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§0. Introduction.

This paper is concerned with classification of homotopy representations (up
to G-homotopy). Let G be a finite group. A homotopy representation X of G is
a finite dimensional G-CW-complex such that for each subgroup H of G, the H-
fixed point set X¥ is homotopy equivalent to a sphere S™ of dimension m which
is equal to dim X#, or the empty set. T. tom Dieck and T. Petrie first introduced
homotopy representations in [6] and studied their stable theory. Recently
E. Laitinen studied the unstable theory of homotopy representations in and
showed that two homotopy representations X and Y are G-homotopy equivalent
if and only if their dimension functions are equal and a certain invariant D,(X, Y)
in the unstable Picard group Pic,(G) vanishes, where n=Dim X=Dim Y.

T. tom Dieck studied the dimension functions of homotopy representations
in [2]. In particular, he showed that the dimension function of a homotopy
representation of a p-group G is equal to that of some linear G-sphere. (See
also [7].) This result implies that the dimension functions of homotopy repre-
sentations of a p-group are classified by the representation theory.

The purpose of this paper is to investigate the number Num(G, n) of G-
homotopy types of homotopy representations with the same dimension function z.

In Section 1, we show that the number Num(G, n) is at most the order of
Pic,(G) (Proposition 1.7). In Section 2, we show that the number Num(G, n) is
equal to the order of Pic,(G) under certain hypotheses (Theorem 2.1). In par-
ticular, if G is a nilpotent group of odd order, then the number Num(G, n) is
equal to the order of Pic,(G) (Corollary 2.7). In Section 3, we compute the
order of Pic,(G) in general (Theorem 3.6). If a homotopy representation X has
a G-homotopy type of a finite G-CW-complex, we call it finite. In Section 4,
we discuss a similar problem for finite homotopy representations. However it
seems difficult to compute the number Num/(G, n) of G-homotopy types of
finite homotopy representations with the same dimension function n because of
complexity of the finiteness obstruction. When G is an abelian group of odd
order, the number Num(G, n) is described by using the Swan homomorphisms
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(Corollary 4.10).

This paper is based on [6] and [8], which we review in Section 1.

The author would like to thank Professor M. Nakaoka and Professor
K. Kawakubo for helpful conversations and encouragement.

§1. Preliminaries.

We first collect the various notations and results from and [8] Let X
be a homotopy representation of G and S(G) the set of subgroups of G. We
define an integer-valued function Dim X on S(G) by (Dim X)(H)=dim X#+1 for
HeS(G) and we call it the dimension function of X. If X¥ is empty, we set
dim X#=-—1. (We adopt tom Dieck and Petrie’s definition for Dim X.) Let
Dim(G) denote the set of the dimension functions of homotopy representations
of G. E. Laitinen introduced an essential isotropy group of X. Its definition is
based on the following lemma.

LEMMA 1.1 ([8, Lemma 2.1]). Let n be the dimension function of a homotopy
representation X.

(1) If n(H)=n(K) and H<K, then the inclusion XXC X" is a homotopy
equivalence.

(2) Each subgroup H is contained in a unique maximal subgroup H with
n(H)=n(H).

An isotropy group Helso(X) with H=H is called an essential isotropy group.
The set of essential isotropy groups is denoted by Esslso(X). By Lemma 1.1,
Esslso(X) depends only on the dimension function. Let ¢(G) be the set of con-
jugacy classes of subgroups of G and C(G) the set of integer-valued functions
on ¢(G). We note that the dimension function can be regarded as an integer-
valued function on ¢(G). Let A(G) be the Burnside ring of G. A ring homo-
morphism X: A(G)—C(G) is defined by (X(x))(H)=|S#|—|T#| for x=[S]-[T]
and (H)e¢(G), where S and T are finite G-sets. It is well-known that X is
injective. We regard A(G) as the subring of C(G) via X. We recall the Picard
group introduced in [6]. We abbreviate A(G)and C(G)to A and C respectively.
We put C=C/|G|C and A=A/|G|C, which make rings. Let C* be the unit
group of C. The Picard group of G is defined by

Pic(G) = C*/A*C*.
Laitinen introduced in the unstable Picard group in order to establish
the unstable theory of homotopy representations. The unstable Picard group

for n=Dim X is defined as follows. We denote by C, (resp. A,, C¥) the subset

of functions d=C (resp. A, C*) satisfying the following unstability conditions
for n.
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(1.2) (Unstability conditions [8]).
(1) d(H)=1 when n(H)=0.
(2) d(H)=1, 0, —1 when n(H)=1.
(3) d(H)=d(H) for any (H)e$(G).

