On Shimura's elliptic curve over $Q(\sqrt{29})$

By Tetsuo NAKAMURA

(Received Dec. 5, 1983)

Let k be the real quadratic field $Q(\sqrt{29})$. Then the class number of k is 1 and $\varepsilon = (5+\sqrt{29})/2$ is a fundamental unit of k. Let E_0 be an elliptic curve over k defined by the equation:

 $y^2+xy+\varepsilon^2y=x^3$.

Let B be the elliptic curve over k which is obtained from the space $S_2\left(\Gamma_0(29),\left(\frac{1}{29}\right)\right)$ of cusp forms of "Neben"-type of weight 2 (see Shimura [4, § 7.5, § 7.7]). It is conjectured that B is isogenous to E_0 over k (see Serre [3, p. 323] and Shimura [5, p. 184]). It will be shown here that this is so, by reducing the problem to the solution of a certain diophantine equation over k.

§ 1. Let σ be the non-trivial automorphism of k and O_k the integer ring of k. Let E be an elliptic curve over k. For a natural number n, we denote by E_n the group of elements x of $E(\bar{k})$ with nx=0.

Theorem. Let E be an elliptic curve over k. Assume that E satisfies the following conditions:

- (i) E has everywhere good reduction over k.
- (ii) E has an isogeny onto E^{σ} over k whose degree is prime to 6.
- (iii) E has a k-rational point of order 3.
- (iv) $[k(E_2):k]$ is divisible by 2.
- (v) $[k(E_3):k]$ is divisible by 3.

Then E is k-isomorphic to either E_0 or E_0^{σ} .

REMARK. The condition (ii) of Theorem implies that $k(E_2)$ and $k(E_3)$ are Galois over Q.

COROLLARY. Shimura's elliptic curve B is isogenous to E_0 over k.

PROOF OF COROLLARY. By Casselman [1], B has everywhere good reduction. It is known that B has an isogeny onto B^{σ} of degree 5. Since the number of the F_{p^2} -rational points of the reduction of B at p=3 is $1-(2p+a_p^2)+p^2=9$ $(a_p=-\sqrt{-5}, cf. Yamauchi [6])$, we have $k(B_2)\neq k$. By (i), $k(B_2)/k$ is unramified

This research was partially supported by Grant-in-Aid for Scientific Research (No. 59540008), Ministry of Education.

outside 2. Now the order of the ray class group of k of conductor 2 is prime to 3, so that we see that $[k(B_2):k]\neq 3$. Therefore $[k(B_2):k]$ is divisible by 2, since $[k(B_2):k]$ is a divisor of 6. Let $\varphi_3: \operatorname{Gal}(\bar{k}/k) \to \operatorname{Aut}(B_3) \cong GL_2(F_3)$ be the representation of $\operatorname{Gal}(\bar{k}/k)$ on B_3 . By Yamauchi [6], $\varphi_3(\operatorname{Gal}(\bar{k}/k))$ is a half Borel subgroup. Therefore if B has a k-rational point of order 3, B satisfies all the conditions of Theorem. If B has no k-rational point of order 3, then B_3 contains a subgroup X of order 3 which is stable under $\operatorname{Gal}(\bar{k}/k)$. Let B'=B/X. Then B' is an elliptic curve over k with a k-rational point of order 3. We see that B' has an isogeny onto B'^{σ} of degree 5. Since B and B' are isogenous over k, B' satisfies all the conditions of Theorem (cf. Serre [2, IV, 2.3]). Noting that E_0 and E_0^{σ} are isogenous by Serre [3, p. 323], Theorem shows that B is isogenous to E_0 .

Now admitting Proposition 2.3 in §2, we will give a proof of Theorem.

