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Introduction.

In Ohshika [4], we introduced the concept of Teichm\"uller spaces of Seifert
fibered manifolds and studied its properties. In some aspects, they are analogous
to Teichm\"uller spaces of surfaces. Let $G$ be a finite subgroup of the mapping
class group of a surface. $G$ acts on the Teichm\"uller space by pulling back of
metrics. In Kerckhoff [2] it is proved that $G$ has a fixed point in the Teichm\"uller

space. We prove that the same theorem holds for Seifert fibered manifolds
under some assumptions (Theorem 2.3).

This theorem has an application similar to that of Kerckhoff [2]. It is
so-called Nielsen realization problem. For a manifold $M$, the Nielsen realization
problem asks when a finite subgroup $G$ of $\pi_{0}Diff^{+}(M)$ is realized by a group of
diffeomorphisms. In dimension 3 there are results of Zimmermann and Zieschang
[10], [11], [12] which reduces the problem to algebra on $G$ . On the other hand,
for a hyperbolic surface it is proved by Kerckhoff [2] that $G$ can be realized
by a group of isometries with respect to some hyperbolic structure. Also for a
Haken hyperbolic 3-manifold, $G$ can be realized by a group of isometries, which
is proved easily using Mostow’s rigidity theorem.

In this paper we deal with Seifert fibered manifolds whose base orbifolds
are either hyperbolic or Euclidean. They have geometric structures modelled
on one of $H^{2}\cross R,$

$SL_{2}\sim,$
$E^{3}$, Nil. We ask if $G$ can be realized by a group of

isometries with respect to some geometric structure. We do not use the results
of [10], [11], [12]. In \S 3 we characterize an isometry with respect to a
geometric structure which is isotopic to the identity. Using Theorem 2.3 and a
proposition in \S 3, we can solve the realization problem under some assumptions
on $M$ and $G$ .

Throughout this paPer we work in $C^{\infty}$ category. All 3-manifolds are assumed
to be compact orientable. $Diff^{+}(M)$ denotes the group of all orientation preserving
diffeomorphisms of M. $\pi_{1}^{orb}(O)$ denotes the fundamental group of $O$ as an
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orbifold. $\mathcal{T}(O)$ and $\mathcal{T}(M)$ denote Teichm\"uller spaces defined in [4]. The
terminology about geometric structures follows Scott [7].

After completing this paper, it was pointed out that Theorem 2.3 was
implicitly proved earlier by Lee and Raymond [13] and that Theorem 3.3 had
been proved by Raymond [14] using a different method.

\S 1. Preliminaries.

In this section we study some theorems on 2-orbifolds including Nielsen
realization theorem and isotopies of Seifert fibered manifolds. Throughout this
section orbifolds are possibly nonorientable or with geodesic boundary. For a
homeomorphism $f:0arrow 0$ , we define $f_{*}:$ $\pi_{1}^{orb}(O)arrow\pi_{1}^{orb}(O)$ as follows. Let $f$

be a lift of $f$ to the universal cover $\tilde{O}$ of $O$ . Let $f_{*}(g)=\tilde{f}gf-1$ for $g\in\pi_{1}^{orb}(O)$ .
It depends on the choice of $\tilde{f}$, but up to conjugacy it is well-defined. The first
lemma is probably well-known but has not been mentioned explicitly anywhere.

LEMMA 1.1. Let $0$ be a hyperbOljc or Euclidean 2-orbifold. Let $f$ be an
orbifold homeomorphism from $O$ to itself such that $f_{*}$ acts on $\pi_{1}^{orb}(O)$ by an
inner automorphism. Then $f$ is isotolnc to the identity as an orbifold homeo-
morphism.

PROOF. For simplicity, we assume $O$ is closed. As $f_{*}$ acts on $\pi_{1}^{orb}(O)$ by
an inner automorphism, $f$ fixes all cone points on $O$ . We choose a basepoint
and a system of essential simple closed curves which divide $O$ into disks possibly
with a cone point. By the method used in Epstein [1], we can isotope $f$ so
that $f$ fixes every simple closed curve of the system. Since the mapping class
groups of the disks relative to their boundaries are trivial, we see that $f$ can
be isotoped to the identity. $\Vert$

LEMMA 1.2. Let $0$ be a hyperbOljc 2-orbifold, and let $f$ : $Oarrow 0$ be an isometry
such that $f_{*}$ acts on $\pi_{1}^{orb}(O)$ by an inner automorphism. Then $f$ is equal to the
identity.