We call de C invertible if d(H) is prime to |G| for any (H)=¢(G). We denote
by C¥ (resp. A¥) the subset of elements of C* (resp. A*) represented by invert-
ible functions in C, (resp. A,). We note that C¥ makes a subgroup of C* and
also A* makes a subgroup of C¥ (Note that C, and A, are not rings in
general.) The wunstable Picard group of G (for n=Dim(G)) is defined by

Pic,(G) = CX/A%XCx.

(Note that Pic,(G) is a finite abelian group.)

Let X and Y be homotopy representations with the same dimension function
n, and f:Y—X a G-map. If we orient X and Y in the sense of Laitinen, the
degree function d(f) in C is defined by d(f)(H)=deg /¥, and satisfies the un-
stability conditions for n. Using the equivariant obstruction theory, Laitinen
showed that there exists a G-map f : Y—X such that d(f) is invertible. Further,
he defined an unstable invariant by

D.(X, Y)=L[d(f)] &€ Pic.(G),

whose definition is independent of choices of f and orientation [8]. The follow-
ing is an important result for the classification of homotopy representations.

ProPOSITION 1.3 ([8, Theorem 5]). Let X and Y be homotopy represen-

tations of G with the same dimension function n. Then X is G-homotopy equivalent
to Y if and only if D,(X, Y) vanishes.

The equivariant obstruction theory played an important role in and [8]
Let X and Y be as above. Let S be a closed family of S(G), where S is called
closed if S satisfies the conditions: (a) if HeS and H<K, then K<S, and (b)
if HeS, then gHg'eS for any g€G. Then X(S)=\UpesX? is a G-CW-sub-
complex of X. Let fs:X(S)—Y be a G-map. The following holds from the
equivariant obstruction theory.

ProposITION 1.4 ([8, Proposition 3.3], [5, Chap. 8]). Under the above situa-
tion,

(1) There exists a G-map f:X—Y extending fs.

(2) Let H be a maximal subgroup in S(G)\S. We assume that H=EssIso(X)
and dim X¥=1. We put a closed family T=8\U(H), where (H) is the conjugacy
class of H. Then, for any integer k, there exists a G-map fq:X(T)—Y extend-
ing fs such that deg fE=deg f¥+k|WH|. Here WH=NH/H and NH is the
normalizer of H in G.
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Smith theory is also useful for the theory of homotopy representations. The
following result will be used in later sections.

LEMMA 1.5. Let f:X—>Y be a G-map of homotopy representations with the
same dimension function. Suppose that deg f? is prime to |G| for any H+1.
Then degf is also prime to |G]|.

PROOF. Let p be a prime divisor of |G|. Then G has a subgroup Z/p of
order p. Since deg f%/? is prime to p, degf is also prime to p for any prime
divisor p of |G|. (See [8].) It follows that degf is prime to |G|.

Let X, Y, Z be homotopy representations with the same dimension function
n. Then

LEMMA 1.6.
(1) Dn(X, Z)=D,(X, Y)-D(Y, Z).
(2) Dn(X, Y) ' = D,(Y, X).

PrROOF. Let g:Z—Y and f:Y—X be G-maps with invertible degree func-
tions. The composition f-g:Z—X also has an invertible degree function d(f-g)
=d(f)-d(g). Hence D,(X, Z)=[d(f-2)]=[d(/)ILd(g)]=Dn(X, Y)-Do(Y, Z). In
particular D, (X, X)=D.(X, Y)-D,(Y, X). Since D, (X, X)=1 by [Proposition 1.3
it follows that D, (X, V) '=D,(Y, X).

Let Num(G, n) denote the number of G-homotopy types of homotopy repre-
sentations of G with the same dimension function n. The following is our
starting point.

PROPOSITION 1.7. Num(G, n) < |Pic,(G)| (<L 0).

PrOOF. Let X, X,, -+, X, be homotopy representations with DimX;=n
such that X; and X; are not G-homotopy equivalent for 7#;. If »>|Pic,(G)],
then there exist X; and X; (s#t) such that D,(X,, X,)=D.(X,, X;). We see
that D,(X,, X,)=1 by Hence X, and X, are G-homotopy equivalent
by [Proposition 1.3l This is a contradiction.

§2. Realization of invertible functions.

Let X be a homotopy representation of G and n the dimension function of
X. For any homotopy representation Y with DimY=n, there exists a G-map
f: Y- X such that the degree function d(f) is invertible and satisfies the unsta-
bility conditions. We shall discuss the converse.

QUESTION. Let d be any invertible function satisfying the unstability con-
ditions. Do there exist a homotopy vepresentation Y with DimY=n and a G-map
f:Y—=X such that the degree function d(f) is equal to d?
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From the proof of [Proposition 1.7], if this question has an affirmative answer,
we see that the number Num(G, n) is equal to the order of Pic,(G). In [6,
Theorem 6.3], one can find an affirmative answer under certain technical hy-
potheses. We shall adopt the following hypotheses instead of tom Dieck and
Petrie’s in order to make their answer sharper.