PROOF OF THEOREM. Let E be an elliptic curve which satisfies the conditions $(i)\sim(v)$ of Theorem. Let E be the discriminant of a global minimal model of E over E. By (iv) and (v), we see that $\sqrt{\mathcal{A}}$, $\sqrt[3]{\mathcal{A}} \notin E$ (cf. Serre [3, p. 305]). Since $k(\sqrt{\mathcal{A}})$ is the unique quadratic extension of E contained in E contained in E contained that E contained in E contained in E contained that E contained in E contain

$$y^2 = x^3 + b_2 x^2 + 8b_4 x + 16b_6$$

of E, where b_2 , b_4 , b_6 are in O_k and (0, b) for some b in O_k is a point of order 3. The x-coordinates of the points of order 3 are the roots of the equation

$$3x^4+4b_2x^3+3\cdot2^4b_4x^2+3\cdot2^6b_6x+2^8b_8=0$$

where $b_8=(b_2b_6-b_4^2)/4$ (cf. Serre [3, p. 305]). Then, since $b_8=0$ and $b^2=16b_6$, the curve E can be written in the form

$$y^2 = x^3 + c^2x^2 + 2bcx + b^2$$

where $c \in O_k$ with $c^2 = b_2 = b_4^2/b_6$. As $4^2b^3(4c^3 - 27b) = 2^{12}\Delta$, we can write b = 4d with $d \in O_k$, and then $d^3(c^3 - 27d) = \Delta$. Hence d is a unit and $c^3 = 27d + \Delta d^{-3}$. Write $d = \pm \varepsilon^m$. If $c \equiv 0 \mod 2$, then we have $m \equiv 1 \mod 3$, since $\Delta \equiv \varepsilon \mod 2$. Putting m = 1 + 3n, we have $(\pm \varepsilon^{-n}c)^3 = 27\varepsilon + \varepsilon^{-3-12n}\Delta$. In case $\Delta = -\varepsilon^{10}$, we have $(\pm \varepsilon^{-n}c)^3 = 27\varepsilon - \varepsilon^{7-12n}$. Let \mathfrak{p}_{13} be the prime divisor of 13 such that $\varepsilon \equiv 11 \mod \mathfrak{p}_{13}$. Then $(\pm \varepsilon^{-n}c)^3 \equiv 9 \mod \mathfrak{p}_{13}$, but this is impossible for $c \in O_k$. In case $\Delta = -\varepsilon^4$, let \mathfrak{p}_7 be the prime divisor of 7 such that $\varepsilon \equiv 2 \mod \mathfrak{p}_7$. Then $(\pm \varepsilon^{-n}c)^3 \equiv 3 \mod \mathfrak{p}_7$,

but this is also impossible. Therefore $c\not\equiv 0 \mod 2$. Then $c^3\equiv 1 \mod 2$, so that we have $m\equiv 2 \mod 3$. Put m=2+3n and $C=\pm \varepsilon^{-n}c$. If $\Delta=-\varepsilon^4$, we have $C^3\equiv 27\varepsilon^2-\varepsilon^{-2-12n}$. Let \mathfrak{q}_{13} be the prime divisor of 13 such that $\varepsilon\equiv 7 \mod \mathfrak{q}_{13}$. Then $C^3\equiv 6 \mod \mathfrak{q}_{13}$, but this is impossible. It follows that $\Delta=-\varepsilon^{10}$ and

$$C^3=27\varepsilon^2-\varepsilon^{4-12n}$$
.

It will be shown in §2 (Proposition 2.3) that for $C \in O_k$ and an integer n, the above equation has a unique solution C=1, n=0. Therefore the curve E takes the form

$$y^2 = x^3 + x^2 + 8\varepsilon^2 x + 16\varepsilon^4$$
,

which is clearly isomorphic to E_0 over k. This completes the proof of Theorem.

