)(dx) = (ppe)(x)dx

satisfies condition (i) in Proposition 1.

We set

4.2) Yi(t+e) = S:ﬂX(s)a’s, 120,

(4.3) Y. ali+e, a):gph(a—x)YE(t-l-e,dx), h>0, =0, ac=Re.
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Then it is easy to see that

4.9) ImE,[Ye n(t+e, )] = (uPeqi)(a)

and this is continuous on [0, o)X R¢ by [Lemma 4.1 and [Proposition 1. Set
(4.5) Z.w(t+e, a) =Y. (t+e, a)—E,[Y. x(t+e, a)].
Then by and the Markov property we have
(4.6) E,[(Z. w(t+e, a)—Z.w(tte, a))’]= E LExo[(Yalt, a)—Yi(t, a))]]
= { 4¢P, Puoilgun(e—)—gusla— ).

Then by Lemma 4.1 and [Proposition I we can follow the proof of

3.2. Hence there exists

4.7) lllbron Z.w(t+e, a)= Z(t+e, a), t=0, ae=R4,

with respect to P,. Hence it suffices to show [3.5] and (3.6) for Z.(t+e, a).
We shall show in our case. By [2.4), [3.30) and the Markov property we
have formally that

(4.8) E,[exp(0(Z.(t+e, a)—Z.(t+e, b))] = E[Exelexp(6(Z(¢, a)—Z(t, b))]]
=exp(2 3 (%)"qe, vale, 1)),

where v,(s, t), n=2, are determined by and with

4.9) ni(t, x) = qla—x)—q(b—x).

The next lemma follows from Lemmas and B.3 as we have shown
Lemma 35 from

LEMMA 4.2. Let d<3 and a be chosen to satisfy (3.40). Then for any fixed
R>0 there exist positive constants a,=a,(R), n=2, 3, .-+, such that

(4.10) [va(s, B, x)| = anla—b|"*(Psb())(x)
holds for any s, t<R, a, b, x€R® and n=2, where 9(t, x)=qu(a—x)+qs.(b—x).

Then in our case follows from Lemmas 4.1 and as we have shown

by using in Section 3.
We shall show in our case. By (3.50) and the Markov property we
have formally that

(4.11) E [exp(0(Z.(t+s+e, a)—Z(s+¢, a))l
= Ep[exp(Z g‘,z (g—)n<X(e), Va(s, t)>)] ,
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where v,(s, t), n=2, are those given by (3.50). Then by [2.4) and [2.5)] we have
formally that

4.12) E [exp(0(Z (t+s+¢, a)—Z(s+e, a))]
= exp(Z 22 (g)n@, un(e, s, t))),

where u,(r, s, t), n=2, are given by

uy(r, s, t) = Pv(s, 1),

(4.13) { n-1(r
un(ry S, t) = Prvn(s; t)+ 1221 SOPT—Tl(uk(rb s; t)un-k(rly sy t))drly nZZ-

Then by the same method of the proof of Lemma 3.5 we obtain

LEMMA 4.3. If d<3 then for any fixed R>0 there exist positive constants
a,=a,(R), n=2,3, ---, such that

4.14) un(r, s, t, x) £ at " PP (D) (x),
holds for every r, s, t<R, a, x&R?® and n=2, where v,(t, x)=qu(a—x).

Then in our case follows from Lemmas .1 and 4,3 as we have shown
by using in Section 3. Thus we have shown Lemma 1.

We shall show [Theorem 3 Since the first part is obvious by the definition
of Y(¢, x) it suffices to show the second part. Let A be the set of continuity
points for (¢g.)(x) and set

A ={t, x)eA: 8, x|, (ug)x)En}, n=1,2, .

Then by Lemmas B.3 and we can show [Proposition 3.3 for each A,. Then
Y(t, x) can be modified to be continuous on each A,, see [6, p. 186, Remark 2].
Hence it suffices to prove

LEMMA 4.4. If f(t, x) is continuous on each A, then f is continuous on A.