HypoTHESIS I. EssIso(X) is closed under intersection.
We put S,={HeS(G)|n(H)L3}.

HyYPOTHESIS II. For any invertible function d satisfying the unstability con-
ditions, there exist a G-CW-complex Y(S,) and a G-map fs,: Y(So)—X such that

(1) Iso(Y(Sy) =SsNEsslso(X),

(2) dimY(Sp)¥ =dim X¥ and Y(So)¥ is homotopy equivalent to S™ >~ for
Hes,,

(3) degf¥ = d(H) for HES,.
(We permit Y(S,) to be empty.)

We shall show the following by using tom Dieck and Petrie’s argument.

THEOREM 2.1. We assume that X satisfies Hypotheses I and 1I. Then, for
any invertible function d satisfying the unstability conditions, there exist a homotopy
representation Y and a G-map f:Y—X such that DimY=Dim X and d(f)=d. In
particular Num(G, n)=|Pic,(G)].

We need the following result for the proof of [Theorem 2.1.

PROPOSITION 2.2. Let Z be a homotopy representation with dimZ=3. We
assume that 1=S(G) is an essential isotropy group of Z. Then for any integer k
which is prime to |G|, there exist a homotopy representation B with DimB=DimZ
and a G-map ¢: B—~Z such that degp==Fk and deg¢®=1 for H=+1 and further
B and ¢ satisfy the following conditions:

(1) B is obtained by attaching cells of types GXD™ ' and GXD™ to the
(m—1)-skeleton Z ., of Z, where m=dimZ,

2) Pl Zp-=id.

PrOOF. Since 1 is an essential isotropy group of Z, dimZ#<m for H#1
(Cemma 1.1). Hence G acts freely on Z~\Z,,_;. Since dimZ=3, we can apply
[6, Proposition 6.4] to Z. Then we obtain a G-CW-complex B and a G-map
¢:B—Z such that B is homotopy equivalent to S™ and deg¢=k. From the
construction in the proof of [6, Proposition 6.4], we see that B and ¢ satisfy
the conditions (1) and (2). For H#1, B¥=Z¥ and ¢”=id by the conditions (1)
and (2). Therefore B and ¢ are the desired homotopy representation and G-map.

PrROOF OF THEOREM 2.1. The proof of [Theorem 2.1 is similar to that of
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[6, Theorem 6.3]. We shall give the detailed proof. We prove it inductively.
Let SCS(G) be a closed family containing S,. (For the definition of a closed
family, see Section 1.) We note S, is a closed family. We consider the follow-
ing statement.

(S) There exist a G-CW-complex Y(S) and a G-map fs: Y(S)—X such that

(a, S) Iso(Y(S)) = SNEsslso(X),

(b, 8) dimY(S)X =dimX¥ and Y(S)¥ is homotopy equivalent to S™¥>-! for
Kes,

(¢, S) degf¥ = d(K) for K.

We note that (S,) is our assumption of [Theorem 2.1. Let H be a maximal
subgroup in S(G)\S. We put 9=8U(H). Then T is a closed family. As the
induction step, we show that () holds if (S) holds. If H is not an essential
isotropy group, then we put Y(9)=Y(S) and fe=fs. Then (a, I) is clearly
satisfied. For (b, ) and (¢, 9), we may consider those when K=H. Take any
x€Y(g)?. Then the isotropy group G, belongs to INEsslso(X) by (a, I),
and G, >H since HESNEsslso(X). Since Esslso(X) is closed under intersection
(Hypothesis I), G,=G,=H>H by [8, Lemma 2.9] and hence HeSNEsslso(X)
=Iso(Y(S)). Hence Y(T)?=Y(S)¥ and also Y(S)? is homotopy equivalent to
Snh-1=GrdD-1 Ky (b 8). Since the inclusion X7 X7 is a homotopy equivalence
(Cemma 1.1), deg ff=deg f§=d(H). Since d satisfies the unstability conditions,
d(H)=d(H) and hence deg f¥=d(H).

When H is an essential isotropy group of X, we apply [6, Proposition 5.9]
to a WH-map f%:Y(S)?—X¥. Then we obtain a homotopy representation Y"(Z)
(DY(S)?) of WH and a WH-map f’: Y (9)—X# such that Dim(Y’(Z))=Dim X#
and f’|Y(S)¥=f%. By the construction in [6, Proposition 5.9], WH acts freely
on Y/(anNY(S)H. By deg f’ is prime to |WH]|. Choose an integer
k such that k-deg f'=d(H) mod|WH|. We apply [Proposition 2.2 to Y’(T).
Then we obtain a homotopy representation B of WH and a WH-map ¢: B—
Y”(a) such that deg¢=*~k and deg¢p®=1 for 1+K<WH. From the construction
of B and Y/(T), we see that

Y(S$)? C Y(9)-1C B (b=dimB), and
[l Y(8)" = f§.