§ 2. 2.1. Let $\alpha=\sqrt[3]{\varepsilon}$ and $K=k(\alpha)$. Let η be the real root of $X^3=2X^2+X+1$. Then we have $\alpha^{-1}-\alpha=\eta(\eta-3)$ and $\eta=(-2\alpha^5+\alpha^4+11\alpha^2-3\alpha+2)/3$. Therefore $K=k\cdot F$, where $F=\mathbf{Q}(\eta)$. The discriminant of F is -87 and η is a fundamental unit of F. Let D_K be the discriminant of K. Since $|D_K|=29^3|N_k(D_{K/k})|=(-87)^2|N_F(D_{K/F})|$, D_K is divisible by $9\cdot 29^3$. The discriminant of $\{1,\,\eta,\,\eta^2,\,\alpha,\,\alpha\eta,\,\alpha\eta^2\}$ is $9\cdot 29^3$. Hence $|D_K|=9\cdot 29^3$ and $\{1,\,\eta,\,\eta^2,\,\alpha,\,\alpha\eta,\,\alpha\eta^2\}$ is an integral basis of K over \mathbf{Q} . Let $L=K(\zeta)$ where $\zeta^2+\zeta+1=0$. Then L/\mathbf{Q} is Galois. Let $\rho,\,\tau,\,\sigma$ be the automorphisms of L such that ρ is the complex conjugation, $\alpha^\tau=\alpha\zeta,\,\zeta^\tau=\zeta,\,\alpha^\sigma=-\alpha^{-1},\,\zeta^\sigma=\zeta^2$. We see that $\eta^\sigma=\eta,\,\,\rho\tau=\tau^2\rho,\,\,\rho^2=\sigma^2=\tau^3=1$ and $\mathrm{Gal}(L/\mathbf{Q})=\langle\sigma\rangle\times\langle\rho,\,\tau\rangle$. The different imbeddings of K into $\overline{\mathbf{Q}}$ are $\sigma_1=1$, $\sigma_2=\sigma,\,\,\sigma_3=\tau,\,\,\sigma_4=\tau^2,\,\,\sigma_5=\sigma\tau$ and $\sigma_6=\sigma\tau^2$. Clearly the unit group U_K of K has rank 3 over \mathbf{Z} . Let $\beta=1+(\alpha\eta)^{-1}$. Then $\beta\in U_K$ and $N_{K/k}(\beta)=1,\,\,N_{K/F}(\beta)=\eta^{-1}$.

LEMMA 1. $W = \{u \in U_K | N_{K/k}(u) = N_{K/F}(u) = 1\} = \langle \eta \beta^2 \rangle$.

PROOF. We see easily that W is Z-free of rank 1 and $\eta\beta^2\in W$. First we note that η is not a square in K. In fact, let $\eta=(A+B\alpha)^2$, with $A, B\in O_F$; this means that $\eta=A^2+B^2$ and $(2A-\eta(\eta-3)B)B=0$. Since η is a fundamental unit of F, we have $B\neq 0$; hence $2A=\eta(\eta-3)B$. Then $\eta(2\eta-3)B^2=4\eta$. As $2\eta-3$ is prime to 4, this is a contradiction. Therefore in order to prove Lemma 1, it suffices to show that there exists no $\gamma\in W$ such that $\eta\beta^2=\gamma^n$ for $n\geq 3$. Let $\theta_1=\alpha\eta^2$, $\theta_2=\alpha\eta$, $\theta_3=\alpha$, $\theta_4=\eta^2$, $\theta_5=\eta$, $\theta_6=1$. Write $x^{(i)}=x^{\sigma i}$ ($1\leq i\leq 6$) for $x\in K$ and let $D=\det(\theta_i^{(j)})$. Then $D^2=9\cdot 29^3$. We denote by $D_{i,j}$ the cofactor of $\theta_i^{(j)}$ of D. Let $\gamma=\sum\limits_{i=1}^6 a_i\theta_i$ with $a_i\in Z$ be such that $\gamma^n=\eta\beta^2$ for $n\geq 3$. By the simultaneous linear equations $\gamma^{(j)}=\sum\limits_{i=1}^6 a_i\theta_i^{(j)}$ ($1\leq j\leq 6$), we have

$$|a_i| \leq |D^{-1}| \sum_{j=1}^{6} |\gamma^{(j)}| |D_{i,j}|$$
 (i=1, ..., 6).

