On the semisimplicity of Hecke algebras

By Akihiko GYOJA and Katsuhiro UNO

(Received July 6, 1987)

0. Let (W, S) be a Coxeter system [2], t an indeterminate, $q=t^2$, and H(W, t) a free C[t]-module with a basis $\{T(w)\}_{w\in W}$ parametrized by the elements of W. Here C denotes the field of complex numbers. Then H(W, t) has an associative C[t]-algebra structure characterized by the conditions

$$(T(s)+1)(T(s)-q) = 0$$
, if $s \in S$,

and

$$T(w)T(w') = T(ww'),$$
 if $l(w)+l(w')=l(ww'),$

where l is the length function [2]. See [2; Chap. 4, § 2, Ex. 23] for the algebra structure of H(W, t). See [5] for the significance of H(W, t) in the representation theory. Let α be a complex number, $\varphi_{\alpha}: C[t] \to C$ the C-algebra homomorphism defined by $\varphi_{\alpha}(t) = \alpha$, and $H(W, \alpha) = H(W, t) \otimes_{C[t]} (C, \varphi_{\alpha})$.

From now on, we assume that W is finite, and (except in the final remark) not of type $A_1 \times \cdots \times A_1$. Let w_0 be the longest element of W, $N=l(w_0)$, and $G(q)=q^N\sum_{w\in W}q^{l(w)}$.

The purpose of this note is to prove the following theorem.

THEOREM. The C-algebra $H(W, \alpha)$ is semisimple if and only if $G(\alpha^2) \neq 0$.

1. Let

$$R_i: H(W, t) \longrightarrow M_{n_i \times n_i}(C[t]) \quad (i=1, 2)$$

be C[t]-algebra homomorphisms. Here $M_{m \times n}$ denotes the set of $m \times n$ -matrices. Let $T^{(w)}=q^{N-l(w)}T(w^{-1})$, $A \in M_{n_1 \times n_2}(C[t])$ and

$$B = \sum_{w \in \mathbf{W}} R_1(T(w)) A R_2(T^{\hat{}}(w))$$
.

LEMMA. For $x \in W$, $R_1(T(x))B = BR_2(T(x))$.

PROOF. We may assume that $x=s \in S$. Let $X=\{w \in W \mid l(sw)>l(w)\}$. Since W is a disjoint union of X and sX, it is enough to prove that

This research was supported in part by Grant-in-Aid for Scientific Research (No. 62740037), Ministry of Education, Science and Culture

$$R_1(T(s))\{R_1(T(w))AR_2(T^{\hat{}}(w))+R_1(T(sw))AR_2(T^{\hat{}}(sw))\}$$

$$=\{R_1(T(w))AR_2(T^{\hat{}}(w))+R_1(T(sw)AR_2(T^{\hat{}}(sw))\}R_2(T(s))$$

holds for all $w \in X$. The verification of this equality is easy and omitted.

2. Let K=C(t). Assume that $R_i \otimes K$ (i=1, 2) are irreducible representations.

If $R_1 \otimes K$ is not isomorphic to $R_2 \otimes K$, then as a consequence of the above lemma, we have

$$\sum_{w} R_1(T(w))_{ij} R_2(T\widehat{}(w))_{kl} = 0, \quad \text{for all i, j, k, l.}$$

Here ()_{ij} etc. mean matrix components. Hence if we put χ_i =trace R_i ,

$$\sum_{w} \chi_1(T(w))\chi_2(T^{\hat{}}(w)) = 0.$$

3. Assume that $R_1 \otimes K = R_2 \otimes K = R \otimes K$, and is irreducible. Let $\chi_1 = \chi_2 = \chi$ and $d_{\chi} = d_{\chi}(q)$ be the generic degree of R: The generic degree is characterized by the conditions

$$d_{\chi}(1) = \chi(1)$$
,

and

$$d_{\mathsf{X}}(1)/d_{\mathsf{X}}(q) = G(q)^{-1} \underset{w \in \mathsf{W}}{\sum} \mathsf{X}(T(w)) \mathsf{X}(T^{\hat{}}(w)) \, .$$

4. We now show the following well known result. However the proof given here seems to be simpler than known ones.

LEMMA. The K-algebra $H(W, t) \otimes K$ is semisimple.

PROOF. Assume that there is a non-zero element h of the Jacobson radical of $H(W,t)\otimes K$. By multiplying an element of C[t], we may assume that $h\in H(W,t)$. Furthermore, dividing by a power of t-1, we may assume that h is not contained in (t-1)H(W,t). Let $\varphi: H(W,t) \to CW$ be the C-algebra homomorphism characterized by $\varphi(t)=1$ and $\varphi(T(w))=w$. Then for any $(c_{xy})\in C^{W\times W}$,

$$\sum_{x,y} c_{xy} x \varphi(h) y = \varphi(\sum_{x,y} c_{xy} T(x) h T(y))$$

is a nilpotent element. Hence $\varphi(h)$ is contained in the Jacobson radical of CW. Hence $\varphi(h)=0$ and $h\!\in\!\ker(\varphi)=(t-1)H(W,t)$, which contradicts our assumption. Hence the Jacobson radical of $H(W,t)\otimes K$ is zero.