The degree of f’e¢p: B>X" is d(H) modulo |WH]|. By [Proposition 1.4, we get
a WH-map f”:B—X¥ such that deg f"=d(H) and f"|Y(S)Z=f’-¢| Y(S)? =f%.
We apply [6, Lemma 4.11] and then we obtain a G-CW-complex Y(g) and a G-
map fg: Y(T)—X such that Y(T)DY(S)Ursy®# B, fr|Y(S)=fs, fe]|B=f", and
Y( @)/ Y(S)=GXyuB/GXyrY(S)?. From the proof of [6, Lemma 4.117], we see
that
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Y(a@) =B, Y(@)X=Y()X for Kes§,
and also
=1, f&=/[% for KesS.

It is not difficult to show that Y(g) and fq satisfy (a, ), (b, 9) and (¢, I).
Therefore (9) holds if (S) holds.
In the end of induction, we obtain a homotopy representation Y(S(G)) and

a G-map fsc which are desired. Thus the proof is complete.

REMARK. tom Dieck and Petrie showed that D:v(G, h*)—Pic(G) is an iso-
morphism [6, Theorem 6.3], where v(G, h~) is the torsion subgroup of the
homotopy representation group of G. Laitinen’s result [Proposition 1.3 is con-
sidered as the unstable version of injectivity of D. Our result is considered as
that of surjectivity of D.

We shall discuss Hypotheses I and II. If a homotopy representation X is a
smooth G-manifold, then it is well-known that EssIso(X)=Iso(X) and X satisfies
Hypothesis I. In particular, a linear G-sphere, which is an unit sphere of a real
representation of G, satisfies Hypothesis I. Clearly Hypothesis I depends only
on the dimension function of a homotopy representation. Therefore, if a homot-
opy representation X has the dimension function of a linear G-sphere, then X
also satisfies Hypothesis I. A homotopy representation of a p-group always has
the dimension function of a linear G-sphere ([2], [7). In the sequal we see
that a homotopy representation of a p-group satisfies Hypothesis I. More gener-
ally Laitinen showed the following.

PROPOSITION 2.3 ([8, Proposition 2.12]). Let G be a finite nilpotent group.
Then a homotopy representation of G satisfies Hypothesis 1.

Next, we consider Hypothesis II. We show the following.

PROPOSITION 2.4. Let X be a homotopy representation with the dimension
function n. If n(H)=n(G)mod2 for any HES,, then X satisfies Hypothesis 1.

We need the following result in [6].

PROPOSITION 2.5 ([6, Proposition 12.1]). Let X and Y be homotopy repre-
sentations of G such that (DimX)(1)#(DimY)(1) and (DimX)(H)=DimY)(H)
for any H#1. Then

(1) G has periodic cohomology.

We denote by p(G) its minimal period.

(2) p(G) divides (DimX)(1)—(DimY)(1) except for G=Z/2.

PROOF OF PROPOSITION 2.4. If n(G)>3, we need not give the proof.
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Case (1): n(G)=3. It is easy to see that SyN\Esslso(X)={G}. Since X€is
homotopy equivalent to S?, there is a map f:S*—X% of degree d(G). We put
Y(S,)=S?, which has trivial G-action. Then the composition of f with the in-
clusion XéC X is the desired G-map fs,.

Case (2): n(G)=2. By the assumption for n, we see SyMEsslso(X)={G}.
Hence the above argument is still valid.

Case (3): n(G)=1. If S;NEsslso(X)={G}, then the proof is similar to that
of Case (1). If H#G and HeS,NEsslso(X), then n(H)=3 by the assumption.
A WH-space X¥ is a homotopy representation of WH, and dim(X#)¥/2#=2 and
dim(X#)K/H=() for H<K<NH. We apply [Proposition 2.5 to X# and S° (with
trivial WH-action). Then we see that WH has periodic cohomology and its
period p(WH)Z2. Hence WH is cyclic. (See [1, p.159].)

ASSERTION. There exist a free reprentation Vg of WH and a WH-map
fa: SV gPBR)=S(V 1)xS* > X¥ such that degfp=d(H), fu(S*)=XC and the degree
of fulS®:S*—>X% is equal to d(G) (==1). Here a representation V of G is
called free if G acts freely on V\{0} and * means the join.