PROOF. By assumption we can choose $f\in Isom(H^{2})$ so that $\tilde{f}g\tilde{f}^{-1}=g$ for
every $g\in\pi_{1}^{orb}(O)$ . Since $f$ commutes with every element of $\pi_{1}^{orb}(O)$ and $\pi_{1}^{orb}(O)$

is nonelementary, $f$ must be the identity. $\Vert$

LEMMA 1.3. Let $O$ be $a$ Euclidean orbifold which is neither a torus, a Klein
bottle, an annulus nor Mobius band. Let $f$ : $Oarrow 0$ be an isometry which acts on
$\pi_{1}^{orb}(O)$ by an inner automorphism. Then $f$ is equal to the identity.

PROOF. Similarly to the proof of Lemma 1.2, we can choose $f$ so that $\tilde{f}$

commutes every element of $\pi_{1}^{orb}(O)$ . Since $\pi_{1}^{orb}(O)$ contains infinitely many
rotations, $\tilde{f}$ must be the identity. $\Vert$
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The following theorem is a generalization of Kerckhoff’s realization theorem.
In the main theorem of Kerckhoff [2], he deals with only closed orientable
hyperbolic surfaces but mentions that the same theorem holds for hyperbolic
2-orbifolds (possibly nonorientable with boundary). Although the definition of
Teichm\"uller spaces of 2-orbifolds with boundaries of [2] differs from ours, it
makes no difference in the theorem.

THEOREM 1.4. Let $0$ be a hyperbOljc or Euclidean 2-orbifold and let $G$ be a
finite subgroup of $\pi_{0}Diff(O)$ . $G$ acts naturally on $\mathcal{T}(0)$ . Then $G$ has a fixed point
in $\mathcal{T}(O)$ .

PROOF. We only need to prove the theorem in the case when $O$ is Euclidean.
It is classically known that an extension of a crystallographic group $H$ by a
finite subgroup of Out $(H)$ is also a crystallographic group. As $G$ can be regarded
as a subgroup of Out $(\pi_{1}^{orb}(O))$ by Lemma 1.1, $G$ can be realized by a group of
isometries with respect to some Euclidean structure. $\Vert$

The following proposition is a generalization of a theorem in Vogt [8].

PROPOSITION 1.5. Let $M$ be a Seifert fibered manifold whose base orbifold
$O$ is either $hyPerbolic$ or Euclidean. Fix a fibration of M. Let $f_{0}$ and $f_{1}$ be
isototnc autohomeomorplusm of $M$ both of which are fiber Preserving. Then there
exists a fiber preservjng $i$sotopy from $f_{0}$ to $f_{1}$ .

PROOF. We can assume that $f_{1}$ is the identity without loss of generality.
$M$ has a geometric structure modelled on $E$ which is equal to one of $H^{2}\cross R$,
$SL_{2}\sim,$ $E^{3}$ , Nil. Let $B$ be a base geometry of $E$ on which the geometric structure
of $O$ is modelled. ( $B$ is either $H^{2}$ or $E^{2}.$ ) $f_{0}$ lifts to $\tilde{f}_{0}$ : $Earrow E$ which induces
$\overline{f}_{0}$ : $Barrow B$ . As $f_{0}$ is isotopic to the identity, for $g\in\pi_{1}(M),\tilde{f}_{0}gf_{0}^{-1}=g$ as an
action on $E$ . Hence for $g\in\pi_{0}^{orb}(O)\overline{f}_{0}gfO=g$ as an action on $B$ . By Lemma
1.1, there exists an isotopy $F_{t}$ : $Barrow B$ such that $F_{0}=\overline{f}_{0},$ $F_{1}=id,$ $F_{t}gF_{t}^{-1}=g$ for
all $g\in\pi_{1}^{orb}(O),$ $t\in[0,1]$ . We then have a covering isotopy $\tilde{F}_{t}$ : $Earrow E$ such that
$P_{0}=f_{0},$ $P_{t}gF_{t}-1=g$ for all $g\in\pi_{1}(M)$ and $t\in[0,1]$ . As $\tilde{F}_{1}$ acts on $B$ trivially,
there is an isotopy $G_{t}$ moving to fiber direction such that $G_{0}=\tilde{F}_{1},$ $G_{1}=id_{E}$.
Connecting $F$ and $G$ we obtain a fiber preserving isotopy from $f_{0}$ to $f_{1}$ . $\Vert$

\S 2. Finite group action on Teichm\"uller spaces.

