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On Shimura’s elliptic curve over Q(+429)
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Let % be the real quadratic field @(4/29). Then the class number of % is 1
and ¢=(5+4/29)/2 is a fundamental unit of 2. Let E, be an elliptic curve over
k defined by the equation :

yixyF+ety=x®.
Let B be the elliptic curve over £ which is obtained from the space SZ(FO(29), (?@))

of cusp forms of “Neben”-type of weight 2 (see Shimura [4, §7.5, §7.7]). It
is conjectured that B is isogenous to E, over k (see Serre [3, p. 323] and
Shimura [5, p. 184]). It will be shown here that this is so, by reducing the
problem to the solution of a certain diophantine equation over k.

§1. Let o be the non-trivial automorphism of %2 and O, the integer ring
of k. Let E be an elliptic curve over k. For a natural number »n, we denote
by E, the group of elements x of E(k) with nx=0.

THEOREM. Let E be an elliptic curve over k. Assume that E satisfies the
following conditions :

(1) E has everywhere good reduction over k.

(ii) E has an isogeny onto E° over k whose degree is prime to 6.

(iiiy E has a k-rational point of order 3.

(iv) [k(E,): k] is divisible by 2.

(v) [R(E;):E] is divisible by 3.
Then E is k-isomorphic to either E, or ES.

REMARK. The condition (ii) of implies that k(E,) and k(E,) are
Galois over Q.

COROLLARY. Shimura’s elliptic curve B is isogenous to E, over k.

PrROOF OF COROLLARY. By Casselman [1], B has everywhere good reduction.
It is known that B has an isogeny onto B’ of degree 5. Since the number of
the F.rational points of the reduction of B at p=3is 1—(@2p+al)+p?=9
(ap=—+/—75, cf. Yamauchi [6]), we have k(B,)+k. By (i), k(B,)/k is unramified
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outside 2. Now the order of the ray class group of %2 of conductor 2 is prime
to 3, so that we see that [k(B,): k]#3. Therefore [2(B,): k] is divisible by 2,
since [k(B,): k] is a divisor of 6. Let ¢,: Gal(k/k)—Aut(Bs)=GLy(F;) be the
representation of Gal(2/k) on B,. By Yamauchi [6], gog(Gal(E/k)) is a half Borel
subgroup. Therefore if B has a k-rational point of order 3, B satisfies all the
conditions of If B has no k-rational point of order 3, then B; contains
a subgroup X of order 3 which is stable under Gal(2/k). Let B’=B/X. Then
B’ is an elliptic curve over 2 with a k-rational point of order 3. We see that
B’ has an isogeny onto B’? of degree 5. Since B and B’ are isogenous over %,
B’ satisfies all the conditions of (cf. Serre [2, IV, 2.3]). Noting
that E, and E¢ are isogenous by Serre [3, p. 323], shows that B is
isogenous to E,.

Now admitting Proposition 2.3 in §2, we will give a proof of

PROOF OF THEOREM. Let E be an elliptic curve which satisfies the conditions
(i)~(v) of [Theoreml Let 4 be the discriminant of a global minimal model of
E over k. By (iv) and (v), we see that /4, ¥4 &k (cf. Serre [3, p. 305]).
Since k(+/4) is the unique quadratic extension of £ contained in k(E,), it follows
that k(/4)/Q is Galois. By (i), 4 is a unit of %, so that we must have that
E(y/4)=k(x/=T1), k(e ) or k(~/—¢ ). As k(s/¢ )and k(y/—¢ ) are not Galois
over @, we have k(/4)=k(v/—1). Therefore we may assume that 4—=—¢?,
—et, —e® or —&' If 4=—¢ (resp. —e*), then E° has a global minimal model
with discriminant —e? (resp. —e®). We see that E° satisfies all the conditions
of and hence we may assume that 4=—< or —e*. Now we can
choose a model

y2=x3+byx%-+8b,x + 16b,

of E, where b,, b, b; are in O, and (0, b) for some b in O, is a point of order 3.
The x-coordinates of the points of order 3 are the roots of the equation