Proor. It suffices to show that
(4.15) 712im f(tn, x0) = f({to, X0)

holds for any {(t,, x.); n=0}C A assuming that lim,..(t,, x,)=(t, x,). Then
there exists m such that (¢, xo)=An. Since (zg,)(x) is continuous at (¢, xo)

there exists n, such that (¢,, x,)= A4, holds for all n=n,. Then follows
from the continuity of f on A,...
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5. Proof of Theorem 4.

The method of the proof is the same as that used in Section 3. Set
(5.1) Yalt, x) = h7Y(Y(t, x+h)—Y(, x)),
(5.2) Walt, x) = Yult, \)—E [ Vst x)].
We shall show

PROPOSITION 5.1. Let p=M(R). For any t=0 and x< R there exist
5.3) limE, [0, ©1= fot, x),  UmE,LTalt, 0] = /-, 0),
(5.4) l.’il.ﬁrgl.Wh(t, x) =W, x) with respect to P,.

In particular, if p is atomless, then f,=f_ and these are jointly continuous in
t=0 and x&R. Finally, for each n=l there exist positive constants a, B, cn
such that

(5.9) E LIV, a)—W (¢, b)|°] < cala—b|**E,
(5.6) E LW, a)=W(s, @)|°] £ calt—s|*+E,
hold for every 0<s, t<n and |al, |b|<n.

The precise forms of f. and f. are given by below. Let W(t, x) be
the continuous version of W,(¢, x). Then it is easy to see that Z(, x)=Z2(t, 0)

+S:W(t, y)dy holds with a.s.P,. Then follows from the differentiability

of Z(t, x) and [5.I5). We shall show [2.14) at the end of this section.
We shall first show [5.3). Set

6.7 ge.n(x) = h™Hq(x + h)—q(x)).
By [3.2) we have

(5.8) ELTult, 0] = |quale—)p(dv.
Set

(5.9) w(x) = ult, x) = —S:%—ps(x)ds.

Then we obtain

zqt = u,(x), i ,
(5.10) {<D g)(x) = u,(x), if x=0

(D:)0) = -1, (Dzgn)(0)=1, if >0,

610 Pa)) = =" Zp.(xdr.

v
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It is easy to see that

(5.12) ux) = —2sgn(| puy)dy,
where sgn(x)=x/|x| if x#0 and sgn(0)=0. Then we have
(5.13) lu(t, x)| <1, t=0, x=R.

By and the fact that p, is rapidly decreasing, for any p=0 there exists
C=C(p)>0 such that

(5.14) lut, x)| £ CA+t"12|x|)"?, >0, x=R.

Then from (5.10) and (5.14) it follows that

(.15) f Di(pg)(x) = (pu,)(x)—p({x}),
. Dz (pg)(x) = (pu)(x)+p({x}), t>0, x=R,

and especially if g is atomless then
(5.16) D (g )(x) = (pu)(x), 120, x=R.
Thus we have shown [5.3). The continuity of (pu,)(x) follows from
LEMMA 5.1. If p=M(R) then there exist p=0 and C>0 such that
(6.17) (pPsluc)(x) = C(s7)*(14s)PA+)PA+ | x )P
holds for every s, t>0 and x&R. If p is atomless then (pu,)(x) is continuous.

ProoOF. By and [5.9) we have
t
(5.18) (Pl = { dr{pdte—3'2p.a.
By this is dominated by

Cs""2(1+s)1’S:drS(l+ [x—y] V’mpr(y)dy

e
t
< Csm 1+ (2L + 2 1)2) e {14 91?15 2u()d,
and follows. To see the latter part it suffices to show that
(5.19) 13%1@“:)(96) =0

uniformly on each finite interval. Choose p>0 to satisfy S(1+lx|)‘p;1(dx)<oo.
Then by we have

(5.20) | (pu)(x)| < c§<1+z—1f2|x—y1>-py<dy>
= Ca+1x2{ e, x— X1+ ) 2uidy),
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where f(¢, x)=1+t""?|x|)"P(1+]x|)?. Remark that lim,,,sup ;s f(¢, x)=0 for
any ¢>0 and f(¢, x)<1 if t<1. Then it suffices to notice that if p is a finite
atomless measure on R then for any ¢>0 and K >0 there exists >0 such that
p(I)<e holds for any interval I contained in [—K, K] with A(I)<a.

