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On the semisimplicity of Hecke algebras
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$0$ . Let $(W, S)$ be a Coxeter system [2], $t$ an indeterminate, $q=t^{2}$ , and
$H(W, t)$ a free $C[t]$ -module with a basis $\{T(w)\}_{w\in W}$ parametrized by the ele-
ments of $W$ . Here $C$ denotes the field of complex numbers. Then $H(W, t)$ has
an associative $C[t]$ -algebra structure characterized by the conditions

$(T(s)+1)(T(s)-q)=0$ , if $s\in S$ ,
and

$T(w)T(w’)=T(ww’)$ , if $l(w)+l(w’)=l(ww’)$ ,

where $l$ is the length function [2]. See [2; Chap. 4, \S 2, Ex. 23] for the algebra
structure of $H(W, t)$ . See [5] for the significance of $H(W, t)$ in the representa-
tion theory. Let $\alpha$ be a complex number, $\varphi_{a}$ : $C[t]arrow C$ the C-algebra homo-
morphism defined by $\varphi_{a}(t)=\alpha$ , and $H(W, \alpha)=H(W, t)\otimes_{C[t]}(C, \varphi_{\alpha})$ .

From now on, we assume that $W$ is finite, and (except in the final remark)

not of type $A_{1}\cross\cdots\cross A_{1}$ . Let $w_{0}$ be the longest element of $W,$ $N=l(w_{0})$ , and
$G(q)=q^{N}\Sigma_{w\in W}q^{l(w)}$ .

The purpose of this note is to prove the following theorem.

THEOREM. The C-algebra $H(W, \alpha)$ is $semi\alpha mple$ if and only if $G(\alpha^{2})\neq 0$ .

1. Let
$R_{i}$ : $H(W, t)arrow M_{n_{i}\cross n_{i}}(C[t])$ $(i=1,2)$

be $C[t]$ -algebra homomorphisms. Here $M_{m\cdot n}$ denotes the set of $m\cross n$ -matrices.
Let $T^{\wedge}(w)=q^{N-l(w)}T(w^{-1}),$ $A\in M_{n_{1}\cross n_{2}}(C[t])$ and

$B= \sum_{w\in W}R_{1}(T(w))AR_{2}(T^{\wedge}(w))$ .

LEMMA. For $x\in W,$ $R_{1}(T(x))B=BR_{2}(T(x))$ .

PROOF. We may assume that $x=s\in S$ . Let $X=\{w\in W|l(sw)>l(w)\}$ . Since
$W$ is a disjoint union of $X$ and $sX$, it is enough to prove that
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$R_{1}(T(s))\{R_{1}(T(w))AR_{2}(T^{\wedge}(w))+R_{1}(T(sw))AR_{2}(T^{\wedge}(sw))\}$

$=\{R_{1}(T(w))AR_{2}(T^{\wedge}(w))+R_{1}(T(sw)AR_{2}(T^{\wedge}(sw))\}R_{2}(T(s))$

holds for all $w\in X$. The verification of this equality is easy and omitted.

2. Let $K=C(t)$ . Assume that $R_{i}\otimes K(i=1,2)$ are irreducible representa-
tions.

If $R_{1}\otimes K$ is not isomorphic to $R_{2}\otimes K$, then as a consequence of the above
lemma, we have

$\sum_{w}R_{1}(T(w))_{ij}R_{2}(T^{\wedge}(w))_{kl}=0$ , for all $i,$ $j,$ $k,$ $1$ .

Here $($ $)_{ij}$ etc. mean matrix components. Hence if we put $x_{i}=traceR_{i}$ ,

$\sum_{w}\chi_{1}(T(w))\chi_{2}(T^{\wedge}(w))=0$ .

3. Assume that $R_{1}\otimes K=R_{2}\otimes K=R\otimes K$, and is irreducible. Let $x_{1}=x_{2}=x$

and $d_{\chi}=d_{\chi}(q)$ be the generic degree of $R$ : The generic degree is characterized
by the conditions

$d_{\chi}(1)=x(1)$ ,
and

$d_{\chi}(1)/d_{\chi}(q)=G(q)^{-1} \sum_{w\subset W}\chi(T(w))\chi(T^{\wedge}(w))$ .

4. We now show the following well known result. However the proof
given here seems to be simpler than known ones.

LEMMA. The K-algebra $H(W, t)\otimes K$ is semisimple.