3xt+4byx*4-3-24b,x%+3 2% x 428D =0

where by=(b,b;—b2%)/4 (cf. Serre [3, p. 305]). Then, since by=0 and b*=16b,,
the curve E can be written in the form

yr=x?4-c*x*4-2bcx +b*

where c= 0, with ¢*=b,=b%/bs. As 4%°0*(4c*—27b)=2"4, we can write b=4d
with d=0,;, and then d%(c®*—27d)=4. Hence d is a unit and ¢*=27d+4d"®.
Write d==+¢e™. If ¢=0 mod2, then we have m=1 mod3, since 4=¢ mod 2.
Putting m=1+43n, we have (e "¢)*=27¢+¢&2"2"4. In case 4=—¢!°, we have
(e "c)*=27¢—e™ 1" Let p,; be the prime divisor of 13 such that e=11 mod p;s.
Then (£e7"¢)*=9 mod p,s, but this is impossible for c=0,. In case d=—c¢*, let
p; be the prime divisor of 7 such that e=2 modp,. Then (e "c)*=3 mod p;,
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but this is also impossible. Therefore ¢==0 mod 2. Then ¢*=1 mod 2, so that we
have m=2 mod3. Put m=2+4+3n and C=Z4e¢"c. If d=—¢' we have C3=
27e2—¢e271%" Let q,5 be the prime divisor of 13 such that e=7 modq,;. Then
C*=6 mod q;5, but this is impossible. It follows that 4=—¢'" and

C*=27st—gt-12n,

It will be shown in §2 (Proposition 2.3) that for C= 0, and an integer n, the
above equation has a unique solution C=1, n=0. Therefore the curve E takes
the form

yP=x3+x2-+8e?x+16&*,

which is clearly isomorphic to E, over k. This completes the proof of [Theoreml

§2. 2.1. Leta=#¥ ¢ and K=k(a). Let ybethereal rootof X*=2X*+X+1.
Then we have a'—a=75(»—3) and p=(—2a’+-a'+1la*—3a+2)/3. Therefore
K=Fk-F, where F=Q(%). The discriminant of F is —87 and % is a fundamental
unit of F. Let Dy be the discriminant of K. Since |Dg|=29|N,(Dxk)|=
(—87)*|Np(Dg,r)|, Dg is divisible by 9-29°. The discriminant of {1, %, 7% a,
an, an® is 9:29°. Hence |Dg|=9-29® and {1, 5, %° a, an, ay® is an integral
basis of K over Q. Let L=K({) where {*+{+1=0. Then L/Q is Galois. Let
o, 7, 0 be the automorphisms of L such that p is the complex conjugation,
a=af, F=(, a’=—a!, {’={ We see that 7°=y, pr=1’p, p’=e¢’=r’=1
and Gal(L/Q)=<o)x<p, z>. The different imbeddings of K into @ are ¢,=1,
g,=0a, 0s=t, 0,=7%, 0;—=07 and g,=o07% Clearly the unit group Ux of K has
rank 3 over Z. Let B=1+(an)". Then €Uk and Ng,(f)=1, Ng,»(B)=75""

LEMMA 1. W= {uEUKINK/k(u):NK/F(u):l}:<77,32>-

ProoF. We see easily that W is Z-free of rank 1 and »p*<W. First we
note that » is not a square in K. In fact, let =(A+Ba)? with 4, B€O0p;
this means that »=A%+B* and 2A—7(y—3)B)B=0. Since 7 is a fundamental
unit of F, we have B+0; hence 2A=x(yp—3)B. Then 52y—3)B*=45. As
27—3 is prime to 4, this is a contradiction. Therefore in order to prove
1, it suffices to show that there exists no yW such that »S%=y" for n=3.
Let ,=an? O,=ay, O;=a, 0,=7° O0,=7, 0,=1. Write xP=x7 (1=/<6)
for xe K and let D=det(6{”). Then D®=9-29°. We denote by D, ; the cofactor

of 6§ of D. Let y= ﬁ)laiﬁi with a;€Z be such that y"=»8* for n=3. By

s . i
the simultaneous linear equations y == Zlaiﬁéf) (1=7=6), we have
&

la:| < D] 2 T Dl =1, -, 6).
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Put v=78% Then Nigp@)=vDp®P=1, [p® |2=p@yp@®=p-and |v® |2=p®v® =y,
Some computations give the following inequalities :

1.73<a<1.74, 2.54<7<2.55, v<3.99,
lr®=v2<159, [r®|<1, [r®@[=[r®|<L1,
l7®|=|7®|ZvV5<1.26, |D,,,|=|Ds,.|<25.88,
|Dys|=|D14l=|Dys|=|D,] <96.34,
|Dy.1|=1D,,5| <14.23, |Dys|= - =|D, | <226.39,
|Ds1|=|Ds,2] <10.35, |Dys|= -+ =|Ds | <157.23.