Let $M$ be a geometric 3-manifold. The Teichm\"uller space of $M$, denoted
by $\mathcal{T}(M)$ , is the set of all geometric structures on $M$ factored by isotopy. $\mathcal{T}(M)$

has a natural topology induced from $C^{\infty}$-topology. $\pi_{0}Diff(M)$ acts on $\mathcal{T}(M)$ by
pulling back of geometric structures.

Throughout this section we assume that $M$ is a Seifert fibered manifold
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which admits a geometric structure modelled on one of $H^{2}\cross R,$
$SL_{2}\sim,$

$E^{3}$, Nil.
$P:Marrow O$ denotes a Seifert fibration where $O$ is a base orbifold of the fibration.
By assumption on $M,$ $O$ is hyperbolic or Euclidean.

Fix a geometric structure on $M$. Then $O$ has a geometric structure induced
by $p$. Let $E$ be a geometry space on which geometric structures of $M$ are
modelled, and $B$ its base geometry ( $H^{2}$ or $E^{2}$). Each element $m\in \mathcal{T}(M)$ deter-
mines a faithful discrete representation of $\pi_{1}(M)$ to $Isom^{+}(M)$ up to conjugacy.
We denote this representation by $\rho_{m}$ . There is a natural projection
$r_{*}:$ $Isom^{+}(E)arrow Isom(B)$ . If $r_{*}\rho_{m_{1}}=r_{*}\rho_{m_{2}},$ $\rho_{m_{1}}(\rho_{m_{2}})^{-1}$ (where the multiPlication
and the inverse mean those of $Isom^{+}(E))$ is a representation of $\pi_{1}(M)$ to
$Isom^{+}(R)=R$. We denote this representation by $\delta(m_{1}, m_{2}):\pi_{1}(M)arrow R$. We note
that if both $r_{*}(a)$ and $r_{*}(b)$ are orientation preserving, $\delta(m_{1}, m_{2})(ab)=\delta(m_{1}, m_{2})(a)$

$+\delta(m_{1}, m_{2})(b)$ . Let $\{a_{1}, b_{1}, \cdots , a_{g}, b_{g}, d_{1}, \cdots , d_{b-1}\}$ (when $O$ is orientable) or
$\{a_{1}, \cdots , a_{g}, d_{1}, \cdots , d_{b}\}$ (when $0$ is nonorientable) be a subset of $\pi_{1}(M)$ whose
projection to $O$ generates $\pi_{1}(X_{0})$ so that $p_{*}(a_{i})$ and $p_{*}(b_{i})$ represent a handle
and $p_{*}(d_{i})$ represents a boundary component, where $X_{0}$ denotes the underlying
space of $0$ . Let $\Gamma$ be $\{a_{1}, b_{1}, \cdots , a_{g}, b_{g}, d_{1}, \cdots , d_{b-1}\}$ if $0$ is orientable and
$\{a_{1}a_{2}, a_{1}a_{3}, \cdots , a_{1}a_{g}, d_{1}, \cdots , d_{b- 1}\}$ if $O$ is nonorientable. The following prop-
osition was proved in [4].

PROPOSITION 2.1. There is a natural map $q;\mathcal{T}(M)arrow \mathcal{T}(O)\cross R$ such that the
first factor is the prOjectiOn of geometric structures to the base orbifold, and that
the second factor is the length of the geometric regular fiber. Then for every
$\mu\in im(q)$ and a fixed $m_{0}\in q^{-1}(\mu)$ , there is a homeomorphism from $q^{-1}(\mu)$ to $R^{\Gamma}$

which maPs $m$ to $(\delta(m, m_{0})\gamma)_{\gamma\in\Gamma}$ .
REMARK. In [4] the proposition above is proved only when $M$ is not

Euclidean. But the proposition holds even in the case when $M$ has $E^{3}$-structure.
Fix one foliation by straight lines on $E^{3}$ and one Seifert fibration on $M$ whose
base orbifold is $0$ . This foliation may be assumed to cover any geometric
Seifert fibration $Marrow 0$ by conjugating a corresponding representation in
$Isom^{+}(E^{3})$ . Then we can use the same argument as in the unique fibration
case to prove the proposition. $\Vert$

The proof of the following lemma is trivial.

