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\S 1. Introduction.

In this paper, we will make a proof-theoretic study of Paris-Harrington’s
independence results for Peano arithmetic [10]. First, we will give a charac-
terization of provably recursive functions in fragments of Peano arithmetic.
Then, we will analyze the combinatorial statements by Paris and Harrington,
making use of our characterization.

Let PA be Peano’s first-order arithmetic and $PA^{*}$ be the extension of PA
obtained by adding all true $\Pi_{1}$-formulas as axioms. The fragments under con-
sideration can be obtained by restricting induction formulas of the mathematical
induction to formulas containing at most $k$ quantifiers, for a given $k$ .

Some basic facts on ordinal recursive functions and Wainer’s hierarchy [17]

will be presented in \S 2. In \S 3, we will prove our theorem on the characteriza-
tion of provably recursive functions. By our theorem, the relation between $\alpha-$

ordinal recursive functions $(\alpha<\epsilon_{0})$ and provably recursive functions in fragments
of $PA^{*}$ will be clarified. Another characterization of these functions will be
also stated in our theorem, in terms of the provability of some bounded formulas
or some $\Delta_{1}$-formulas in fragments of PA. We emphasize here that our theorem
can be shown by using a purely proof-theoretic method.

This characterization enables us to analyze the combinatorial statements by
Paris and Harrington which are shown to be independent of Peano arithmetic.
This will be done in \S 4, by making use of the estimation of raPidly growing
functions associated with these combinatorial statements, due to Ketonen and
Solovay [3]. Indeed, we can give an alternative proof of a result by Paris [9],

in a proof-theoretic way. We will also mention explicitly how the provability
or the unProvability of these statements dePends on their rePresentation in formal
systems.

Authors wish to thank S. Hayashi for his helpful comments.
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\S 2. Preliminaries.

In the following, we will use small Greek letters $\alpha,$ $\beta,$
$\gamma,$

$\cdots$ for ordinal
numbers. Define the ordinal $\omega_{n}(m)$ for each $m,$ $n<\omega$ by

$\omega_{0}(m)=m$ , $\omega_{n+1}(m)=\omega^{\omega_{n}(m)}$ .
We will abbreviate $\omega_{n}(1)$ to $\omega_{n}$ . As usual, $\epsilon_{0}$ denotes the first ordinal $\alpha$ such
that $\alpha=\omega^{a}$ . In most cases in the following discussion, we will deal with only
number-theoretic functions. So, hereafter by functions we mean number-theoretic
ones, unless otherwise mentioned.

For each natural number $k>0,$ $<_{k}$ denotes the elementary recursive well-
ordering of natural numbers of order-type $\omega_{k}$ , which is defined in \S 3 of Wainer
[17]. For each $x,$ $ord_{n}(x)$ is the ordinal represented by $x$ in the well-ordering
$<_{n}$ and for each $\alpha<\omega_{n}$ , $num_{n}(\alpha)$ is the unique natural number $x$ such that
$ord_{n}(x)=\alpha$ . Let $\alpha$ be any ordinal less than $\epsilon_{0}$ and $n$ be the smallest natural
number such that $\alpha<\omega_{n}$ . Following [17], we will define $U(\alpha)$ to be the smallest
class of functions containing all primitive recursive functions, which is closed
under substitution and the following (unnested) recursion uP to $\alpha$ ;

$f(0, z)=g_{1}(z)$ ,

$f(x+1, z)=g_{2}(x+1, z, f(h(x+1, z), z))$ ,

where $h(x, z)<_{n}x$ for each $x$ such that $0<nx<_{n}num_{n}(\alpha)$ and $h(x, z)=0$ other-
wise. A function $f$ is said to be $\alpha$-ordinal recursive if $f$ belongs to $U(\alpha)$ , and
$f$ is said to be ordinal recursive if $f$ is $\omega_{n}$-ordinal recursive for some $n<\omega$ .

In [17], Wainer introduced a hierarchy $\{\mathcal{F}_{a}\}_{\alpha\leqq\epsilon_{0}}$ of a certain subclass of
recursive functions, as follows. First, a fixed fundamental sequence $\{\alpha\}(n)$

$(n<\omega)$ will be defined for each limit ordinal $\alpha\leqq\epsilon_{0}$ . Suppose that $\alpha<\epsilon_{0}$ and $\alpha$

is of the form $\omega^{\beta}\cdot(\gamma+1)$ . Then, $\{\alpha\}(n)$ is $\omega^{\beta}\cdot\gamma+\omega^{\delta}\cdot n$ if $\beta=\delta+1$ , and is $\omega^{\beta}\cdot\gamma$

$+\omega^{\{\beta\}(n)}$ if $\beta$ is a limit ordinal. When $\alpha=\epsilon_{0},$ $\{\epsilon_{0}\}(n)$ is defined to be $\omega_{n}$ for
each $n$ . For each unary function $f,$ $f^{m}$ is defined inductively as $f^{1}(x)=f(x)$ ,
$f^{k+1}(x)=f(f^{k}(x))$ . Now, the functions $F_{\alpha}(\alpha\leqq\epsilon_{0})$ are defined inductively as
follows;

$F_{0}(x)=x+1$ ,

$F_{1}(x)=(x+1)^{2}$ ,

$F_{\beta+1}(x)=F_{\beta}^{x+1}(x)$ if $\beta>0$ ,

$F_{\sigma}(x)=F_{\{\sigma 1(x)}(x)$ if $\sigma$ is a limit ordinal.

For each $\alpha\leqq\epsilon_{0}$ , let $\mathcal{F}_{\alpha}$ be the smallest class of functions containing $F_{a}$ , the zero
function, addition and projection functions, which is closed under substitution
and limited primitive recursion. Suppose that $f$ is any unary function and $g$ is



Provably recursive functions 723

any n-ary function. Then, we say that $g$ is dominated by $f$ if there exists a
natural number $k$ such that

$g(x_{1}, \cdots , x_{n})<f(\max\{x_{1}, \cdots , x_{n}\})$

whenever $k \leqq\max\{x_{1}, \cdots , x_{n}\}$ . The following propositions are proved by Wainer
(For the details of Wainer’s hierarchy, see [16], [17].)

PROPOSITION 2.1. For each $\alpha\leqq\epsilon_{0}$ ,
1) $F_{\alpha}$ is strictly increasing,
2) if $\beta<\alpha$ then $F_{\beta}$ is dominated by $F_{\alpha}$ ,
3) If $\beta<\alpha$ then $F_{\beta}$ is elementary recursive in $F_{\alpha}$ (in the Csillag-Kalmar sense).

PROPOSITION 2.2. For each $\alpha\leqq\epsilon_{0}$ ,
1) if $\beta<\alpha$ then every function in $\mathcal{F}_{\beta}$ is dominated by $F_{a}$ ,
2) if $\beta<\alpha$ then $\mathcal{F}_{\beta}\subsetneqq \mathcal{F}_{\alpha}$ ,
3) $\mathcal{F}_{\alpha}$ is equal to the class of functions elementary recursive in $F_{\alpha}$ .