We assume this for a while. Let G, H,, ---, H. be representatives of con-
jugacy classes of subgroups in S¢N\Esslso(X). We put Y=I1;-.G Xy g, SV x,DR),
where S(V  @R) is regarded as a NH;-space via the projection NH;—WH;=
NH;/H,. Also fg, is regarded as a NH;-map. We define a G-map
GCXuyufr,:GXyr, SV g OR)—X by [ g, x1-gfnx) for g&CG and xSV ;,DR).
We put [f=ITi-iGXuwg,;fr,: Y—X. We also put S°={p*, p~}CS(V g DR).
Collapse ITi=iG X yg {p*} (resp. I15-:G X wg,{p"}) to a point. We denote by Y(S,)
the resulting G-CW-complex, and by fg,: Y(Ss)—X the G-map induced from f.
It is not difficult to check the conditions in Hypothesis II.

Case (4): n(H)=0. We omit the proof because it is similar to the proof
of Case (3).

PROOF OF ASSERTION. If WH=1, then one can easily see it. We assume
WH+1. Let g:5°-X% be a map of degree d(G). Let a be a generator of the
cyclic group WH. Let W; be a 2-dimensional representation of WH such that
the generator a acts on W, by rotation of 2zj/|WH|. If j is prime to |WH],
then W; is a free representation. By the equivariant obstruction theory, or
IProposition 1.4, there exists a WH-map h:S(W;PR)—X" such that h"#=g.
It follows from that deg & is prime to |WH|. Put degh=I[. We
choose an integer s with /-s=d(H) mod| WH| and also choose an integer t with
t-s=1 mod| WH]|. Then there exists a WH-map k:S(W,DR)—S(W.BR) such
that degk=s mod|WH| and degk"#=1. Hence degh-k=d(H) mod| WH|
and deg(h-k)*¥=1. By the equivariant obstruction theory, or [Proposition 1.4
we obtain the desired WH-map fg.
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We give an example satisfying the assumption in [Proposition 2.4l

LEMMA 2.6. Let X be a homotopy representation of G with the dimension
function n. If G has an odd order, then n(H)=n(G)mod2 for any HES(G).

Proor. This is the well-known result. We give its short proof. We
define deC(G) by dH)=X(XH)—1=(—1)"“*>-1  where X denotes the Euler
characteristic. Then d belongs to the unit group A(G)* of the Burnside ring
[5] Since G has an odd order, A(G)* consists of +1 [5]. Hence d(H)=d(G)
and so n(H)=n(G) mod?2.

We obtain from the above results:

COROLLARY 2.7. Let G be a nilpotent group of odd order. Let n be the
dimension function of a homotopy representation. Then the number Num(G, n) is
equal to the order of Pic,(G).

§3. The order of the unstable Picard group.

Let n be the dimension function of a homotopy representation X of G. We
first compute the order of Pic,(G) when n(G)=2. We assume n(G)=2 for a
while. Then we note that C, is a subring of C=C(G) and also A, is a sub-
ring of A=A(G). Since |G|C, is an ideal of C,, we can define a ring C,=
C,/|G|C,. We can also define a ring A,=A,/|G|C, since |G|C, is an ideal
of A,. We consider the following pullback diagram of rings (cf. [5])).

An I Cn
A, — C,.

Here the horizontal maps are the natural inclusions and the vertical maps
are the projections. From the Mayer-Vietoris sequence of Picard groups of
rings [5], we obtain the exact sequence:

1 —> A% —> C¥x A% —> C%* —> Pic A, —> Pic C, XPic 4,

where * indicates the unit group of a ring. We note that A% and C%* in the
sequence are isomorphic to A%¥ and C¥ defined in Section 1 respectively. It
follows from the same argument as in [5, Proposition 10.3.6] that PicC,=1
and Pic A,=1. Hence we obtain the exact sequence:

1— C¥A¥ — Ci —>PicA, —> 1,

since CXA¥ is the image of C¥x A% Hence Pic 4, is isomorphic to Pic,(G).
We shall compute the order of Pic A,. We still assume n(G)=2. We define an
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isomorphism of rings 7: C—IlimesrZ by i(d)=(d(H)). Then the image of A
coincides to the subring:
{(dg)e TI Z| congruences (*)y for (H)e¢(G)},
(H)Ed(®
where
Mu: dg=—2ng xdxg mod|WH|,

and ny g are certain integers. The sum is taken over G-cojugacy classes (K)
such that H{K, H+K and K/H is cyclic. (For the detail, see [5].)

We put &, (abbr. ) ={(H)e¢(G)|H=H}. From the unstability conditions
and n(G)=2, we can also define an isomorphism of rings j:C,—IlixesZ by
Jj(d)=(d(H)). We put

B={dg)e II Z| congruences (**)y for (H)e T},
(H)Yed

where
(**)H: dg = '—Enzz,xd}? mod | WH,.