LEMMA 2.2. Let $E$ be one of $H^{2}\cross R,$
$SL_{2}\sim,$

$E^{3}$ , Nil, and $r;Earrow B$ a pro-
jection to the base geometry ( $H^{2}$ or $E^{2}$). Then for every geodesic $\lambda$ on $B,$ $r^{-1}(\lambda)$

with the metric induced from $E$ is isometric to $E^{2}$ .
DEFINITION. Let $\gamma$ be an element of $\pi_{1}(M)$ which projects to a torsion free

element of $\pi_{1}^{orb}(O)$ . For $m\in \mathcal{T}(M)$ , $r_{*}\rho_{m}(\gamma)\in Isom(B)$ has an axis $\lambda$ . $l_{m}(\gamma)$

denotes parallel translation length of $\gamma$ on $r^{-1}(\lambda)$ with respect to its Euclidean
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metric induced form $E$ . For a finite subgroup $G\subset\pi_{0}Diff^{+}(M),$ $G\Gamma$ denotes a
collection of $g\gamma$ where $g\in G,$ $\gamma\in\Gamma$ allowing repetition. Let $L_{G\Gamma}$ be a function
on $\mathcal{T}(M)$ such that for $m \in \mathcal{T}(M)L_{G\Gamma}(m)=\sum_{\gamma\in G\Gamma}l_{m}(\gamma)^{2}$ .

THEOREM 2.3. Assume that $M$ is not $S^{1}\cross S^{1}\cross I$ , and $O$ is neither $S^{2}(2,3, r)$

nor $S^{2}(3,3, r)$ . Let $G$ be a finite subgroup of $\pi_{0}Diff^{+}(M)$ . In the case when $M$

is $S^{1}\cross S^{1}\cross S^{1}$ , assume moreover that $G$ is cyclic. $G$ acts on $\mathcal{T}(M)$ by pulling back
of metrics. Then the action of $G$ has a fixed Pnnt in $\mathcal{T}(M)$ .

PROOF. First we show that the action of $G$ leaves some isotopy class of
Seifert fibration invariant. This follows from Satz 10.1 in Waldhausen [9] if
$M$ is Haken and does not have $E^{3}$-structure, and follows from Corollary 2.3 in
[4] if $O$ is $S^{2}(p, q, r)$ . If $O$ is either $S^{2}(2,2,2,2)$ or $D^{2}(2,2)$ , $\pi_{1}^{orb}(O)$ has
trivial center. Then regular fibers of $M$ must be preserved up to isotopy. If
$O$ is $P^{2}(2,2)$ , there is one-sided Klein bottle in $M$ which is unique up to isotopy.
So it is reduced to the case when $0$ is $D^{2}(2,2)$ . If $M$ is $S^{1}\cross S^{1}\cross S^{1}$ , by
conjugating a correspondin$g$ matrix in $SL_{3}(Z)$ , we can see that there is at
least one fibration which is preserved up to isotopy.

Fix one of such fibrations $p:Marrow 0$ . Then the action of $G$ on $\mathcal{T}(M)$

descends to the action of $\mathcal{T}(0)$ through the natural projection by Proposition
1.5. By Theorem 1.4, $G$ has a fixed point $\mu\in \mathcal{T}(0)$ . Since $G$ acts fiber-
preservingly, the fiber length is invariant. Let $Q\subset \mathcal{T}(M)$ be $q^{-1}(\mu\cross\{s\})$ which
is not empty. We only need to show that $G$ has a fixed point in $Q$ . For that
we will show that $L_{G\Gamma}$ has a unique minimum in $Q$ .