As for the elementary recursive functions, see Chapter 2 of Monk [7]. We
have also the following, by using Proposition 2.17 of [7].

PROPOSITION 2.3. Each $\mathcal{F}_{a}$ is closed under bounded minimalization. More
precisely, let $f(x, z)$ be a function defined by the condition that $f(x, z)$ is equal to
the smallest $y$ such that $y<z$ and $g(x, y)=0$ if there exists such a $y$ , and is equal
to $0$ otherwise. Then, if $g(x, y)$ belongs to $\mathcal{F}_{\alpha}$ then so does $f(x, z)$ .

The following result by Wainer [17] shows a relation between ordinal re-
cursive functions and Wainer’s hierarchy.

PROPOSITION 2.4. For each ordinal $\alpha$ such that $0<\alpha<\epsilon_{0}$ ,

$U( \omega^{\alpha})=_{\beta}\bigcup_{<\alpha\omega}.\mathcal{F}_{\beta}$ .

In partjcular, if $n\geqq 1$ then

$\bigcup_{m<\omega}U(\omega_{n}(m))=_{\beta}\bigcup_{<\omega_{n}}\mathcal{F}_{\beta}$ .

It can be shown that the class $\bigcup_{m<\omega}U(\omega_{1}(m))$ , or equivalently the class $\bigcup_{\beta<\omega}\mathcal{F}_{\beta}$ ,
is the class of all primitive recursive functions. In [3], Ketonen and Solovay
have introduced a sequence $\{G_{a}\}_{\alpha\leqq\epsilon_{0}}$ of functions similarly as Wainer’s $\{F_{a}\}_{a\leqq\epsilon_{0}}$ .
(In [3], $G_{\alpha}$ is written as $F_{\alpha}$ . To avoid the confusion of them and Wainer’s
$F_{\alpha}$ , we will write the former as $G_{\alpha}’ s$ throughout this paper.) The functions
$G_{\alpha}(\alpha\leqq\epsilon_{0})$ are defined inductively as follows;

$G_{0}(x)=x+1$ ,

$G_{\beta+1}(x)=G\beta^{+1}(x)$ if $\beta\geqq 0$ ,
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$G_{\sigma}(x)=G_{I\sigma\}(x)}(x)$ if $\sigma$ is a limit ordinal.

Then, we can show easily the following lemma, by using the transfinite induc-
tion on $\alpha$ .

LEMMA 2.5. For each $a<\epsilon_{0}$ and each $x<\omega$ ,

$G_{a}(x)\leqq F_{\alpha}(x)\leqq G_{a+1}(x)$ .

\S 3. Provably recursive functions in fragments $PA_{k}$ and PA:.

In this section, we will introduce some fragments of Peano arithmetic and
will study provably recursive functions in them. Our formal system PA of
Peano arithmetic is similar to the system PA in Takeuti [15]. The language
of our PA contains also function symbols for primitive recursive functions (see

Proposition 10.6 of [15]). Our system PA is obtained from Gentzen’s sequential
calculus LK, by adding 1) the axioms for equality, the axioms for successor
and defining equations for each primitive recursive function, as its mathematical
initial sequents and 2) a rule of inference called $ind$ ’ which represents the
mathematical induction.

In principle, we will distinguish between informal objects and their formal
expressions, although in some cases we will use the same symbols for them
only for the brevity’s sake. For example, $\overline{f}$ denotes the function symbol for a
primitive recursive function $f$ and $\overline{k}$ denotes the numeral for a natural number
$k$ , and so on. Sometimes, we will introduce some predicate symbols for some
primitive recursive relations and add their defining axioms as initial sequents.
For example, if $R(x)$ is a primitive recursive relation and $f(x)$ is the charac-
teristic function of $R(x)$ then we introduce the predicate symbol $\overline{R}$ and add the
defining $axiomarrow\overline{R}(x)\equiv\overline{f}(x)=0$ .

We will suppose that our language contains also the inequality $<$ as a pred-
icate symbol. Moreover, we will make use of the following primitive recursive
functions and relations. (We will use the same symbols for the formal symbols
corresponding to them.) Let $J$ be the function defined by $J(x, y)=[((x+y)^{2}+3x$

$+y)/2]$ . Then $J$ is a bijection from $N\cross N$ to $N$ We can define two projection
functions $K$ and $L$ related to $J$, satisfying that

1) $J(K(z), L(z))=z$ ,

2) $K(J(x, y))=x$ and $L(J(x, y))=y$ .
(As for the detail of these functions, see Chapter 3 of Davis [1].) Next, for
each $n\geqq 1,$ $T_{n}$ denotes so-called Kleene’s ( $n+2$-ary) T-predicate and $U$ denotes
the unary function associated with T-predicates (see [5].) By Kleene’s normal
form theorem, if $e$ is a G\"odel number of an n-ary recursive function $f(x_{1}, \cdots, x_{n})$
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then

$f(m_{1}, \cdots , m_{n})=U(\mu yT_{n}(e, m_{1}, \cdots , m_{n}, y))$

for every natural number $m_{1},$ $\cdots$ , $m_{n}$ . Sometimes, we will omit the subscript
$n$ of $T_{n}$ .

Next, we will define $\Pi_{m}$ -formulas and $\Sigma_{m}$-formulas for each $m\geqq 0$ . Any
quantifier-free formula is both a $\Pi_{0}$-formula and a $\Sigma_{0}$-formula. A formula $A$ is
a $\Pi_{n+1}$-formula if it is of the form $\forall x_{1}\cdots\forall x_{k}B$ with a $\Sigma_{n}$-formula $B$ , and $A$ is
a $\Sigma_{n+1}$-formula if it is of the form $\exists x_{1}\cdots\exists x{}_{k}C$ with a $\Pi_{n}$-formula $C$ .

The formal system $PA^{*}$ is obtained from PA by adding all sequents of the
form $arrow C$ , where $C$ is any true $\Pi_{1}$-formula, as its new initial sequents. For
each $k\geqq 0$ , the formal system $PA_{k}$ (or $PA_{k}^{*}$ ) is obtained from PA (or $PA^{*}$ ) by
restrictlg the induction formulas of the mathematical induction “ind” to formulas
containing at most $k$ quantifiers.

We can show that any bounded formula, $i$ . $e.$ , a formula containing only
bounded quantifiers, is equivalent to a quantifier-free formula in $PA_{1}$ by introduc-
ing predicate symbols for appropriate primitive recursive relations and that for
each $n\geqq 1$ if $A$ is a $\Sigma_{n}$-formula (or a $\Pi_{n}$-formula) then $\forall x(x<y\supset A)$ (or $\exists x$

$(x<y\wedge A))$ is equivalent to a $\Sigma_{n}$-formula (or a $\Pi_{n}$-formula, respectively) in $PA_{n}$

(see [11] and [13]). From this it follows that the provability in $PA_{k}$ or $PA_{k}^{*}$

$(k>0)$ is unchanged, even if we replace the restriction of induction formulas by
$\Pi_{k}$ -formulas (or, $\Sigma_{k}$ -formulas, or formulas with at most $k$ nested unbounded
quantifiers).