PROOF. Assume that there is a non-zero element $h$ of the Jacobson radical
of $H(W, t)\otimes K$. By multiplying an element of $C[t]$ , we may assume that $h\in$

$H(W, t)$ . Furthermore, dividing by a power of $t-1$ , we may assume that $h$ is
not contained in $(t-1)H(W, t)$ . Let $\varphi:H(W, t)arrow CW$ be the C-algebra homo-
morphism characterized by $\varphi(t)=1$ and $\varphi(T(w))=w$ . Then for any $(c_{xy})\in C^{W\cross W}$ ,

$\sum_{x,}c_{xy}x\varphi(h)y=\varphi(\sum_{x,y}c_{xy}T(x)hT(y))$

is a nilpotent element. Hence $\varphi(h)$ is contained in the Jacobson radical of $CW$.
Hence $\varphi(h)=0$ and $h\in ker(\varphi)=(t-1)H(W, t)$ , which contradicts our assumption.
Hence the Jacobson radical of $H(W, t)\otimes K$ is zero.

5. For two linear functionals $\varphi_{1},$ $\varphi_{2}$ of $H(W, t)\otimes K$, let

$\langle\varphi_{1}, \varphi_{2}\rangle=G(q)^{-1}\sum_{w\in W}\varphi_{1}(T(w))\varphi_{2}(T^{\wedge}(w))$ .
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THEOREM. Let $\chi_{1}\ldots$ , $\chi_{n}$ be the irreducible characters of $H(W, t)\otimes K$. Then

$\langle\chi_{i}, \chi_{j}\rangle=\{d_{\chi_{i}}(1)/d_{\chi_{i}}(q)0$

,
if $i=j$ ,

otherwise.

6. (i) The above theorem can be considered as a q-analogue of the first
orthogonality relation of the character values of a finite group. Note that in
the case where $W$ is a Weyl group, this formula was obtained in [3; (2.4)].

(ii) It is known that $K$ is a splitting field for $H(W, t)\otimes K$. See [6], its
references, and [1].

(iii) The generic degrees $d_{\chi}$ are calculated explicitly. See [1] and its re-
ferences. From these calculations, we can see that $d_{\chi}(q)$ is always a polynomial
in $q$ . If $W$ is a Weyl group, this phenomenon can be explained by the follow-
ing fact: If $q_{0}$ is a prime power, then $d_{\chi}(q_{0})$ is a degree of an irreducible re-
presentation of a finite Chevalley group, and, is an integer. But no unified
explanation of this phenomenon (including the cases of type $H_{3},$ $H_{4}$ and $I_{2}(p)$ )

seems to be known.

7. Define a linear functional $\delta$ on $H(W, i)\otimes K$ by

$\delta(T(x))=\{\begin{array}{ll}\sum_{w}q^{l(w)}, if x=1,0, if x\neq 1.\end{array}$

The following equality can be proved easily.

$\delta(T(x)T^{\wedge}(y))=\{G(q)0$

,
if $x=y$ ,

otherwise.

Hence $\delta(hh’)=\delta(h’h)$ for $h,$ $h’\in H(W, t)\otimes K$. Since $H(W, t)\otimes K$ is semisimple and
since $K$ is a splitting field for it, $\delta$ can be expressed as a linear combination

$\delta=\sum_{i=1}^{n}c_{i}\chi_{i}$ $(c_{i}\in K)$ .

By the orthogonality relation, we have

$\langle\delta, \chi_{i}\rangle=c_{i}d_{\chi_{i}}(1)/d_{\chi_{\ell}}(q)$ .
On the other hand

$\langle\delta, \chi_{i}\rangle=G(q)^{-1}\sum_{w\in W}\delta(T(w))\chi_{i}(T^{\wedge}(w))=\chi_{i}(1)=d_{x_{t}}(1)$ .
Hence

(7.1) $\delta=\sum_{i=1}^{n}d_{\chi_{i}}(q)\chi_{i}$

8. Let $\delta_{\alpha}=\delta|_{tarrow\alpha}$ and $x_{i,\alpha}=x_{i}|_{larrow a}$ . Here $|_{tarrow\alpha}$ means the specialization $tarrow\alpha$ ,
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which is possible since the values of $\delta$ and $\chi_{i}$ on $H(W, t)$ are polynomials in $t$ .
(This fact can be proved by a standard argument on representations over
quotient fields of principal ideal domains, and by (7.1). Furthermore, using the
notion of W-graphs, the first author [3] proved that all the values of $\chi_{i}$ at $T(w)$

are polynomials in $t$ whose coefficients are algebraic integers.) We can also
show that $\chi_{i,a}$ is a trace of some representation of $H(W, \alpha)$ . By (7.1), we get

(8.1) $\delta_{a}=\sum_{i=1}^{n}d_{\chi_{i}}(\alpha^{2})\chi_{i,a}$

Let rad $H(W, \alpha)$ be the Jacobson radical of $H(W, \alpha)$ . Since rad $H(W, \alpha)$ is
nilpotent, $\chi_{i,\alpha}(radH(W, \alpha))=0$ . Hence by (8.1), $\delta_{a}(radH(W, \alpha))=0$ .