Fix an element $m_{0}\in Q$ . By Proposition 2.1, $Q$ is parametrized by
$(\delta(m, m_{0})\gamma)_{q\in\Gamma}$ . Let $\pi_{1}^{*}(M)$ be a subgroup of $\pi_{1}(M)$ which consists of all elements
preserving fiber orientation. If $O$ is orientable, $\pi_{1}^{*}(M)=\pi_{1}(M)=\langle\Gamma, c_{1}, \cdots , c_{k}, h\rangle$ .
If $O$ is nonorientable, $|\pi_{1}(M):\pi_{1}^{*}(M)|=2$ and $\pi_{1}^{*}(M)=\langle\Gamma, a_{1}^{2}, \cdots , a_{g}^{2}, c_{1}, \cdots , c_{k}, h\rangle$

( $\langle\rangle$ denotes normal closure). In both cases $c_{i}$ denotes an element around a
singular fiber, and $h$ denotes the homotopy class of regular fibers. For $\zeta\in\pi_{1}^{*}(M)$ ,
we fix a word in terms of above generators representing $\zeta$. For $\gamma\in\Gamma,$ $ind(\zeta, \gamma)$

denotes the sum of exponents of 7 in the word representing $\zeta$. (This definition
is independent of word representation because it is determined by the homology
class of ;.)

We see that $l_{m}(\zeta)^{2}=(\Sigma_{\gamma\in\Gamma}ind(\zeta, \gamma)\delta(m, m_{0})(\gamma)+m_{f}(\zeta))^{2}+m_{b}(\zeta)^{2}$ where $m_{f}(\zeta)$

and $m_{b}(\zeta)$ denotes respectively fiber coordinate and base coordinate of $\rho_{m_{0}}(\zeta)$

with respect to product structure of totally geodesic surface preserved by $\rho_{m_{0}}(\zeta)$ .
This is a consequence of additivity of $\delta(m, m_{0})$ and Lemma 2.2. The equation
above holds for $\zeta\in G\Gamma$ because it is contained in $\pi_{1}^{*}(M)$ . We denote $\delta(m, m_{0})\gamma$

by $x_{\gamma}$. Then $Q\cong\{(x_{\gamma})_{\gamma\in\Gamma} ; x_{\gamma}\in R\}$ . Hence $L_{G\Gamma}(m)= \sum_{\gamma\in G\Gamma}l_{m}(\gamma)^{2}$ is a quadratic
function of $\{x_{\gamma}\}$ whose quadratic coefficients are nonnegative. Hence $L_{G\Gamma}$ has
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either a unique minimum or a linear space with dimension at least one in which
$L_{G\Gamma}$ is constant. From the definition, $ind(\gamma, \gamma)=1$ and $ind(\gamma_{1}, \gamma_{2})=0$ if $\gamma_{i}\in\Gamma$ and
$\gamma_{1}\neq\gamma_{2}$ . So $L_{G\Gamma}$ is greater than $\sum_{\gamma\in\Gamma}(x_{\gamma}+m_{f}(\gamma))^{2}+m_{b}(\gamma)^{2}$ for each $\gamma\in\Gamma$. Hence
if $x_{\gamma}$ tends to infinity, $L_{G\Gamma}$ goes to infinity. Thus the latter case does not
occur.

Let $n\in q^{-1}(m)$ be the unique minimum of $L_{G\Gamma}$. As $L_{G\Gamma}$ is G-invariant
function on $q^{-1}(m),$ $n$ is fixed by $G$ action. This is what we want. $\Vert$

REMARK. The theorem above does not hold for $S^{2}\cross R$ geometry. For
example $Z_{2}\subset\pi_{0}Diff(S^{2}\cross S^{1})$ which is generated by the element corresponding to
the generator of $\pi_{1}(SO(3))\cong Z_{2}$ acts on $\mathcal{T}(S^{2}\cross S^{1})\cong S^{3}\cross R$ as a free involution on
the first factor.

\S 3. Realizing a finite subgroup by isometries.

Throughout this section $M$ is assumed to be a Seifert fibered manifold
whose base orbifold $O$ is either Euclidean or hyperbolic and $O$ is neither
$S^{2}(2,3, r)$ nor $S^{2}(3,3, r)$ .