An n-ary recursive function $f$ is said to be provably recursive in $PA_{k}$ (PA:,

PA and $PA^{*}$ ) if there exists a G\"odel number $e$ of $f$ such that

$\forall x_{1}\cdots\forall x_{n}\exists yT_{n}(\overline{e}, x_{1}, \cdots x_{n}, y)$

is provable in $PA_{k}$ ( $PA_{k}^{*}$ , PA and $PA^{*}$ , respectively), where $T_{n}$ is the $\Pi_{0}$-formula
representing Kleene’s T-predicate. (To specify our definition, we will take the
Godel numbering introduced in [1]. So, precisely speaking, $e$ means the Godel
number of a Turing machine which computes the function $f.$ )

In the following, we will try to characterize the class of provably recursive
functions in $PA_{k}$ and $PA_{k}^{*}$ . A formula $A$ is called a $\Delta_{1}$-formula in $PA_{m}$ (or
$PA_{m}^{*})$ , if there exist a $\Sigma_{1}$-formula $B$ and a $\Pi_{1}$-formula $C$ , each of which is
equivalent to $A$ in $PA_{m}$ (or $PA_{m}^{*}$ ). Let $R(x_{1}, \cdots , x_{n}, y)$ be a formula with $n+1$

free variables $x_{1},$
$\cdots$ , $x_{n},$ $y$ , such that

$\forall x_{1}\cdots\forall x_{n}\exists yR(x_{1}, \cdots x_{n}, y)$

is true. Tben, we can define an n-ary function $f(x_{1}, \cdots , x_{n})$ by the condition
that
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$f(m_{1}, \cdots , m_{n})$ is the least natural number $k$ such that
$R(\overline{m}_{1}, \cdots , \overline{m}_{n},\overline{k})$ is true.

Such a function $f(x_{1}, \cdots , x_{n})$ will be denoted by $\mu yR(x_{1}, \cdots , x_{n}, y)$ .
Now, we will state our main theorem. The rest of this section will be

devoted to showing this theorem.

THEOREM 3.1. Let $n\geqq 1$ . Then, the following four conditions are equivalent;
1) $f$ is prOvably recursrve in $PA_{n}$ ,
2) there exists a bounded formula $R(x, y)$ and a Primitive recursive function

$g(x, z)$ such that $f(x)=g(x, \mu yR(x, y))$ and $\forall x\exists yR(x, y)$ is provable in $PA_{n}$ ,
3) there exists a $\Delta_{1}$-formula $S(x, y)$ in $PA_{n}$ such that $f(x)=\mu yS(x, y)$ and

$\forall x\exists!yS(x, y)$ is provable in $PA_{n}$ ,
4) $f$ is $\omega_{n}(m)$-ordinal recursive for some $m<\omega$ .
Moreover, the equivalence of these conditions still holds if we replace $PA_{n}$ by $PA_{n}^{*}$ .

In the above theorem, $\exists!zB(z)$ is the abbreviation of the formula

$\exists zB(z)\wedge\forall u\forall v(B(u)\wedge B(v)\supset u=v)$ .
Clearly, the equivalence of 1) and 4) of Theorem 3.1 gives a refinement of the
result on the relation between provably recursive functions in Peano arithmetic
and ordinal recursive functions, shown by Kreisel [6] and Kino [4]. In the
following, $i’$ ) will denote the condition obtained from the condition i) in Theorem
3.1 by replacing $PA_{n}$ by $PA_{n}^{*}$ , for $i=1,2,3$ . Clearly, 1) implies 1’), 1) implies
2) and 1’) implies 2’) by the definition.

LEMMA 3.2. Let $n\geqq 1$ . SuPpose that $R(x, y)$ is a bounded formula such that
$\forall x\exists yR(x, y)$ is provable in $PA_{n}$ and that $f(x)=g(x, \mu yR(x, y))$ for a primitive
recursive function $g$ . Then, there exists a $\Delta_{1}$-formula $S(x, z)$ in $PA_{n}$ such that
$f(x)=\mu zS(x, z)$ and $\forall x\exists 1zS(x, z)$ is provable in $PA_{n}$ . Thus, 2) in Theorem 3.1
impljes3). Similarly, 2’) implies3’).

PROOF. We will define formulas $S(x, z)$ and $S’(x, y)$ by

$S(x, z)\equiv\exists y(R(x, y)\wedge\forall u<y\neg R(x, u)\Lambda z=g(x, y))$

and
$S’(x, z)\equiv\forall y((R(x, y)\wedge\forall u<y\neg R(x, u))\supset z=g(x, y))$ .

Clearly, $S(x, z)$ is equivalent to a $\Sigma_{1}$-formula and $S’(x, z)$ is equivalent to a $\Pi_{1^{-}}$

formula. Moreover, $S(x, z)\equiv S’(x, z)$ is provable in $PA_{n}$ , by using the assump-
tion that $\forall x\exists yR(x, y)$ is provable in $PA_{n}$ and the least number principle for
bounded formulas, which is provable in $PA_{n}$ (see [11]). Tberefore, $S(x, z)$ is a
$\Delta_{1}$-formula in $PA_{n}$ . It can be easily shown that $f(x)=\mu zS(x, z)$ and $\forall x\exists!zS(x, z)$

is provable in $PA_{n}$ . Thus, we have our lemma.
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It is obvious that 3) implies 3’). So, we will show next that 3’) implies 4).

LEMMA 3.3. Let $n\geqq 1$ . SuPpose that $R(x, y)$ is a $\Pi_{0}$-formula and $A_{1},$
$\cdots,$

$A_{t}$

be true $\Pi_{1}$-formulas such that the sequent

$A_{1},$ $\cdots$ $A_{t}arrow\forall x\exists yR(x, y)$

is provable in $PA_{n}$ . Then, the function defined by $f(x)=\mu yR(x, y)$ is $\omega_{n}(m)-$

ordinal recursive for some $m<\omega$ .
PROOF. By using functions $K,$ $L$ and $J$, we can assume that the sequence

$x$ of variables consists of only one variable $x$ and that the conjunction of
$A_{1},$ $\cdots$ , $A_{t}$ is equivalent to a formula of the form $\forall yB(y)$ with a $\Pi_{0}$-formula
$B(y)$ . By the assumption,

(1) $\forall yB(y)\supset\forall x\exists yR(x, y)$

is provable in $PA_{n}$ , and hence

(2) $\exists y(\neg B(y)\vee R(x, y))$

is also provable in it. Now, by Remark 12.14 of Takeuti [15] or results in \S 4
of Shirai [14], we can assume that the proof of (2) in $PA_{n}$ consists only of
prenex formulas with at most $n$ quantifiers. More precisely, we can obtain a
proof $P$ of (2) in the formal system $PA_{n}$ in the sense of [15]. Then, as in
p. 112 of [15], we can assign an ordinal less than $\omega_{n}(m)$ for some $m$ to the
proof $P$. Hence the function $g$ defined by

(3) $g(x)=\mu y(\neg B(y)\vee R(x, y))$

is $\omega_{n}(m)$-ordinal recursive by Corollary 12.16 of [15]. On the other hand, since
$\forall yB(y)$ is true, it can be shown that $f(x)=g(x)$ . Hence, we have our lemma.