5. For two linear functionals φ_1 , φ_2 of $H(W, t) \otimes K$, let

$$\langle \varphi_1, \varphi_2 \rangle = G(q)^{-1} \sum_{w \in W} \varphi_1(T(w)) \varphi_2(T^{\hat{}}(w)).$$

THEOREM. Let χ_1, \dots, χ_n be the irreducible characters of $H(W, t) \otimes K$. Then

$$\langle \mathbf{\chi}_i, \mathbf{\chi}_j \rangle = \left\{ egin{array}{ll} d_{\mathbf{\chi}_i}(1)/d_{\mathbf{\chi}_i}(q), & if \ i=j, \\ 0, & otherwise. \end{array}
ight.$$

- 6. (i) The above theorem can be considered as a q-analogue of the first orthogonality relation of the character values of a finite group. Note that in the case where W is a Weyl group, this formula was obtained in [3; (2.4)].
- (ii) It is known that K is a splitting field for $H(W, t) \otimes K$. See [6], its references, and [1].
- (iii) The generic degrees d_{χ} are calculated explicitly. See [1] and its references. From these calculations, we can see that $d_{\chi}(q)$ is always a polynomial in q. If W is a Weyl group, this phenomenon can be explained by the following fact: If q_0 is a prime power, then $d_{\chi}(q_0)$ is a degree of an irreducible representation of a finite Chevalley group, and, is an integer. But no unified explanation of this phenomenon (including the cases of type H_3 , H_4 and $I_2(p)$) seems to be known.
 - 7. Define a linear functional δ on $H(W, t) \otimes K$ by

$$\delta(T(x)) = \begin{cases} \sum_{w} q^{l(w)}, & \text{if } x = 1, \\ 0, & \text{if } x \neq 1. \end{cases}$$

The following equality can be proved easily.

$$\delta(T(x)T^{\hat{}}(y)) = \begin{cases} G(q), & \text{if } x = y, \\ 0, & \text{otherwise.} \end{cases}$$

Hence $\delta(hh') = \delta(h'h)$ for $h, h' \in H(W, t) \otimes K$. Since $H(W, t) \otimes K$ is semisimple and since K is a splitting field for it, δ can be expressed as a linear combination

$$\delta = \sum_{i=1}^{n} c_i \chi_i \quad (c_i \in K).$$

By the orthogonality relation, we have

$$\langle \delta, \chi_i \rangle = c_i d_{\chi_i}(1) / d_{\chi_i}(q)$$
.

On the other hand

$$\langle \delta, \chi_i \rangle = G(q)^{-1} \sum_{w \in W} \delta(T(w)) \chi_i(T^{\hat{}}(w)) = \chi_i(1) = d_{\chi_i}(1).$$

Hence

(7.1)
$$\delta = \sum_{i=1}^{n} d_{\chi_i}(q) \chi_i.$$

8. Let $\delta_{\alpha} = \delta|_{t \to \alpha}$ and $\chi_{i, \alpha} = \chi_i|_{t \to \alpha}$. Here $|_{t \to \alpha}$ means the specialization $t \to \alpha$,

which is possible since the values of δ and χ_i on H(W, t) are polynomials in t. (This fact can be proved by a standard argument on representations over quotient fields of principal ideal domains, and by (7.1). Furthermore, using the notion of W-graphs, the first author [3] proved that all the values of χ_i at T(w) are polynomials in t whose coefficients are algebraic integers.) We can also show that $\chi_{i,\alpha}$ is a trace of some representation of $H(W,\alpha)$. By (7.1), we get

(8.1)
$$\delta_{\alpha} = \sum_{i=1}^{n} d_{\chi_{i}}(\alpha^{2}) \chi_{i,\alpha}.$$

Let rad $H(W, \alpha)$ be the Jacobson radical of $H(W, \alpha)$. Since rad $H(W, \alpha)$ is nilpotent, $\chi_{i,\alpha}(\operatorname{rad} H(W, \alpha))=0$. Hence by (8.1), $\delta_{\alpha}(\operatorname{rad} H(W, \alpha))=0$.

9. LEMMA. Assume that $G(\alpha^2) \neq 0$. Let h be an element of $H(W, \alpha)$. If $\delta_{\alpha}(hT^{\hat{}}(x))=0$ for any x in W, then h=0.