PROPOSITION 3.1. Assume $0$ is neither a torus, a Klein bottle, an annulus nor
a Mbbius band. Let $g$ be a geometric structure on $M$ modelled on urther of
$H^{2}\cross R,$

$SL_{2}\sim,$ $E^{3}$ , Nil. Let $f:Marrow M$ be an isometry of $(M, g)$ isotopic to the
identity. Then

i) if $O$ is nonorientable, $f$ is equal to the identity,
ii) if $O$ is orientable, $f$ is a rotation along geometric fibers.
PROOF. As $f$ is an isometry, $f$ preserves the geometric fibration of $M$.

Hence $f$ induces $\overline{f}:0arrow 0$ such that $P\circ f=\overline{f}\circ P$ . $\overline{f}$ is isotopic to the identity by
Proposition 1.5. By Lemma 1.2, $\overline{f}$ must be the identity. Hence $f$ is locally
rotation along fibers. As $f$ is isometry, rotation distance is constant all over
$M$ $lfO$ is nonorientable, there is no rotation along fiber on $M$ except the
half rotation which is not isotopic to the identity, because the fibration structure
on $M$ is twisted. $\Vert$

Now we can prove the realization theorem.

THEOREM 3.2. Let $G$ be a finite subgroup of $\pi_{0}Diff^{+}(M)$ . Assume that $O$ is
nonorientable, and neither a Klein bottle nor a Mobius band. Then there is a
geometric structure on $M$ with respect to which $G$ can be realized by isometries.

PROOF. By Theorem 2.3, there exists a geometric structure on $M$ such
that for each element $x\in G$ there exists $\varphi_{x}\in Diff^{+}(M)$ representing $x$ which is
an isometry with respect to $m$ . The set $\{\varphi_{x}\}$ makes a group isomorphic to $G$

because every relation of $G$ is preserved in $\{\varphi_{x}\}$ by Proposition 3.1. Hence $G$
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can be realized by isometries with respect to $m$ . $\Vert$

THEOREM 3.3. Let $G$ be a finite cyclic subgroup of $\pi_{0}Diff(M)$ which acts on
the center of $\pi_{1}(M)$ trivially. Then there is a geometric structure on $M$ with
respect to which $G$ can be realized by isometries.

PROOF. If $M$ is $S^{1}\cross S^{1}\cross I$ , the theorem is easy because $\pi_{0}Diff^{+}(M)\cong GL_{2}(Z)$ .
So we assume that $M$ is not $S^{1}\cross S^{1}\cross I$ . Let $x$ be a generator of $G$ . By
Theorem 2.3, there exist a geometric structure $m$ and $\varphi_{x}\in Isom^{+}(M, m)$ repre-
senting $x$ . The only relation of $G$ is $x^{n}=1$ . $\varphi_{x}^{n}$ is an isometry of $(M, m)$

isotopic to the identity. Hence if $O$ is neither a torus, an annulus, a Klein
bottle nor a M\"obius band, $\varphi_{x}^{n}$ is a rotation along fiber. Assume that the
rotation distance is $r$ . Let $\varphi_{x}’$ be an isometry composing $\varphi_{x}$ and $(-r/n)$-rotation
along fibers. By assumption $\varphi_{x}$ preserves the orientation of fibers. Hence
$\varphi_{x}^{\prime n}=id$ . As $\varphi_{x}’$ is isotopic to $\varphi_{x}$ , this is a realization of $G$ .

If $0$ is one of a torus, an annulus, a Klein bottle, a M\"obius band, $\varphi_{x}^{n}$ may
induce a transformation on $O$ which is an element of $S^{1}$ action. So similarly
to the above case there is an isometry $\varphi_{x}’$ which is isotopic to $\varphi_{x}$ such that
$\varphi_{x}^{;n}=id$ . $\Vert$
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Added in proof. Recently it was announced that Boileau and Otal proved
that homotopy implies isotopy in Seifert fibered manifolds with infinite $\pi_{1}$ whose
base orbifolds are either $S^{2}(2,$ 3, r) or $S^{2}(3,$ 3, r). This makes the assumption
that 0 is neither $S^{2}(2,$ 3, r) nor $S^{2}(3,$ 3, r) in Theorem 2.3 and \S 3 unnecessary.
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