A similar result as the above lemma is shown in [12] without the proof.
We can derive the following easily from Lemma 3.3.

COROLLARY 3.4. Let $n\geqq 1$ . SuPpose that $R(x, y)$ is a $\Sigma_{1}$-formula such that
$\forall x\exists!yR(x, y)$ is Provable in $PA_{n}^{*}$ . Then the function $f$ defined by $f(x)=\mu yR(x, y)$

is $\omega_{n}(m)$-ordinal recursive for some $m<\omega$ . Thus, the condition 3’) impljes4).

Now, it remains to show that 4) in Theorem 3.1 implies 1). We will take
the canonical, primitive recursive well-ordering $\prec$ on natural numbers which is
of order-type $\epsilon_{0}$ . For each natural number $x$ , define $ord(x)$ to be the ordinal
represented by $x$ in the above ordering $\prec$ and for each ordinal $\alpha<\epsilon_{0}$ , define
num(a) to be the natural number $x$ such that $ord(x)=\alpha$ . We will introduce a
relation $Lim(x)$ by the condition that

$Lim(x)$ if and only if $ord(x)$ is a limit number.
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We introduce also two functions fs and $pr$ by

$fs(x, y)=\{_{0}num(\{ord(x)\}(y))$
if $ord(x)$ is a limit number,
otherwise

and

$pr(x)=\{_{0}num(\beta)$
if $ord(x)=\beta+1$ ,
otherwise.

We can assume that $Lim(x)$ is a primitive recursive relation and both fs and $pr$

are primitive recursive functions.
By using the ordering $\prec$ , we can define another ordering $\prec*$ on natural

numbers by the condition that

$u\prec*v$ if and only if either $L(u)\prec L(v)$

or ( $L(u)=L(v)$ and $K(u)<K(v)$ ) ,

where $<$ is the usual order relation on the set of natural numbers. It is easy
to see that $\prec*is$ also a primitive recursive well-ordering of order-type $\epsilon_{0}$ . We
assume that our language contains these symbols as $\prec,$ $\prec*$ Lim, fs and $pr$ .
(For the sake of brevity, we will use the same symbols for both informal ob-
jects and their formal expressions.) As usual, $x\leq y$ is an abbreviation of the
formula $x\prec y\vee x=y$ .

In [14], Shirai obtained the provability and the unprovability results of
transfinite induction in fragments of Peano arithmetic, by examining into the
Gentzen’s proof [2] in detail. For our present purpose, we will refer to his results
in the following specialized form.

PROPOSITION 3.5. Let $\alpha<\omega_{n}$ for $n\geqq 2$ . Then,

1) $\forall y[\forall x(x\prec*y\supset\epsilon(x))\supset\epsilon(y)]$ $\supset$ $\forall u\forall v(v=\ll\overline{num(\alpha)}\supset\epsilon(J(u, v)))$

is Provable in $PA_{n-1}$ , where $\epsilon(z)$ is a new predicate symbol,
2) in Particular, if $A(z)$ is a $\Pi_{2}$-formula then

$\forall y[\forall x(x\prec*y\supset A(x))\supset A(y)]$ $\supset$ $\forall u\forall v(v\leq\overline{num(\alpha)}\supset A(J(u, v)))$

is provable in $PA_{n}$ .
Notice here that the set $\{x ; L(x)_{\ovalbox{\tt\small REJECT}}\prec num(a)\}$ is an initial segment of the

well-ordering $\prec*$ which is of order-type $\omega\cdot\alpha(<\omega_{n})$ , when $n\geqq 2$ and $\alpha<\omega_{n}$ .
We can show easily the following lemma (cf. the proof of \S 3 of [4]).

LEMMA 3.6. For $n\geqq 1$ , the class of all provably recursrve functions in $PA_{n}$

contains the zero function, addition and prOjectjOn functions and is closed under
substitution and pnmitive recurston.

The following lemma says that Kleene’s iteration theorem can be proved
in $PA_{1}$ .
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LEMMA 3.7. For each natural number $m$ , there exists a primitive recursrve
function $s^{m}$ such that

$\forall x_{1}\cdots\forall x_{n}\exists yT_{m+n}(\overline{c},\overline{k}_{1}, \cdots \overline{k}_{m}, x_{1}, \cdots x_{n}, y)$

$\equiv\forall x_{1}\cdots\forall x_{n}\exists yT_{n}(s^{m}(c, k_{1}, \cdots k_{m}), x_{1}, \cdots x_{n}, y)$

is Provable in $PA_{1}$ for every natural number $c,$ $k_{1},$ $\cdots$ , $k_{m}$ .

PROOF. Firstly, we will check that the proof of Kleene’s iteration theorem
in Chapter 9 of Davis [1], for example, can be carried out in the primitive
recursive way. Here, we assume the familiarity with notations and the ter-
minology of [1]. For the sake of brevity, suppose that $m=n=1$ . As stated in
the proof of Theorem 1.1 in Chapter 9 of [1], when a natural number $k$ is
given, we can construct a Turing machine $Z_{k}$ from a given Turing machine $Z$

such that $\Psi_{z_{k}}^{(1)}(x)=\Psi_{Z}^{(2)}(k, x)$ , in a uniform and primitive recursive way. Now,
define $s^{1}$ to be the primitive recursive function which computes the G\"odel number
$s^{1}(c, k)$ of $Z_{k}$ from the Godel number $c$ of $Z$ .

Suppose that a sequence $\alpha_{1},$
$\cdots$ , $\alpha_{p}$ is a computation of $Z$ with $\alpha_{1}=q_{1}(\overline{k,x})$ ,

where $(\overline{k,x})$ denotes the tape expression kBx (see Definition 2.2 of Chapter 1 in
[1]). Define $ai$ to be the instantaneous description obtained from $\alpha_{i}$ by replacing
each occurrence of $q_{j}$ by $q_{j+k+2}$ . Moreover, let $\beta_{1},$ $\cdots$ , $\beta_{s}$ be the sequence of
instantaneous descriptions such that $\beta_{1}=q_{1}\overline{x},$ $\beta_{i}arrow\beta_{i+1}(Z_{k})$ for $1\leqq i<s$ and $\beta_{s}=$

$q_{k+3}(\overline{k,x})$ , where $s=2k+4$ . (See the proof of Theorem 1.1 of Chapter 9 in [1].)