PROOF. Let $h = \sum_{x \in W} c(x)T(x)$ with $c(x) \in \mathbb{C}$. Then

$$0 = \delta_{\alpha}(hT^{\hat{}}(x)) = c(x)G(\alpha^2).$$

Hence c(x)=0 for any x in W. Hence h=0.

10. PROOF OF THEOREM ("if part"). Assume that $G(\alpha^2) \neq 0$ and $h \in \operatorname{rad} H(W, \alpha)$. Then for any $x \in W$, we have $hT^{\hat{}}(x) \in \operatorname{rad} H(W, \alpha)$. Hence

$$\delta_{\alpha}(hT^{\hat{}}(x)) = 0$$
, for any $x \in W$,

and h=0. Hence rad $H(W, \alpha)=0$, i.e., $H(W, \alpha)$ is semisimple.

11. PROOF OF THEOREM ("only if part"). First, let us consider the case where $\sum_{w} \alpha^{2l(w)} = 0$. Assume that $H(W, \alpha)$ is semisimple. Define a linear function ind on $H(W, \alpha)$ by ind $T(w) = \alpha^{2l(w)}$. Then as is easily seen, ind is a linear character of $H(W, \alpha)$. Let E be the primitive idempotent corresponding to ind. This E satisfies

$$T(s)E = \alpha^2 E$$
 for $s \in S$.

Hence

$$E = c \sum_{w \in W} T(w)$$

with a non-zero constant $c \in C$. But then we get the equality

$$E = E^2 = c \sum_{w \in W} T(w) E = c \sum_{w \in W} \alpha^{2l(w)} E = 0,$$

which is absurd.

To consider the remaining case, we assume $\alpha=0$. Arrange the elements of W in a sequence w_1, w_2, \cdots so that $l(w_1) \ge l(w_2) \ge \cdots$. For any $s \in S$, let $\{a_{ij}\}_{ij}$

be complex numbers such that $T(s)T(w_i) = \sum_i T(w_i)a_{ij}$. Then (a_{ij}) is an upper triangular matrix. In fact

$$T(s)T(w) = \begin{cases} T(sw), & \text{if } l(sw) > l(w), \\ -T(w), & \text{if } l(sw) < l(w). \end{cases}$$

Hence every irreducible representation of H(W, 0) is one dimensional. Since we are assuming that W is not of type $A_1 \times \cdots \times A_1$, there are two elements s, s' of S such that $ss' \neq s's$. Then T(s)T(s')-T(s')T(s) ($\neq 0$) is contained in the Jacobson radical of H(W, 0). Hence H(W, 0) is not semisimple.

12. REMARK. Let us consider the excluded case where W is of type $A_1 \times \cdots \times A_1$ (*l* factors).

Since $H(W, \alpha)$ is commutative, it is semisimple if and only if it has 2^{i} $(=\dim H(W,\alpha))$ linear characters. Note that every linear character φ of $H(W,\alpha)$ satisfies $(\varphi(s)+1)(\varphi(s)-\alpha^2)=0$ for $s\in S$. For each subset I of S, a linear functional φ_I of $H(W, \alpha)$ given by

$$\varphi_I(T(s)) = \begin{cases}
-1, & \text{if } s \in I, \\
\alpha^2, & \text{otherwise,}
\end{cases}$$

is in fact a character of $H(W, \alpha)$, and thus $\{\varphi_I | I \subset S\}$ is the totality of the linear characters. Hence the following conditions are equivalent:

- (1) $H(W, \alpha)$ is semisimple.
- (2) $\varphi_I \neq \varphi_J$ if $I \neq J$.
- (3) $\alpha^2 \neq -1$.

References

- [1] D. Alvis and G. Lusztig, The representations and generic degrees of the Hecke algebra of type H_4 , J. Reine Angew. Math., 336 (1982), 201-212.
- [2] N. Bourbaki, Groupes et algèbres de Lie, Chap. IV, V, VI, Hermann, Paris, 1968.
- [3] C.W. Curtis and T.V. Fossum, On centralizer rings and characters of representations of finite groups, Math. Z., 107 (1968), 402-406.
- [4] A. Gyoja, On the existence of a W-graph for an irreducible representation of a Coxeter group, J. Algebra, 86 (1984), 422-438.
- [5] N. Iwahori, On the structure of the Hecke ring of a Chevalley group over a finite field, J. Fac. Sci. Univ. Tokyo, 10 (1964), 215-236.
- [6] G. Lusztig, On a theorem of Benson and Curtis, J. Algebra, 71 (1981), 490-498.

Akihiko Gyoja

Department of Mathematics College of General Education Faculty of Science Osaka University Toyonaka, Osaka 560 Japan

Katsuhiro Uno Department of Mathematics Osaka University Toyonaka, Osaka 560 Japan