Then we get |a,| <1.08, | a,| <2.27 and |as| <1.58. Since y"—(r°)*=x(8>—(5%)%
=(p—1)(a '+a), we see that a;n*+a,p+a;=F—r)(a~'+a)* is a divisor of
7—1. It is easily seen that the divisors A=a;n’+a,n+a; of p—1 such that
la:| =1, |a:|=2 and |a;| =1 are the followings: £ A=1, », 7% p (=9*—27p—1),
7—1, n(p—1), n*(p—1). Noticing that Ng,z(y)=B*—n(p—3)BA—A’=1 where
B=an*+asn+a, we get, after some calculations, A==+(p—1) and y==v, +v™.
However this is a contradiction. Thus our lemma is proved.

LEMMA 2. V={ucUg|Ng (u)=1} =<y, B>.

ProoF. Clearly V is Z-free of rank 2 and 7, V. Now assume that
u"=yn (n=2) for some ucV. Let Ngp(u)=5° Then »°"=y*? and therefore
n=2. This shows that 7 is not a power of another unit in V, since » is not
a square in K. Then we can choose a basis {y, 6} of V such that Ng,r(0)=7"
Since /W, we have =<y, B> by Lemma 1. Therefore V=<(z, .

2.2. We describe here the decomposition of 3 in L, which can be checked
by simple calculations. Obviously 3 remains prime in 2. Since 3=7"*(y—1)(y+1)%
3 decomposes in F as pq® where p=(»—1) and q=(»+1). We see that p and q
remain prime in K. Let P; /=1, 2, 3) be ideals of L such that P;=(y+1, »°+1),
P,=P% and P,=P3. Then P; (:=1, 2, 3) are prime ideals and we have the
following relations :

Pg:Pi (Z':ly 2, 3) » P€:P1, Pg:PB »
p=P3, =PP;, Q)=(P.PF).
2.3. PROPOSITION. The equation e****™—x*=27¢* for meZ has exactly one

solution in k, namely x=—1 and m=0.

PROOF. Let A=e'**™aq—x for x=k. Then we easily have the following
relations :

1) A+LA (AP =0.

2) (A—A7)(A—A7)°=3.
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Now Ng,p(A)=e**1*™—x*=27¢* implies that the ideal (A) of K is either p®, p%q,
pqa® or q°. In view of (2) we must have (A)=p’a=(a’+a~?). Then, by Lemma
2, A can be written as (a’*+a~a’p?fi=(14+a*)p?B? with p, g=Z. In order to
complete the proof, it suffices to show that p=¢=0, i.e., A=14+¢a.

Step I. Since A =0 modP%, (2) implies AA°=3 modP4i Now AA'=3{1—
3(»+1)*+187} »°?-? and this shows that %??-?=1 modP3. Noticing »=—1 mod P,
and %¥*-—1 modPj we see that ¢ is even and 2p—q¢=0 mod3. We put ==
7°+1 and J={(1+La*). Itis easily shown that {=1 modP; and F=—a"(1—a'x)
modP3. Then we have (A =](9)?(f)=(—1)?**"a?{{?/—pJr—qgaJr} mod P}
Since LA+ A7)?=0 mod P§ by (1), this shows {¢J+({(V)P=(p+ga)(Jr+(Jx)*)
modP}. Now we have Jr-+(Jr)?=3(—n*+79+4)—34n*—1lp+2)a=3(l—a)
modP{. Since a—1=¢®* modP? and ¢=2p mod 3, we see (p+qa)(Jr+(Jr)?)=
—3¢e*=3¢ modPi. On the other hand, we get easily {2J-+({%/)?=—3¢ mod P.
Therefore we must have ¢=0 mod 3, hence p=0 mod 3.