Then, $\beta_{1},$ $\cdots$ , $\beta_{s-1},\tilde{a}_{1}(=\beta_{s}),\tilde{\alpha}_{2},$ $\cdots$ , $\tilde{a}_{p}$ becomes a computation of $Z_{k}$ such that
\langle a $p\rangle$ $=\langle\alpha_{p}\rangle$ . (Here, $\langle a\rangle$ denotes the number of occurrences of 1 in $\alpha.$ )

Conversely, suppose that a sequence $\gamma_{1},$ $\gamma_{r}$ is a computation of $Z_{k}$ with
$\gamma_{1}=q_{1}\overline{x}$ . Then, $\gamma_{i}=\beta_{i}$ for $1\leqq i\leqq 2k+4,$ $r=2k+3+p$ and $\gamma_{2k+3+j}$ is of the form
$\tilde{a}_{j}$ for $1\leqq J\leqq p$ such that $a_{1},$

$\cdots$ , $\alpha_{p}$ is a computation of $Z$ with $\alpha_{1}=q_{1}(\overline{k,x})$ and
that $\langle\alpha_{p}\rangle=\langle\gamma_{r}\rangle$ . We remark that the computation $\beta_{1},$ $\cdots$ , $\beta_{s-1},\tilde{a}_{1},$ $\cdots$ , $\tilde{\alpha}_{p}$ is
obtained from the computation $a_{1},$ $\cdots$ , $\alpha_{p}$ in a primitive recursive way, and vice
versa.

It should be remarked here that the primitive recursive arithmetic can be
developed in the fragment $PA_{1}$ (see the definition of our formal systems, in the

first part of this section). Thus, by arithmetizing the above facts, we have that

(1) $T_{2}(\overline{c},\overline{k}, x, y)\supset T_{1}(\overline{s^{1}(c,k)}, x, u*\tilde{y})$

and
(2) $T_{1}(\overline{s^{1}(c,k)}, x, z)\supset\exists y(z=u*\tilde{y}\wedge T_{2}(\overline{c},\overline{k}, x, y))$

are both provable in $PA_{1}$ , where $u$ is the G\"odel number of the sequence
$\beta_{1},$ $\cdots$ , $\beta_{s-1},$ $y$ and $\tilde{y}$ are Godel numbers of $a_{1},$ $\cdots$ , $\alpha_{p}$ and $\tilde{a}_{1},$ $\cdots$ , $\tilde{a}_{p}$ , respec-
tively and $u*\tilde{y}$ gives the G\"odel number of the sequence $\beta_{1},$ $\cdots$ , $\beta_{s-1},\tilde{a}_{1}\cdots$ , a $p$ .
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(As for the details of the arithmetization, see Chapter 4 \S 1 of [1].) From (1)

and (2), it follows that
$\forall x\exists yT_{2}(\overline{c},\overline{k}, x, y)\equiv\forall x\exists yT_{1}(\overline{s^{1}(c,k)}, x, y)$

is provable in $PA_{1}$ .
Next, we will introduce a ternary function $h$ by $h(u, v, x)=F_{ord(v)}^{u+1}(x)$ , where

$F_{\alpha}’ s$ are functions defined by Wainer (see \S 2). Clearly, $h$ is a recursive func-
tion. Let $e$ be a $G$\"odel number of $h$ . (Imagine such a Turing machine $Z$ that
$Z$ computes the function $h$ following the inductive definition of $F_{\alpha}’ s$ , and take
the Godel number of such a $Z$ for $e.$ ) In the following, we will write $s^{2}$ simply
as $s$ . By Lemma 3.7, we have that

$\forall x\exists yT_{3}(\overline{e},\overline{m}, \hslash, x, y)\equiv\forall x\exists yT_{1}(s(e, m, n), x, y)$

is provable in $PA_{1}$ for every natural number $m,$ $n$ . Clearly, $s(e, m, n)$ is a
G\"odel number of the function $h_{m,n}(x)(=h(m, n, x)=F_{ord(n)}^{m+1}(x))$ .

Now, we will show the following lemma.

LEMMA 3.8. Let $\alpha<\omega_{n}$ for $n\geqq 2$ . Then

$v\ll num(\alpha)\supset\forall x\exists yT(\overline{e}, u, v, x, y)$

is provable in $PA_{n}$ .

PROOF. Let $W(z)$ be the $\Pi_{2}$-formula $\forall x\exists yT(\overline{e}, K(z),$ $L(z),$ $x,$ $y$ ). We will
first show that the formula

(1) $\forall u(u\prec*v\supset W(u))\supset W(v)$

is provable in $PA_{1}$ . Suppose first that $K(v)=0$ . If $L(v)$ is either $0$ or equal to
num(l) then $W(v)$ is provable in $PA_{1}$ and hence (1) is also provable in it. Next,
we assume that

(2) $K(v)=0\wedge\overline{num(1)}\prec L(v)\wedge\neg Lim(L(v))$ .
Then, $J(x, pr(L(v)))\prec*v$ is provable in $PA_{1}$ . Therefore,

$\forall u(u\prec*v\supset W(u))arrow W(J(x, pr(L(v))))$

is provable in $PA_{1}$ . On the other hand,

$\exists yT(\overline{e}, x, pr(L(v)), x, y)arrow\exists yT(\overline{e}, K(v),$ $L(v),$ $x,$ $y$ )
$i$ . $e.$ ,

$W( \int(x, pr(L(v))))arrow W(v)$

is also provable in $PA_{1}$ , since we can effectively construct the comPutation for
the inPut $(K(v), L(v),$ $x$ ) from the computatjOn for the input $(x, pr(L(v)),$ $x$ ).

Hence, (1) is provable in $PA_{1}$ under the assumption (2). Similarly, we can show
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that (1) is provable in $PA_{1}$ under the assumption that $K(v)=0\wedge Lim(L(v))$ or
$K(v)>0$ . Combining these facts, we can deduce that (1) is provable in $PA_{1}$ .

Now, taking $W(z)$ for $A(z)$ in Proposition 3.52), we obtain that

$v\leq\zeta\overline{num(\alpha)}\supset\forall x\exists yT(\overline{e}, u, v, x, y)$

is provable in $PA_{n}$ .
LEMMA 3.9. 1) For $n\geqq 1$ , if $\alpha<\omega_{n}$ then $F_{\alpha}$ is Provably recurszve in $PA_{n}$ .

2) For $n\geqq 1$ , if a functim $f$ is $\omega_{n}(m)$-ordinal recursrve for some $m<\omega$ then $f$

is prwably recursrve in $PA_{n}$ .

PROOF. 1) If $n=1$ then $F_{a}$ is primitive recursive. Hence it is provably
recursive in $PA_{1}$ (see Lemma 3.6). Suppose that $n>1$ . Then by Lemmas 3.7
and 3.8, $\forall x\exists yT_{1}(s(\overline{e}, 0, \overline{num(\alpha)}), x, y)$ is provable in $PA_{n}$ and $s(e, 0, num(\alpha))$ is
a G\"odel number of $F_{a}$ (since $ord(num(\alpha))=\alpha$ ). Thus, $F_{\alpha}$ is provably recursive
in $PA_{n}$ .
2) From 1) and Lemma 3.6, it follows that every function in the class $\mathcal{F}_{a}$ is
provably recursive in $PA_{n}$ , if $\alpha<\omega_{n}$ . On the other hand, $\bigcup_{m<\omega}U(\omega_{n}(m))=$

$\bigcup_{\beta<\omega_{n}}\mathcal{F}_{\beta}$ by Proposition 2.4, so we can derive that every $\omega_{n}(m)$ -ordinal recursive
function is provably recursive in $PA_{n}$ .