The sum is taken over G-conjugacy classes (K) such that H<]K, H# K and
K/H is cyclic.
LEmmMmA 3.1. j(A,)=B.

Proor. Take de A,. Then i(d) satisfies the congruences (*)y for (H)= ¢(G),
and d(K)=d(K) for (K)e¢(G). Hence j(A,) CB. Take (dyg)eB. From the
proof of [8, Theorem 2], we see that there exists a G-map f:X—X of a
homotopy representation X with DimX=n such that d(f)(H)=dyg for (H)e4&.
Since d(f)= A, by [8], it follows that (dg)ej(A,). Therefore j(A,)=B.

We may compute the order of Pic B. The order of Pic B can be computed
by the same way as in or [4] Then we see that

|PicB| =277|B*| TI o(|WHY|),
(H)eF
where f=|4| and ¢ is the Euler function. We have obtained
PropoSITION 3.2. If n(G)=2, then
|Pic,(G)| =277 A¥| TI o(|WH]).
(H)EF

From now we consider the general case. We put n=DimX and n'=
Dim X*S*'. Note that n'=n+2=2and ¥,=%,.. We put ¢)={(H)e F|n(H)=1}
and F(=)={(H)eF|n(H)=7}. We define a homomorphism

k: Ch— TI Z/|WH|*/=£1

(H)H)eF (1)

by k([d])=(d(H)-d(G) "), where d is an invertible function satisfying the un-
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stability conditions for n’.
LEMMA 3.3. The homomorphism k is surjective and Ker k=C*A%..

Proor. The surjectivity is obvious. Take [d]=C%*. Since d(H)=+1 when
n(H)=1, it follows that k([d])=1. Take [d]eA¥%. Then d satisfies (**). If
(HYe g(1), then dH)=—ng xd(K)=—nyz xd(G)=d(G) mod|WH|. Hence
E([d])=1, and so C¥A¥ CKerk. Take [dleKerk. We choose ¢,&C¥ such
that (¢;d)(H)-(c;d)(H)*=11in Z/|WH\* for (H)eg(1). Then c,d satisfies (**)g
for (H)e g with n(H)<1. Indeed if (H)e4(0), then H=G and so WH=I.
Hence (**)y is satisfied. If (H)e (1), then —}]nH,K(cld)(ff):—ZnH,K(cld)(G)
=(c;d)(G)=(c,d)(H) mod| WH].

ASSERTION. There exists e A, such that e is invertible and e(H)=(¢c,d)(H)
when n(H)X1.

We assume this for a while. Choose an integer e/(H) such that e’(H)e(H)
=1 mod|G| for (H)eF. We define c¢,=C, which is invertible by c¢,(H)=
d(H)e!(H) if n(H)=2, and c,(H)=c,(H) if n(H)<1. Then (c.e)(H)=d(H)e'(H)e(H)
=d(H)e'(H)e(H)=d(H) mod |G| for n(H)=2, and (c.e)(H)=c,(H)c,(H)d(H)=d(H)
for n(H)<1. Therefore [¢;][e]=[d] in C¥ and Kerk=C}A%.

PROOF OF ASSERTION. We inductively choose an integer ey satisfying (*¥)y
for (H)e g and exp=(c,d)(H) when n(H)<1. (Here the integers ey need not be
prime to |G|.) We define e€C, by &H)=ez. Then ¢=A, by Lemma 3.1.
It follows that there exists a G-map f:Y—Y such that d(f)=¢ [8], where Y=
XxS!. We construct the desired e inductively. Suppose that there exists a G-
map fs:Y—Y such that d(fs)(H) is prime to |G| for (H)eS, and d(fs)(H)=
(c;d)(H) when n(H)<1. Here S is a subfamily of ¢(G) such that if (H)<(K)
and (H)ES, then (K)eS. Let (H) be a maximal element of ¢(G)\S. We put
T=S\U{(H)}. If H+H, then (H)S. Hence d(fs)(H)=d(fs)(H) is prime to |G|.
If H=H, then d(fs)(H)=deg f¥ is prime to |WH| by Lemma 1.5, We can
choose an integer m such that deg f¥+m|WH]| is prime to |G|. By [Proposition|
1.4, we obtain a G-map fq:Y—Y such that deg f¥=deg f¥+m|WH| and deg f&
=deg f¥ for (K)=S. In the end of this process, we obtain a G-map h:Y—-Y
such that deg h* is prime to |G| for (K)=¢(G) and degh¥=(c,d)(K) when
n(K)Z1. Then d(h) is the desired e= A,'.