Put $v = \eta \beta^2$. Then $N_{K/F}(v) = v^{(1)}v^{(2)} = 1$, $|v^{(3)}|^2 = v^{(3)}v^{(4)} = v^{-1}$ and $|v^{(5)}|^2 = v^{(5)}v^{(6)} = v$. Some computations give the following inequalities:

$$\begin{split} &1.73 < \alpha < 1.74 \;, \quad 2.54 < \eta < 2.55 \;, \quad v < 3.99 \;, \\ &|\gamma^{(1)}| \leqq v^{1/3} < 1.59 \;, \quad |\gamma^{(2)}| < 1 \;, \quad |\gamma^{(3)}| = |\gamma^{(4)}| < 1 \;, \\ &|\gamma^{(5)}| = |\gamma^{(6)}| \leqq v^{1/6} < 1.26 \;, \quad |D_{1,1}| = |D_{1,2}| < 25.88 \;, \\ &|D_{1,3}| = |D_{1,4}| = |D_{1,5}| = |D_{1,6}| < 96.34 \;, \\ &|D_{2,1}| = |D_{2,2}| < 14.23 \;, \quad |D_{2,3}| = \cdots = |D_{2,6}| < 226.39 \;, \\ &|D_{3,1}| = |D_{3,2}| < 10.35 \;, \quad |D_{3,3}| = \cdots = |D_{3,6}| < 157.23 \;. \end{split}$$

Then we get $|a_1|<1.08$, $|a_2|<2.27$ and $|a_3|<1.58$. Since $\gamma^n-(\gamma^\sigma)^n=\eta(\beta^2-(\beta^\sigma)^2)=(\eta-1)(\alpha^{-1}+\alpha)$, we see that $a_1\eta^2+a_2\eta+a_3=(\gamma-\gamma^\sigma)(\alpha^{-1}+\alpha)^{-1}$ is a divisor of $\eta-1$. It is easily seen that the divisors $A=a_1\eta^2+a_2\eta+a_3$ of $\eta-1$ such that $|a_1|\leq 1$, $|a_2|\leq 2$ and $|a_3|\leq 1$ are the followings: $\pm A=1$, η , η^2 , $\eta^{-1}(=\eta^2-2\eta-1)$, $\eta-1$, $\eta(\eta-1)$, $\eta^2(\eta-1)$. Noticing that $N_{K/F}(\gamma)=B^2-\eta(\eta-3)BA-A^2=1$ where $B=a_4\eta^2+a_5\eta+a_6$, we get, after some calculations, $A=\pm(\eta-1)$ and $\gamma=\pm v$, $\pm v^{-1}$. However this is a contradiction. Thus our lemma is proved.

LEMMA 2. $V = \{u \in U_K | N_{K/k}(u) = 1\} = \langle \eta, \beta \rangle$.

PROOF. Clearly V is Z-free of rank 2 and η , $\beta \in V$. Now assume that $u^n = \eta$ $(n \ge 2)$ for some $u \in V$. Let $N_{K/F}(u) = \eta^e$. Then $\eta^{en} = \eta^2$ and therefore n = 2. This shows that η is not a power of another unit in V, since η is not a square in K. Then we can choose a basis $\{\eta, \delta\}$ of V such that $N_{K/F}(\delta) = \eta^{-1}$. Since $\delta/\beta \in W$, we have $\delta \in \langle \eta, \beta \rangle$ by Lemma 1. Therefore $V = \langle \eta, \beta \rangle$.