Thus, we have completed our proof of Theorem 3.1. The following corol-
lary will be often used in the next section (cf. Corollary 9 in [8]).

COROLLARY 3.10. $SuPPose$ that $R(x, y)$ is a $\Pi_{0}$-formula such that $\forall x\exists yR(x, y)$

is true and $f$ is a function satisfying $f(x)=\mu yR(x, y)$ . For $n\geqq 1,$ $f$ is $\omega_{n}(m)-$

ordinal recursrve for some $m<\omega$ if and only if $\forall x\exists yR(x, y)$ is Provable in $PA_{n}^{*}$ .
PROOF. The if-part can be easily derived from Theorem 3.1. Suppose that

$f$ is $\omega_{n}(m)$-ordinal recursive. By Theorem 3.1, for some Godel number $e$ of $f$

$\exists yT(\overline{e}, x, y)$ is provable in $PA_{n}$ . Since $f(x)=\mu yR(x, y)$ , $\forall x\forall z(T(\overline{e}, x, z)\supset$

$R(x, U(z)))$ is a true $\Pi_{1}$-formula and hence it is provable in $PA_{0}^{*}$ . Thus,
$\exists yT(\overline{e}, x, y)\supset\exists yR(x, y)$ is also provable in $PA_{0}^{*}$ . Hence, $\forall x\exists yR(x, y)$ is provable
in $PA_{n}^{*}$ .

We notice here that $PA_{n}^{*}$ can not be replaced by $PA_{n}$ in the above corollary.

\S 4. Undecidable combinatorial statements in fragments of Peano
arithmetic.

Using Theorem 3.1, we will analyze the combinatorial statements, which
are shown to be unprovable in Peano arithmetic by Paris and Harrington [10].
Then, we will give an alternative proof of a result by Paris in [9] (Theorems

4.5 and 4.7). While Paris used a model-theoretic method, our method is of a
purely proof-theoretic character. Moreover, we will point out that the prov-
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ability and the unprovability of statements treated in it depend on how to ex-
press them in formal systems. We owe our proof much to the close examina-
tion of rapidly growing functions related to that combinatorial statement, due
to Ketonen and Solovay [3].

We will give some definitions. For a set $A$ of natural numbers and a
natural number $n$ , define $A^{[n]}$ to be the set of all subsets of $A$ of cardinality $n$ .
Let $f$ be a function from $A^{[n]}$ to a set $X$. Then, a subset $H$ of $A$ is homogeneous
for $f$ if $f$ is constant on $H^{[n]}$ . A set $H$ of natural numbers is large, if $H$ is
non-empty and $H$ has at least $s$ elements where $s$ is the smallest element of $H$.
For any natural numbers $k,$ $m$ , $[k, m]$ means the set of natural numbers
$\{x;k\leqq x\leqq m\}$ . For any natural numbers $c,$ $k,$ $m,$ $n$ , the expression

$[k, m]$ -s2 $(n+1)_{c}^{n}$

means that for every function $f$ from $[k, m]^{[n]}$ to the set $\{0,1, \cdots. c-1\}$ , there
exists a large, homogeneous set $H$ of cardinality at least $n+1$ . We remark
that $[k, m]_{B}\geq(n+1)_{c}^{n}$ is a primitive recursive relation with respect to $c,$ $k,$ $m,$ $n$ .
Moreover, the following can be shown by using infinite Ramsey theorem.

PROPOSITION 4.1. For each natural number $c,$
$k$ . $n$ , there is a natural number

$m$ such that $[k, m]\ovalbox{\tt\small REJECT}(n+1)_{c}^{n}$ holds.

By the above remark and proposition, we can define a recursive function
$a_{n,c}$ by

$\sigma_{n,c}(k)=\mu y([k, y]*(n+1)_{c}^{n})$ .
By tbe definition, the following lemma can be easily shown.

LEMMA 4.2. If $c\leqq c’$ and $k\leqq k’$ then $\sigma_{n,c}(k)\leqq\sigma_{n,c’}(k’)$ .

In [3], Ketonen and Solovay obtained a sharp estimation of functions $\sigma_{n,c}$

and using it, they gave an alternative proof of Paris-Harrington’s theorem which
says that

(1) $\forall w\forall x\forall z\exists y([x, y]\varphi(w+1)_{z}^{w})$

is not provable in Peano arithmetic. On the other hand, it is pointed out that

(2) $\forall x\forall z\exists y([x, y]\ovalbox{\tt\small REJECT}(n+1)_{z}^{n})$

is provable in Peano arithmetic for each natural number $n$ (see [8] and [10]).

To clarify this situation, we will investigate the provability of the formula (2)

in fragments of Peano arithmetic, by utilizing results in [3]. The next two
propositions proved in [3] are essential in the following discussion. Recall here
that $G_{\alpha}’ s$ are functions introduced in \S 2.

PROPOSITION 4.3 Let $n\geqq 2,$ $c\geqq 2$ $ard$ $k\geqq 4$ . Then,
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$\sigma_{n.c}(k)\leqq G_{\omega_{n-2}(c+5)}(k)$ .

PROPOSITION 4.4. Let $n\geqq 2$ . For any weakly monotone increasrng functim
$f,$ $f$ is dominated by $a_{n,c}$ for some $c$ if and only if $f$ is dominated by $G_{\alpha}$ for some
$\alpha<\omega_{n-1}$ .

We will call the relation $[x, y]*arrow(w+1)_{z}^{w}$ (with respect to $x,$ $y,$ $z,$ $w$), the
Ramsey relation, and the relation $a_{w.z}(x)=y$ (with respect to $x,$ $y,$ $z,$ $w$ ), the
strong Ramsey relation. In the following, we will give an alternative proof of
a result by Paris [9] on the provability and the unprovability of some com-
binatorial statements in fragments of PA (or $PA^{*}$ ).

Before doing so, we must pay attention to the fact that there will be many
ways of expressing the (strong) Ramsey relation by formulas. For a fixed $n$ ,

we say that a formula $P(x, z, y)$ represents the Ramsey relation, when for every
$c,$ $k,$ $m,$

$P(\overline{k},\overline{c},\overline{m})$ is true if and only if $[k, m]_{B^{\succ}}(n+1)_{c}^{n}$ . Similarly, $Q(x, z, y)$

represents the strong Ramsey relation, when for every $c,$ $k,$ $m,$
$Q(\overline{k},\overline{c},\overline{m})$ is true

if and only if $\sigma_{n.c}(k)=m$ . Since both the Ramsey and the strong Ramsey rela-
tions are primitive recursive, there exist quantifier-free formulas which represent
them. Suppose that a formula $P(x, z, y)$ represents the Ramsey relation. Let
us define $Q(x, z, y)$ by

$Q(x, z, y)\equiv P(x, z, y)\wedge\forall y’(y’<y\supset\neg P(x, z, y’))$ .
Then, $Q(x, z, y)$ represents the strong Ramsey relation. Moreover, if $P(x, z, y)$

is quantifier-free then so does $Q(x, z, y)$ , and in this case $\exists yP(x, z, y)\supset\exists!yQ(x, z, y)$

is provable in $PA_{1}$ , by [11]. Now, we will prove the following.