We put Inv,(G)=C%/A%. It is easy to see that the following sequences are

exact (cf. [4].
(3.4) 1 A¥ C¥ Inv,(G) — Pic,(G) —> 1

(3.5) 1 —> Inv,(G) —> Inv, (G) —> C¥ /C¥A¥ —> 1.
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Here the maps are defined by the obvious way and n’=n+2, and A% denotes
the subgroup of elements of A* satisfying the unstability conditions for n.
By [Proposition 3.2 and [(3.4), we have

[Iva (G)1 = TI_¢(IWHI).
By and [3.5), we have
Inv,(G)| =2°X TII @(IWHI),

(H)HYEF(22)

where s=|{(H)e F|n(H)=1, |WH|=3}|. By [3.4), we obtain
|Pic,(G)] = 27| AX[1Cx|*  II (| WHY).

(HYET (22)
It can easily be seen that
| A% | if n(G)=1
| A% =
|A¥ /2 if n(G)=0

and
27 if n(G)=1
|Cx| =
27-1 if n(G)=0 (f=I191,
Hence | A¥||C¥*|-*=2-'| A% |. Therefore we have obtained

THEOREM 3.6. For any n=Dim(G),

|Pic,(G)| = 22| A% CEI7Y  II (I WHI)

(H)eF(z2)

=2"71A%] T @(IWH]),

(HY=F (22)

where f=|9|, s=|{H)eF|n(H)=1, |WH|=3}|.
COROLLARY 3.7. Let G be a finite group of odd order. Then
|Pic,(G)| =27 TI o(|WH]).

(HYeF(z2)

PrROOF. Since G has an odd order, A* consists of 1. (See [5].) On the
other hand it is clear that *+1= A% C A*. Hence |A% |=2. If (H)edg and
n(H)=1, then H=G by Lemma 2.6. Hence s=0.

§4. Finite homotopy representations.

A homotopy representation X which has a G-homotopy type of a finite G-
CW-complex is called a finite homotopy representation. In [6], tom Dieck and
Petrie defined finiteness obstruction o(X)ex(G)=@ K ZWH ), where IZ’O(Z WH)
is the reduced projective class group of ZWH. tom Dieck and Petrie’s finiteness
obstruction has the following properties.
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ProrosiTION 4.1 ([6]).

(1) For homotopy representations X, Y, p(XxY)=p(X)+p¥).

(2) If X is a finite homotopy representation, then p(X)=0.

(3) Assume that \Upes, X" is a finite G-CW-complex, where S,=
{HeS(G)|dim X¥ <2}, Then X is a finite homotopy representation if p(X)=0.

From the proof of [6, Proposition 7.24], we can replace the assumption of
(3) by the following:

HYPOTHESIS. There exist a finite G-CW-complex Y (S,) and a G-map fs,:
Y(So)—X such that dimY(Sy)¥=dim X¥, and Y (S,)¥ is homotopy equivalent to
SrH-1 gnd deg fs,==*1 for any HES,.

From the proof of Proposition 2.4, we see that if n=DimX satisfies that
n(H)=n(G) mod2 for any HeS,, then Hypothesis is satisfied for X. In par-
ticular, if G has an odd order, then Hypothesis is satisfied for any homotopy
representation. tom Dieck and Petrie also defined the homomorphism

o: Pic(G) — k(G).

Let X and Y be homotopy representations with the same dimension function n
and f: Y—X any G-map with an invertible degree function d(f). Then it is
known that p([d(f)])=p(X)—p(Y) [6]. We denote the composition of p with
the natural homomorphism Pic,(G)—Pic(G) by

on: Picy(G) — k(G).

Let Num/(G, n) denote the number of G-homotopy types of finite homotopy re-
presentations with the same dimension function n<Dim/(G), where Dim/(G)
denotes the set of dimention functions of finite homotopy representations of G.

PROFOSITION 4.2.
(1) Num,(G, n)=|Ker p,]|.
(2) If G is a nilpotent group of odd order, then Num (G, n)=|Ker p,]|.

Proor. Let X, X,, ---, X, be finite homotopy representations such that X;
and X; are not G-homotopy equivalent for :#;. Let f;: X;—X, be a G-map
with an invertible degree function. Since X; and X, are finite, p([d(f:)])=0
and hence p,([d(f;)])=0. By the similar argument as in [Proposition 1.7, one
can see (1). Assume G is a nilpotent group of odd order. For any [d]=Ker p,,
there exist a homotopy representation Y and a G-map f:Y—X, such that
DimY =n and d(f)=d by [Theorem 2.1l Then p(Y)=p(Y)—p(X))=—p([d(f)])
=0. It follows from [Proposition 4.1 that V" is a finite homotopy representation.
Therefore (2) follows. (See Section 2.)
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It seems difficult to compute Ker p,, or its order in general (cf. [9]. If G
is abelian, then Kerp, is described by using Swan homomorphisms. We shall
explain this. Let G be an abelian group. We define eyz:C*—Z/|G|* by
en([d])=d(H). We inductively define uy:C*—Z/|G|* by ug=ee and ugz=

exllx>puzt. Let denote by #iy the composition of uy with the projection
Z/|G|*>Z/|G/H]|*.