Next we shall show (5.4). By we have
‘ ¢
(6.21)  E LW, a)—W.(, a))’]1 = Sods<ﬂ, P;_s(gs.n(a—)—gs,(@a—))".
By (5.10) and it suffices to show
t
lim | dse, Poo1gun@— )= ua— ) = 0.

But this follows from 3.17), (5.10) and [5.14).

We shall show [5.5). By and the definition of W,(t, x) we have
formally that

622)  ELexp@0ult, - Wilt, D) = exp(2 3 (7)<t valt)),
where v,(t), n=2, are given by with

(5.23) vi(t, x) = ula—x)—u(b—x).

Set

(5.24) 50 = | Pi-l(s)))ds.

LEMMA 5.2. If d=1 and R>0 is fixed arbitrarily then there exist positive
constants a,=a,(R), n=1, 2, -+, such that

(5.25) A, () £ a,la—b],
(5.26) </1, V(1)) = azla—bl,
(5.27) lva(t, x)| < anla—b|™*5(t, x), xR, n=3,

hold for every t, lal, |b]<R.

If this lemma is shown then we can prove as follows. By and
for any fixed R>0, there exist positive constants ¢,=c,(K), n=3, 4, -,
such that

(5.28) <ﬂ; [va()]> = cala—b|™*

~ holds for every n=3 and ¢, |a|, |b|<R. Then follows from [5.26),
and (i).
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PROOF OF LEMMA 5.2. In the course of the proof we assume that s, ¢,
lal, |b] £R holds for some fixed K>0. By an elementary calculation we have

dr (a—b)?
e (pr+s(0>—pr+s(a—b>+ o

Since 1—e~*+2xe *<4x/(14+x) holds for x=0 we obtain
(r+s)"*%|la—>b|®
r+s+|a—bl|?

< 8|a—b] S:dsS:dr(r-I—s)"”(r—i—s—}—l)‘l

(5.29) Svl(t, x)dx = ZS:dsS: Presla—)).

(5.30) QA < SS:dsS:dr

and follows.
Next we shall show [5.26). We may assume that a<b. If x>b or x<a

then by we have

63D lutt, »l 22|77 puiodds| < 20a=blla—0 b)),
and if a<x<b then by we have |v,(f, x)] <2. Hence we obtain
(5.32) vo(t) < 4l a—b|2w(t)+4z(t),

where

(5.33) w(t, x) = Sodsg;’%—s(x—y)(Ps(a—y)+1>s(b—y))2dy,

2(t, x) = S:m(x—y)dy-
By there exists ¢(R)>0 such that
(5.34) ' ey 2> £ c(R)|a—b].
By (x+9)2<2(x%+ %) and t/2<t—s/2<t for 0<s<t we have
(5.35) w(t, x) < S:dss‘”z(p(t-s/Z, a—x)+p(t—s/2, b—x))
< 4% (pla—x)+po(b—x)).
Then by there exists ¢(R)>0 such that
(5.36) <y, w(t)) < c(R),

Hence follows from [(5.32), [(56.34) and [5.36).
Before proceeding to the proof of we shall show the following esti-

mates. There exist positive constants b,=b,(R), n=2, 3, ---, such that
(5.37) lva(t)] < bala—b|"™"?,
(5.38) [va(®)] < bat(t),

hold for every n=2.
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By we have
t
(5.39) nlt, )= [ ds[pesle—yits, yray

= S:dS(t—‘S)"X/KZ, 0i(8)%) < 2a,tY? a—b],
and by we have

(5.40) it) £ 2] dsPe-(ui(s)]) = 200).