THEOREM 4.5. For $n\geqq 2$ and any $\Sigma_{0}$-representatiOn of the Ramsey relation,
$\forall x\forall z\exists y([x, y]*(n+1)_{z}^{n})$ is provable in $PA_{n}^{*}$ , but not in PA: $- 1$ . More $pre\alpha sely$ ,

if $P(x, z, y)$ is a bounded formula which represents the Ramsey relation $[x, y]*$

$(n+1)_{z}^{n}$ , then the formula $\forall x\forall z\exists yP(x, z, y)$ is Provable in $PA_{n}^{*}$ , but not in $PA_{n-1}^{*}$ .

PROOF. First, we will show that $\forall x\forall z\exists yP(x, z, y)$ is provable in PA:. We
define a unary function $\delta_{n}$ by

(1) $\delta_{n}(x)=a_{n.L(x)}(K(x))$ .

By Lemma 4.2, Proposition 4.3 and Lemma 2.5, for each $x$

(2) $\delta_{n}(x)=an,L(x)(K(x))\leqq an,$ $x(x)\leqq\sigma_{n,x+2}(x+4)\leqq G_{\omega_{n-2}(x+7)}(x+4)$

$\leqq G_{\omega_{n-2}(x+7)}(x+7)\leqq G_{\omega_{n}-1}(x+7)\leqq F_{\omega_{n}-1}(x+7)$ ,

since $K(x)\leqq x$ and $L(x)\leqq x$ hold. Since $F_{\omega_{n-1}}(x+7)$ is obtained from $F_{\omega_{n}-1}$ and
a primitive recursive function $x+7$ by the substitution, it belongs to $\mathcal{F}_{\omega_{n-1}}$

Next define a formula $P^{*}$ by
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(3) $P^{*}(w, y)\equiv P(K(w), L(w),$ $y$ ).

As remarked in \S 3, there exists a function symbol $f$ , which represents a
primitive recursive function $f$ , such that

(4) $\overline{f}(w, y)=0\equiv P^{*}(w, y)$

is provable in $PA_{1}$ . Clearly, $\delta_{n}(w)=\mu y(f(w, y)=0)$ holds. By (2), it holds that

(5) $\delta_{n}(w)=\mu y\leqq F_{\omega_{n-1}}(w+7)(f(w, y)=0)$ .

This means that $\delta_{n}$ can be obtained from $F_{\omega_{n-1}}(x+7)$ and a primitive recursive
function $f(w, y)$ by using bounded minimalization and substitution. Hence, $\delta_{n}$

belongs also to $\mathcal{F}_{\omega_{n-1}}$ , by using Proposition 2.3. So, $\forall w\exists y(\overline{f}(w, y)=0)$ is prov-
able in $PA_{n}^{*}$ , by Proposition 2.4 and Corollary 3.10. Using (3) and (4), we
have that $\forall x\forall z\exists yP(x, z, y)$ is also provable in $PA_{n}^{*}$ .

Next, suppose that $\forall x\forall z\exists yP(x, z, y)$ is provable in $PA_{n-1}^{*}$ . Then $\forall u\exists yP(u, u, y)$

is also provable in $PA_{n- 1}^{*}$ . Since $n\geqq 2$ , we can assume that $P(u, u, y)$ is a $\Pi_{0^{-}}$

formula. Let us define a function $\gamma_{n}$ by $\gamma_{n}(u)=\mu yP(u, u, y),$ $i$ . $e$ . $\gamma_{n}(u)=\sigma_{n.u}(u)$ .
Then, $\gamma_{n}$ is $\omega_{n-1}(m)$-ordinal recursive for some $m<\omega$ by Corollary 3.10. So, $\gamma_{n}$

belongs to $\mathcal{F}_{\beta}$ for some $\beta<\omega_{n-1}$ by Proposition 2.4. By Proposition 2.21), $\gamma_{n}$ is
dominated by $F_{\beta+1}$ , and therefore it is dominated by $G_{\beta+2}$ by Lemma 2.5. Thus,
$\gamma_{n}$ is dominated by $\sigma_{n,c}$ for some $c$ by Proposition4.4. Here we can assume
that $c\geqq 2$ , by Lemma 4.2. Hence, there exists a $k$ such that for every $u\geqq k$

(6) $\sigma_{n.u}(u)=\gamma_{n}(u)<\sigma_{n.c}(u)$ .
Let $d$ be max $\{c+1, k\}$ . Then, by (6)

(7) $\sigma_{n,d}(d)<\sigma_{n,c}(d)$ .
Thus, we are led to a contradiction, by (7) and Lemma 4.2. Therefore,
$\forall x\forall z\exists yP(x, z, y)$ is not provable in $PA_{n-1}^{*}$ .

We notice here that $\forall x\forall z\exists y([x, y]_{B^{\succ}}(n+1)_{z}^{n})$ is not provable in $PA_{n}$ for
some $\Sigma_{0}$-representation of the Ramsey relation, contrary to Theorem 4.5. For,
let $P(x, z, y)$ be any $\Sigma_{0}$-formula representing the Ramsey relation $[x, y]*(n+1)_{z}^{n}$

and $Prov_{n}(u, v)$ be a $\Sigma_{0}$-formula representing the provability predicate for $PA_{n}$

in the canonical way. More precisely, $Prov_{n}(\overline{|}P\neg,\overline{|}A1)$ means the provability of
a formula $A$ in $PA_{n}$ with a proof $P$. Then,

$P(x, z, y)\Lambda\neg Prov_{n}(x, \lceil 0=11)$

is also a $\Sigma_{0}$-formula representing $[x, y]*(n+1)_{z}^{n}$ , since for each $m\neg Prov_{n}$

$(\overline{m}, |\sim 0=11)$ is true. On the other hand, since

$\forall x\forall z\exists y(P(x, z, y)\wedge\neg Prov_{n}(x, \lceil 0=11))$



Provably recursive functions 735

implies the consistency of $PA_{n}$ , it is not provable in $PA_{n}$ . Apparently, this fact
seems to conflict with a result in Paris [9], which says that $\forall x\forall z\exists y([x, y]_{B}>$

$(n+1)_{z}^{n})$ is provable in $PA_{n}$ . But this is not the case. In fact, we can show
Paris’ result, if we formalize it in such a form as in Theorem 4.7 stated below.

We remark also that the second part of Theorem 4.5 can be extended as
follows: For $n\geqq 2$ , $\forall x\forall z\exists 1y(\sigma_{n,z}(x)=y)$ is not probable in $PA_{n-1}^{*}$ for any $\Sigma_{1}-$

representation of the strong Ramsey relation. This can be shown similarly as
Theorem 4.5, by using Corollary 3.4 instead of Corollary 3.10 in the proof.