PROPOSITION 4.3 ([3], [6]). The sequences

_ u
11— A* — C* —> gZ/xG/H]* —>1

_ _ peu lp
l—s A*C*—>C*——>IHIZ/|G/HI*/i1——>1

are exact, where u=(fig) and p is the projection. In particular,
Inv(G) = C*/A* = I1Z/|G/H]*
Pic(G) = C*/A*C* = I Z/|G/HI*/ 1.

We compute Pic,(G) of an abelian group G. It is easy to see the next two
lemmas.

LEMMA 4.4. If H=H and n(H)=0, then ugz=1 on C%.
LEMMA 4.5. If H=H and n(H)=1, then ug=-=+1 on C%.
We put F={H<G|H=H}.

LEMMA 4.6. If H=eF°=8(G)\Z, then uy=1 on C;‘;.

PrROOF. We prove it inductively. Let &, be a subset of F°. We assume
that ux=1 on C¥ if K= <,. Let H be a maximal subgroup in $\%,. We put
Fo=F\J{H}. Then on C¥

ug=-¢eg Il ug™
K>H

=eg II ug™? (By the assumption.)
ESH
K=K
=eg( IT uxug™' (Because if K>H, K=K, then K=H [8, Lemma 2.9].)
K>H
K~R

= (eg II uxgHugrg™' (By the assumption.)
K>H

Il

ug-ug™*
1.

Hence uxz=1 on C¥ if K&, In the end of this process, we see that ug=1
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on Ck if Kege.

We obtain the commutative diagram:

- u
C* II Z/|G/H|*
HeSG)
U ",
C¥——— 11 Z/|G/H|*x TI Imiig
HeF (22 Hed (1)
U p°un l’

II Z/IG/H|*/£1,

HeTF(22)

@

*
n

where u,=u|C¥. It is not difficult to show that u, and p-u, are surjective.
We also note u,(C})=Kerp. We show Kerpou,=A¥C¥ Since Keru,=
C¥NKer u=CiNA*=24A%, it follows that A%CKerpou,. Since CiCKerpeu,, it
follows that A¥C*CKer pou,. Take xeKer pou,. There exists c=C¥ such
that u,(c)=wu,(x) since u,(x) is in Kerp. Hence xc-*cKeru,=A¥ and so x&
AXC%. Therefore Kerpou,=A¥C%.

We have proved

PROPOSITION 4.7. The following diagram commutes and the horizontal maps
are isomorphisms, which are induced from peu, and pou.

Pic,(G) — TI Z/|G/H|*/+1

~ He%(22)
N

Pic(G) —— II Z/|G/H|*/+1.

o~ HeSG)

tom Dieck and Petrie proved that the following diagram commutes.

Pic(G) —— Il Z/|1G/H|*/x1
= HeS)
4.8
*.8) ) IISein
£(G)

Here SG,H:Z/lG/HI*/icl—»K'O(Z[G/H]) is the Swan homomorphism of G/H.
(For the Swan homomorphism, see and also [9].) From [Proposition 4.7]
and (4.8), we have

PROPOSITION 4.9. If G is abelian, then
Kerpn =~ JI KCI'SG/H.

He%(22)

COROLLARY 4.10. If an abelian group G has an odd order, then Num (G, n)
=|Ilaesczs Ker Se/x |, where neDim (G).
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We shall give an example lastly. Let G be Z/pXZ/p (p: an odd prime),
and H,, H,, -+, H,., all subgroups of order p. The dimension function n of a
homotopy representation is that of a linear G-sphere. Since a linear G-sphere
has a finite G-CW-complex structure, the dimension function n is in Dim/(G).
We define functions n; (=0, 1, ---, p+1) as follows.

noK)=1 for HeS(G),
and for /=1,
2 if K=H;orl

ny(K) -:{
0 if K=H; (j#i) or G.

Note that n; are the dimension functions of unit spheres of irreducible real rep-
resentations of G. From the representation theory, the dimension function
neDim (G)=Dim(G) is uniquely described as n=a,n,+ 274 Bin;, where a, and
B: are non-negative integers. We put P(n)=|{/|8;>0}|. We note that
|Ker Sz, =|KerSs|=(p—1)/2 [11]. We have the following.

Case Num(G, n) Num (G, n)
P(n)=0 1 1
P(n)=1 (p—1)/2 (p—1)/2
P(n)y=k=2 p(p—1)/2)k+ ((p—1)/2)%+*
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