2.2. We describe here the decomposition of 3 in L, which can be checked by simple calculations. Obviously 3 remains prime in k. Since $3=\eta^{-2}(\eta-1)(\eta+1)^2$, 3 decomposes in F as $\mathfrak{p}\mathfrak{q}^2$ where $\mathfrak{p}=(\eta-1)$ and $\mathfrak{q}=(\eta+1)$. We see that \mathfrak{p} and \mathfrak{q} remain prime in K. Let P_i (i=1, 2, 3) be ideals of L such that $P_3=(\eta+1, \eta^\tau+1)$, $P_1=P_3^\tau$ and $P_2=P_1^\tau$. Then P_i (i=1, 2, 3) are prime ideals and we have the following relations:

$$P_i^{\sigma} = P_i \ (i=1, 2, 3), \quad P_1^{\rho} = P_1, \quad P_2^{\rho} = P_3,$$

 $\mathfrak{p} = P_1^2, \quad \mathfrak{q} = P_2 P_3, \quad (3) = (P_1 P_2 P_3)^2.$

2.3. PROPOSITION. The equation $\varepsilon^{4+12m} - x^3 = 27\varepsilon^2$ for $m \in \mathbb{Z}$ has exactly one solution in k, namely x = -1 and m = 0.

PROOF. Let $A = \varepsilon^{1+4m}\alpha - x$ for $x \in k$. Then we easily have the following relations:

- $(1) \quad A + \zeta A^{\tau} + (\zeta A^{\tau})^{\rho} = 0.$
- (2) $(A-A^{\tau})(A-A^{\tau})^{\sigma}=3.$

Now $N_{K/k}(A) = \varepsilon^{4+12m} - x^3 = 27\varepsilon^2$ implies that the ideal (A) of K is either \mathfrak{p}^3 , $\mathfrak{p}^2\mathfrak{q}$, $\mathfrak{p}\mathfrak{q}^2$ or \mathfrak{q}^3 . In view of (2) we must have $(A) = \mathfrak{p}^2\mathfrak{q} = (\alpha^2 + \alpha^{-2})$. Then, by Lemma 2, A can be written as $(\alpha^2 + \alpha^{-2})\alpha^2\eta^p\beta^q = (1+\alpha^4)\eta^p\beta^q$ with $p, q \in \mathbb{Z}$. In order to complete the proof, it suffices to show that p=q=0, i.e., $A=1+\varepsilon\alpha$.

Step I. Since $A^{\tau}\equiv 0 \mod P_2^4$, (2) implies $AA^{\sigma}\equiv 3 \mod P_2^4$. Now $AA^{\sigma}\equiv 3\{1-3(\eta+1)^2+18\eta\}$ η^{2p-q} and this shows that $\eta^{2p-q}\equiv 1 \mod P_2^2$. Noticing $\eta\equiv -1 \mod P_2$ and $\eta\equiv -1 \mod P_2^2$, we see that q is even and $2p-q\equiv 0 \mod 3$. We put $\pi=\eta^{\tau}+1$ and $J=\zeta(1+\zeta\alpha^4)$. It is easily shown that $\zeta\equiv 1 \mod P_1$ and $\beta^{\tau}\equiv -\alpha^{\tau}(1-\alpha^{\tau}\pi) \mod P_1^2$. Then we have $\zeta A^{\tau}=J(\eta^{\tau})^p(\beta^{\tau})^q\equiv (-1)^{p+q}\alpha^q\{\zeta^qJ-pJ\pi-q\alpha J\pi\} \mod P_1^3$. Since $\zeta A^{\tau}+(\zeta A^{\tau})^{\rho}\equiv 0 \mod P_1^3$ by (1), this shows $\zeta^qJ+(\zeta^qJ)^{\rho}\equiv (p+q\alpha)(J\pi+(J\pi)^{\rho}) \mod P_1^3$. Now we have $J\pi+(J\pi)^{\rho}=3(-\eta^2+\eta+4)-3(4\eta^2-11\eta+2)\alpha\equiv 3(1-\alpha) \mod P_1^3$. Since $\alpha-1\equiv \varepsilon^2 \mod P_1^2$ and $q\equiv 2p\mod 3$, we see $(p+q\alpha)(J\pi+(J\pi)^{\rho})\equiv -3q\varepsilon^4\equiv 3q\mod P_1^3$. On the other hand, we get easily $\zeta^qJ+(\zeta^qJ)^{\rho}\equiv -3q\mod P_1^3$. Therefore we must have $q\equiv 0 \mod 3$, hence $p\equiv 0 \mod 3$.