Hence it suffices to show [5.37) and [5.38) in the case n=3 assuming that they
hold for every 2<k<n—1. Set

(5.41) Wb = | dsPidoaase)),  1Sk=n—1,
Then it is sufficient to show that there exists ¢(R)>0 such that
(5.42) Wa,x(t) < ¢(R)min{|a—5b|"2, 5(¢)}
holds for any 1<k£<n—1. By and n—1=2 we have
(5.43 Wi i) = Wa,nesl)  bums a—b] "2 dsPy_(Ju(s)])
= bp-1la—b| " D25(L).
By and P;(¢*)=(P,¢)* we obtain
GAD)  Wa i) = Wanes®) S | dSCPos@r(S)*baos| a—b] 12
< c,(R)S:ds(t—s)""‘(Z, V(8 a—b| "2 < co(R)|a—b| ™2,

If 2<k<n—2 then by our assumption we have
(5.45) W, #(8) S thpbn-yla—b| "2,
and by |v,(t)| <2 it follows that
(5.46) Wa, () S babaa| AP0 = (R Pe-o(ils))ds

= 26(R)| ds| drPo- (10(1)]) = e RO

Thus we have shown [5.37) and [5.38).
Then (5.27) is shown as follows. It suffices to show that there exist posi-
tive constants ¢, x=cns,x(R), 1<k<n—1, n=3, 4, ---, such that

(5.47) Wa,x(1) = Cn, k] a—b]""*D(1)

holds for every n=3 and 1<k<n—1. By we have only to show this for
1<k<n/2. If k=1 then by n—1=2 we have
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Was(®) < buoil a=b] -2 dsPe(|0.(5)]) £ (R a—b|"45(0).
If 2<k<n/2 then by n—k=n/2 we obtain

Wa, () S biba-s | dSPe-(B(5) @ —b]"P1%) < c(R) a—b]|"*5(t).

Thus we have completed the proof of Lemma 5.2.

We shall show [(5.6). By (3.32) and the definition of W,(t, x) we have
formally that

6.48)  ELexp(0Wi(s+t, a)—Wils, a] = exp(2 3 (L) <p, vals, 1),
n=2 2

where v,(s, {), n=2, are given by [3.31) and [(3.33) with
(5.49) vi(t, x) = u(a—x).

LEMMA 5.3. If d=1 then there exist positive constants a,, n=1, 2, -+, and
b, n=2, 3, -+, such that

(5.50) lvat, )| £ at™?', t=0, a, xR, n=l1,
(6.51) [va(s, )| £ bas™*Qs(l:i(O)(x),  s=t, a,x€R, nz2,
and f(0)=33-.b,0"™ has a positive radius of convergence.

Proor. By [(3.31) and [(5.13) if we define a,, n=1, by

n-1

(5.52) a, =1, an:kglaka,“k, n=2,

then holds. We shall show [5.51) by defining b,, n=2, as follows

(5.53) by=1, by=2a,..+ zba n=3.

By we have

(5.54) t— vt x)| = |u,(a—x)| is nondecreasing.
Then by we have
(5.55) vy(s) = S:drps—‘r(vl<r)2) = S:drPs-r(lvl(l‘)D = Qs(lvi@®]).

Hence it suffices to prove in the case n=3 assuming that it holds for any
2<k<n—1. Set

(5.56) Wwis) = j:drPs-T<|vk<r>vn_k<r>1>, 1<k<n—1.

By and n=3 we have
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(6.57) wi(s) = wa_y(s) = an~1Szd7’7'n_3 s-r(JUi)]) £ an-1s"2Q(Ji@®)]).

If 2<k<n—2 then by [(5.50) and [5.51)] we have

(5.58) Wi(S) S bataos| A" Pe Q10
Since P Q. (|ni()N=Qs(lvi(5)]) we obtain
(5.59) wi(s) S bran-is” QD).

Hence holds for b,, n=2, given by [5.53).
Set g(0)=>5%-1a,0". Then g(@)=(1—(1-—-46)"%)/2. By f(0) satisfies
f(0)=20g(0)+f(6)(g(0)—0), i.e.,

f(0)=20g(0)1—g(0)+6)".
Hence f has a positive radius of convergence.

LEMMA 5.4. If d=1 then for any R>0 there exist positive constants
chn=cx(R), n=1,2, -, and d,=d.(R), n=2, 3, ---, such that

(5.60) lvi(s, ¢, 2)| < comin{l, (s7'8)'%},
(5.61) lva(s, t, x)| = ¢cat™*, n22,
(5.62) lvals, t, )| < dat "2 ((HP(|0:(O D+ PeQ (O D)x),  n=2,

hold for every a, xR and s, t<R.