9. LEMMA. Assume that $G(\alpha^{2})\neq 0$ . Let $h$ be an element of $H(W, a)$ . If
$\delta_{\alpha}(hT^{\wedge}(x))=0$ for any $x$ in $W$, then $h=0$ .

PROOF. Let $h=\Sigma_{x\in W}c(x)T(x)$ with $c(x)\in C$ . Then
$0=\delta_{a}(hT^{\wedge}(x))=c(x)G(\alpha^{2})$ .

Hence $c(x)=0$ for any $x$ in $W$ . Hence $h=0$ .

10. PROOF OF THEOREM (if part”). ASSume that $G(\alpha^{2})\neq 0$ and $h\in radH(W, \alpha)$ .
Then for any $x\in W$ , we have $hT^{\wedge}(x)\in radH(W, \alpha)$ . Hence

$\delta_{\alpha}(hT^{\wedge}(x))=0$ , for any $x\in W$ ,

and $h=0$ . Hence rad $H(W, a)=0,$ $i$ . $e.,$ $H(W, \alpha)$ is semisimple.

11. PROOF OF THEOREM (only if part”). First, let us consider the case
where $\Sigma_{w}\alpha^{2l(w)}=0$ . Assume that $H(W, \alpha)$ is semisimple. Define a linear func-
tion ind on $H(W, \alpha)$ by ind $T(w)=\alpha^{2l(w)}$ . Then as is easily seen, ind is a linear
character of $H(W, \alpha)$ . Let $E$ be the primitive idempotent corresponding to ind.
This $E$ satisfies

$T(s)E=\alpha^{2}E$ for $s\in S$ .
Hence

$E=c \sum_{w\in W}T(w)$

with a non-zero constant $c(\in C)$ . But then we get the equality

$E=E^{2}=c \sum_{w\in W}T(w)E=c\sum_{w\in W}\alpha^{2l(w)}E=0$ ,

which is absurd.
To consider the remaining case, we assume $\alpha=0$ . Arrange the elements of

$W$ in a sequence $w_{1},$ $w_{2},$ $\cdots$ so that $l(w_{1})\geqq l(w_{2})\geqq\ldots$ For any $s\in S$ , let $\{a_{ij}\}_{ij}$
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be complex numbers such that $T(s)T(w_{j})=\Sigma_{i}T(w_{i})a_{ij}$ . Then $(a_{ij})$ is an upper
triangular matrix. In fact

$T(s)T(w)=\{T(sw)-T(w)$
, if $l(sw)<l(w)$ .

if $l(sw)>l(w)$ ,

Hence every irreducible representation of $H(W, 0)$ is one dimensional. Since we
are assuming that $W$ is not of type $A_{1}\cross\cdots\cross A_{1}$ , there are two elements $s,$

$s’$ of
$S$ such that $ss’\neq s’s$ . Then $T(s)T(s’)-T(s’)T(s)(\neq 0)$ is contained in the Jacobson
radical of $H(W, 0)$ . Hence $H(W, 0)$ is not semisimple.

12. REMARK. Let us consider the excluded case where $W$ is of type
$A_{1}\cross\cdots\cross A_{1}$ (1 factors).

Since $H(W, \alpha)$ is commutative, it is semisimple if and only if it has $2^{l}$

$(=\dim H(W, \alpha))$ linear characters. Note that every linear character $\varphi$ of $H(W, \alpha)$

satisfies $(\varphi(s)+1)(\varphi(s)-\alpha^{2})=0$ for $s\in S$ . For each subset $I$ of $S$ , a linear func-
tional $\varphi_{I}$ of $H(W, \alpha)$ given by

$\varphi_{I}(T(s))=\{\alpha^{2}-1$
, if $s\in I$ ,

otherwise,

is in fact a character of $H(W, \alpha)$ , and thus $\{\varphi_{I}|I\subset S\}$ is the totality of the
linear characters. Hence the following conditions are equivalent:

(1) $H(W, a)$ is semisimple.
(2) $\varphi_{I}\neq\varphi_{J}$ if $I\neq J$ .
(3) $a^{2}\neq-1$ .
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