Step II. By Step I, A can be written as $(1+\alpha^4)\eta^{3p}\beta^{6q}$, where $p, q \in \mathbb{Z}$. We have easily $3=(\eta-1)+\eta^{-1}(\eta-1)^3=(\eta+1)^2+(\eta+1)^4(\eta^2-\eta-4)$ and $1+\alpha^4=-\alpha^2\{(\eta-1)^2-(\eta-1)^4\}$. The following congruences are checked by some calculations:

$$\begin{split} 3 &\equiv \pi^2 + \pi^4 - \pi^7, \quad 1 + \alpha^4 \equiv -\alpha^2 \pi^4 (1 - \pi^2) \quad \mod P_1^8, \\ &(1 + \zeta \alpha^4) (1 + \zeta^2 \alpha^{-4}) \equiv 3 (1 - \pi^3 + \pi^6) \quad \mod P_1^9, \\ &\varepsilon^4 (= 27 \varepsilon^2 - 1) \equiv -1 \quad \mod P_1^6, \quad (\eta \eta^\tau)^3 \equiv -(1 + \pi^3) \quad \mod P_1^4, \\ &\beta^6 \equiv -1, \quad (\beta^\tau)^6 \equiv \varepsilon^2 (1 - \pi^3) \quad \mod P_1^4. \end{split}$$

Putting r=2(p-q), we get $AA^{\sigma}=(1+\alpha^4)(1+\alpha^{-4})\eta^{3r}\equiv\pi^8 \mod P_1^9$ and $(AA^{\sigma})^r=(1+\zeta\alpha^4)(1+\zeta^2\alpha^{-4})(\eta^r)^{3r}\equiv 3(1-\pi^3+\pi^6)\left(1+rs+\binom{r}{2}s^2\right)\mod P_1^9$ where $s=-(\pi-1)^3-1\equiv\pi^3+\pi^4+\pi^5+\pi^6 \mod P_1^7$. Further we have $AA^{r\sigma}+A^{\sigma}A^r=(1+\alpha^4)(1+\zeta^2\alpha^{-4})(\eta\eta^r)^{3p}\Phi$, where $\Phi=(\beta\beta^{r\sigma})^{6q}+\zeta(\beta^{\sigma}\beta^r)^{6q}\equiv (-1)^q(1-q\pi^8)(\varepsilon^{-2q}+\zeta\varepsilon^{2q})\mod P_1^4$. If q is odd, then $\Phi\equiv (1-\zeta)\varepsilon^{2q}\mod P_1^4$. This gives $AA^{r\sigma}+A^{\sigma}A^r\equiv (-1)^p\alpha^{6q+2}3\pi^4(1-\pi^2)\equiv \pm\pi^6 \mod P_1^9$. Then by (2), we have $3(1-\pi^3+\pi^6)\left(1+rs+\left(\frac{r}{2}\right)s^2\right)\pm\pi^6+\pi^8\equiv 3\mod P_1^9$. In particular, we have $3(1-\pi^8)(1+rs)\equiv 3\mod P_1^6$ and this implies $r\equiv 1\mod 3$; then $\binom{r}{2}s^2\equiv 0\mod P_1^8$. Putting r=1+3r', we obtain $\pi^6+\pi^7+\pi^7(1+\pi)r'\pm\pi^6\equiv 0\mod P_1^9$. However this last congruence is impossible for $r'\in \mathbb{Z}$. Therefore q must be even. Then we have $\Phi\equiv (1-q\pi^8)\varepsilon^{2q}(1+\zeta)\mod P_1^4$, so that $AA^{r\sigma}+A^{\sigma}A^r\equiv (-1)^{p+q'}(\zeta\alpha^4+\zeta^2\alpha^{-4}-1)\mod P_1^7$ where q=2q'. Now we want to prove that $p+q'\equiv 0\mod 6$. Assume p+q' is odd. By (2), we have $(1+\zeta\alpha^4)(1+\zeta^2\alpha^{-4})(1+s)^r+(\zeta\alpha^4+\zeta^2\alpha^{-4}-1)\equiv 3\mod P_1^7$ and this implies $-2\pi^5+\pi^5(1+\pi)r\equiv 0\mod P_1^7$. This congruence is also impossible for $r\in \mathbb{Z}$. Therefore p+q' is even and then we