Step II. By Step I, A can be written as (14-a*)5®?3%, where p, g=Z.
We have easily 3=(p—1)429"(p—1)°'=@+1)*+@+D (p*—n—4) and l4a'=
—a*{(p—1)*—(p—1)"}. The following congruences are checked by some calcu-
lations :

d=rnt+trnt—1n", l4+at=—a’r*(1—1?) mod P§,

(1+La)(1+La9)=31—7n*+7%) modP?,

e(=27e*—1)=—1 modPi, (y7°P=—(+7% modP:,

F=—1, (F)r=el—z") modP:.
Putting »=2(p—gq), we get AA’=(1+4a*)(14+a*)7p* ==° mod P} and (AA%) =
(l—}—Ca")(l+C2a‘4)(77’)3’_=_3(1—~7r3—|—n“)(1-+r3+<;)sz) mod P! where s=—(z—1)'—1
=%+ '+ 75+ 7°mod PL. Further wehave AAT+ A7 A =(1+a*)(1+Ca ) (p77)**D,
where @=(857)4+{(8° B)4=(—1)"(1—gn®)(e-1-+-Le%) mod P:. If ¢ is odd, then

@=(1—-{)e® mod P{. This gives AA™"+ A’ A*=(—1)?a***3r*(1— %) =+7° mod P}.

Then by (2), we have 3(1——n3+n6>(1+.rs+(g)sz)iﬂ6+n853 modPS. In parti-

cular, we have 3(1—z®)(14+7s)=3 modP{ and this implies =1 mod3; then
(2’)3250 mod P§. Putting »=143#', we obtain z®+zx"+n"(1+7)r' =7°=0 mod P3.

However this lagt congruence is impossible for »'=Z. Therefore ¢ must be
even. Then we have @=(1—qgn*)e¥(14+{) modPi, so that AAT+A°A*=
(=P Cat+C%a~*—1) mod P} where ¢=2¢’. Now we want to prove that
p+¢’=0 mod6. Assume p+q’ is odd. By (2), we have (1+{a*)(1+Ca™*)(1+s)"
+({at+2%a~*—1)=3 mod P] and this implies —2z°+x°%(1+r)r=0 modP]. This
congruence is also impossible for r&Z. Therefore p+¢’ is even and then we
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have by (2) that (1-+-Ca*j(1+C%a *)sr=0 mod P} ; this implies that r=2(p—2¢")=0
mod 3. Then obviously we have p-4¢'=0 mod 6.

Step III. We easily see that a!fin~'=3a’—1. As A=(1+a?)y*?5™
=14+a’)n* Pt (a* By Ya 7, by Step Il we can write A as ¢ *Y(1+a*)y'”
-(3a®—1)*Y where x, veZ. Put 7*=339*+18p+13)=14-3M. Then A=30
+(13e—50)a+(—15:+88)a®. Putting 7®=149¢, we get

¢=M-+3A>-3)*=(4—2¢)a+(Be+4)a®  mod 90,[a].

We have (1—3a*’=1--9¢, where ¢=—3e?+3ca—a’. For G=a-+ba—+ca’
(a, b, c€0y), let

T{G)=1+a)G+L((1+a)G)+T((1+a)G) .

Then T(G)=3a%s-+c). By (1), we have T(7#*(1—3a?*¥)=0. Now consider
the following 9-adic expansion :

77 (1307 = (1--96)*(1+9¢)¥
= (1+0xg19 ()¢ ) (1+999+9(3)+ )

=19(rg+ 39)+9((5) %+ ()¢ w3 g)+ -

Then we have

9T v Tig) =+ 9((5) T@)+(5) T @)+ x3 T+ - =0.
If either x or v is not zero, then we can put x=3%n, v=3°n, (m, n, 3)=1

(e=0). Since Qi(j)T(qﬁ"), Qi(i.))T(gb") (i=2) are divisible by 92-3°"', we obtain

S xT(@)+yT(¢)=0 mod 9%-3°**
or

mT(@)+nT)=0 mod 27.

Noticing T(¢)=6a* mod 27 and T(¢P)=3(2-+15¢)a®, we have 2(m-+n)--15en=0
mod 9, and this implies m-+n=0, 15n=0 mod 9, so that m=n=0 mod 3, which
is a contradiction, Therefore x=3y=0 and this completes the proof.
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