The following result follows immediately from Theorem 4.5 and the above
remark (see Theorem 5 in [8]).

COROLLARY 4.6. 1) $\forall w\forall x\forall z\exists y([x, y]_{B}>(w+1)_{z}^{w})$ is not provable in $PA^{*}for$

any $\Sigma_{0}$-representation of the Ramsey relatim.
2) $\forall w\forall x\forall z\exists 1y(\sigma_{w.z}(x)=y)$ is not provable in $PA^{*}$ for any $\Sigma_{1}$ -representatjon of
the strong Ramsey relation.

On the other hand, it can be easily shown that there exists a $\Sigma_{2}$-formula
$P^{*}(x, z, y, w)$ which represents the (strong) Ramsey relation in $PA^{*}$ , for which
$\forall w\forall x\forall z\exists yP^{*}(x, z, y, w)$ is provable in $PA^{*}$ . The following theorem is in some
sense stronger, but in another sense more restricted, than the previous theorem.

THEOREM 4.7. For $n\geqq 2,$ $\forall x\forall z\exists!y(\sigma_{n,z}(x)=y)$ is prOvabfe in $PA_{n}$ , but not
provable in $PA_{n-1}^{*}$ in the following sense: There exists a $\Sigma_{1}$-formula $P(x, z, y, w)$

such that for each $n\geqq 2$ ,
1) $\sigma_{n.z}(x)=\mu yP(x, z, y,\overline{n})$ ,
2) $\forall x\forall z\exists 1yP(x, z, y,\overline{n})$ is provable in $PA_{n}$ , but not provable in $PA_{n- 1}^{*}$ .

PROOF. Our theorem can be shown similarly as Theorem 4.5. First, we
define a function $g$ by $g(w)=num(\omega_{w-1})$ . Clearly, $g$ is primitive recursive.
Define a function $\sigma^{*}$ by

$\sigma^{*}(x, z, w)=\sigma_{w.*}(x)$ .
Then, similarly as (5) in the proof of Theorem 4.5, we can obtain that

$\sigma^{*}(x, z, w)=\mu y\leqq F_{\omega_{w-1}}(J(x, z)+7)(f^{*}(x, z, y, w)=0)$ ,

where $f^{*}$ denotes the characteristic function of the (primitive recursive) Ramsey
relation $[x, y]\tau(w+1)_{z}^{w}$ . Define a function $j$ by

$j(x, z, w, v)=\mu y\leqq U(v)(f^{*}(x, z, y, w)=0)$ .
Then, $j$ is primitive recursive. Let us take a function $h(u, v, x)=F_{ord(v)}^{u+1}(x)$ with
a G\"odel number $e$ (see \S 3). Since



736 H. ONO and N. KADOTA

$F_{\omega_{w-1}}(J(x, z)+7)=h(0, g(w),$ $J(x, z)+7)$

$=U(\mu vT(e, 0, g(w), J(x, z)+7, v))$ ,

$a^{*}(x, z, w)=](x, z, w, \mu vT(e, 0, g(w), J(x, z)+7, v))$ . Now, we will define a $\Sigma_{1^{-}}$

formula $P(x, z, y, w)$ by

$P(x, z, y, w)\equiv\exists v(T(\overline{e}, 0, g(w), J(x, z)+7, v)\wedge$

$\forall u<v\neg T(\overline{e}, 0, g(w), J(x, z)+7, u)\wedge j(x, z, w, v)=y)$ .
Then, we can show that for $n\geqq 2$

(1) $\sigma^{*}(x, z, w)=\mu yP(x, z, y, w)$ ,
(2) $P(x, z, y,\overline{n})$ is a $\Delta_{1}$-formula in $PA_{n}$ ,
(3) $\forall x\forall z\exists!yP(x, z, y,\overline{n})$ is provable in $PA_{n}$ ,
by using Lemma 3.8 (see also the proof of Lemma 3.2). By the remark just
above Corollary 4.6, we have also that $\forall x\forall z\exists!yP(x, z, y,\overline{n})$ is not provable in
$PA_{n- 1}^{*}$ . Thus, we have our theorem.

We will make another remark. For any natural number $c,$ $m,$ $n,$ $s$ , the ex-
pression $m*(s)_{c}^{n}$ means that for every function $f$ from $[0, m-1]^{[n]}$ to the set
$\{0,1, \cdots , c-1\}$ , there exists a large, homogeneous set $H$ of cardinality at least
$s$ . Then, by using Theorems 4.5 and 4.7, we can show that for $n\geqq 2$ ,
$\forall u\forall z\exists y(yp(u)_{z}^{n})$ (and, $\forall u\forall z\exists!y(y=\mu v(varrow*(u)_{z}^{n}))$ ) is provable in $PA_{n}^{*}$ (and $PA_{n}$ ,
respectively). In the proof, we use the fact that

$([x, y]_{T^{\succ}}(w+1)_{z}^{w})\supset((y+1)*(x)_{z}^{w})$

is provable in $PA_{0}$ . On the other hand, we can show that neither $\forall w\forall u\forall z\exists y$

$(y\ovalbox{\tt\small REJECT}(u)_{z}^{w})$ nor $\forall w\forall u\forall z\exists y(y=\mu v(v*(u)_{z}^{w}))$ is provable in $PA^{*}$ . by using Theorem
3.10 in [3]. This gives a proof-theoretic demonstration of both Main Theorem
and a remark pointed out in the second paragraph of \S 2 in Paris and Harring-
ton [10].

Using the similar argument, we can obtain the following result (see

Corollary 28 (ii) in [9]).

THEOREM 4.8. Let $n\geqq 2$ . Then for each $m,$ $\forall x\exists y([x, y]\ovalbox{\tt\small REJECT}(n+1)_{m}^{n})$ is Prov-
able in $PA_{n-1}^{*}$ for any $\Sigma_{0}$-representation of the relation $[x, y]v(n+1)_{m}^{n}$

Similarly, there exists a $\Sigma_{1}$-formula $P’(x, z, y)$ such that for each $m$

1) $\sigma_{n,m}(x)=\mu yP’(x,\overline{m}, y)$ ,
2) $\forall x\exists!yP’(x,\overline{m}, y)$ is provable in $PA_{n- 1}$ .

PROOF. By Proposition 4.3 and Lemma 2.5,

$\sigma_{n.m}(x)\leqq F_{\omega_{n-2}(m+7)}(x+4)$

for each $x$ . Thus, similarly as the proof of Theorem 4.5, $\sigma_{n.m}$ belongs to
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$\mathcal{F}_{\omega_{n-2}(m+7)}$ . Therefore, $a_{n,m}$ is $\omega_{n-1}(m+7)$-ordinal recursive by Proposition 2.4.
Thus, $\forall x\exists y([x, y]_{B}>(n+1)_{m}^{n})$ is provable in $PA_{n-1}^{*}$ , by Corollary 3.10. Similarly,
the second part can be shown.
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