PrROOF. In the course of the proof we assume that s, <R holds for some
fixed R>0. By [5.I1) and [5.13) it is easy to see that (5.60) holds. Then
is easily seen by [5.50), [3.33) and the induction argument. Since

(5.63) vils, ) < P+ drPo (P
< B PQUInOD+| dr P @D 1P,

(5.62) in the case n=2 follows from (5.60). Then it suffices to show in
the case n=3 assuming that it holds for every 2<ki<n—1. Set

{ wils, )= P|va)]),

(5.64) s

wals, 1) = | drPo(uilr, toas(r, D), 1=kSn—1.
By we have

(5.66) wils, 1) < bat"*PQU (0.

Since n—1=2, by (5.60) and [(5.62), we obtain
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(5.66) wi(S, 1) = Wwa-i(S, 1)
= 61dn-xl“”’3’"‘S:dr(r‘lf)”z((rt)”zPs(|vx(f)l)-l-Pth(lvl(f)l))
< 20,d oot ASE P02 D+ TP PQ (i (D))
If 2<k<n—2 then by and we have
(5.67) wi(s, 1) = cx dn—kt‘"'z’“Szdr(O’f)”gPs(lvl(t)I)+Pch(lvx(Z‘)|))
Y P A A SIS AN OIDE
Then follows from these estimates and |va(s, )| <25 wa(s, 1).

Then we can prove as follows. Let R>0 be fixed arbitrarily. By
there exists ¢(¥)>0 such that

(5.68) <y Po([vaD1)> = c(R)s™212,
(5.69) <ty PsQ(lvi(HD> = c(R)P2,

hold for s, t, [a|<R. Then by [5.62) there exist positive constants e,=e,(R),
n=2, 3, -+, such that

(5.70) g, [va(s, DD = ent™*

holds for every s,t, |a|]<R and n=2. Then follows from (5.48) and
Lemma 3.1, (i). '

Finally, follows from [(5.17), and Lemma 3.1, (ii) if we set s=0
in (5.48).

6. Proofs of Theorems 5 and 6.
The following lemma is fundamental in this section.
LEMMA 6.1. If peM(R?) then, for any p>0, the process
(Pp2uco-105, p7°X(p%, p+))
is equivalent to the process (P,, X(1)).

PROOF. Since each process has the same initial point g it suffices to show
that the transition functions coincide. Let u(¢, x, ¢) be the solution of [2.5).
Then p2u(p®t, px, p~¢(p~*-)) also satisfies [2.5). Hence by we have

Epcpmso|exp(— p~ [ 301 X(ot, pdn))] = exo(—utt, x, i)
= E,[exp(—<X(), ¢7)]

and we have completed the proof.
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By the above lemma and we obtain

COROLLARY 6.1. Let d=<3 and p=M(R*). We assume (2.9) in the case d=2

or 3. Then, for any p>0 and ¢=Cx(R?), the continuous process

(P,,zy(p-x.), p“‘S Y(p®t, x)¢(p‘1x)dx>

is equivalent to the continuous process (P,, SY(t, x)¢(x)dx).

Then we can prove as follows. By [Corollary 6.1, the process

(Po2pco-1.9, P27 KY (%), ¢, Y(p%, a))) is equivalent to the process

(P (SY(z‘, p B0z, Y1, p0))).

Then by the continuity of Y(¢, x), this process converges to the process

(P,tu (<2) ¢>, ]-)Y(t, 0)) as p—co.

If p= M(R) is atomless then the process
(Poeuco-1o p‘z(g(Y(p?‘t, )~ Y, 0)$(x)dx, D:Y(p, 0)))
is equivalent to the process
(Pu (pS(Y(t, ™)=Y, )$(x)dx, DaY(t, p~'a))).
By the continuity of D.Y(¢, x) this process converges to the process
(P (ngb(x)dx, 1)D,Y(t, 0))  as p-roo.

Hence we have shown [Theorem 6.
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