have by (2) that $(1+\zeta\alpha^4)(1+\zeta^2\alpha^{-4})sr\equiv 0 \mod P_1^r$; this implies that $r=2(p-2q')\equiv 0 \mod 3$. Then obviously we have $p+q'\equiv 0 \mod 6$.

Step III. We easily see that $\alpha^4 \beta^4 \eta^{-1} = 3\alpha^2 - 1$. As $A = (1 + \alpha^4) \eta^{3p} \beta^{12q'} = (1 + \alpha^4) \eta^{3(p+q')} (\alpha^4 \beta^4 \eta^{-1})^{3q'} \alpha^{-12q'}$, by Step II we can write A as $\varepsilon^{-4y} (1 + \alpha^4) \eta^{18x} \cdot (3\alpha^2 - 1)^{3y}$ where $x, y \in \mathbb{Z}$. Put $\eta^6 (= 33\eta^2 + 18\eta + 13) = 1 + 3M$. Then $M = 30 + (13\varepsilon - 50)\alpha + (-15\varepsilon + 88)\alpha^2$. Putting $\eta^{18} = 1 + 9\phi$, we get

$$\phi = M + 3M^2 + 3M^3 \equiv (4 - 2\varepsilon)\alpha + (6\varepsilon + 4)\alpha^2 \mod 9O_k[\alpha]$$
.

We have $(1-3\alpha^2)^2=1+9\phi$, where $\phi=-3\varepsilon^2+3\varepsilon\alpha-\alpha^2$. For $G=a+b\alpha+c\alpha^2$ $(a, b, c\in O_k)$, let

$$T(G) = (1+\alpha^4)G + \zeta((1+\alpha^4)G)^{\tau} + \zeta^2((1+\alpha^4)G)^{\tau\rho}$$
.

Then $T(G)=3\alpha^2(b\varepsilon+c)$. By (1), we have $T(\eta^{18x}(1-3\alpha^2)^{8y})=0$. Now consider the following 9-adic expansion:

$$\eta^{18x}(1-3\alpha^{2})^{3y} = (1+9\phi)^{x}(1+9\phi)^{y}
= (1+9x\phi+9^{2}\binom{x}{2}\phi^{2}+\cdots)(1+9y\phi+9^{2}\binom{y}{2})\phi^{2}+\cdots)
= 1+9(x\phi+y\phi)+9^{2}\binom{x}{2}\phi^{2}+\binom{y}{2}\phi^{2}+xy\phi\phi)+\cdots.$$

Then we have

$$9(xT(\phi)+yT(\psi))+9^{2}(\binom{x}{2}T(\phi^{2})+\binom{y}{2}T(\psi^{2})+xyT(\phi\psi))+\cdots=0.$$

If either x or y is not zero, then we can put $x=3^e m$, $y=3^e n$, (m, n, 3)=1 $(e \ge 0)$. Since $9^i \binom{x}{i} T(\phi^i)$, $9^i \binom{y}{i} T(\phi^i)$ $(i \ge 2)$ are divisible by $9^2 \cdot 3^{e+1}$, we obtain

$$9(xT(\phi)+yT(\phi))\equiv 0 \mod 9^2 \cdot 3^{e+1}$$

or

$$mT(\phi)+nT(\phi)\equiv 0 \mod 27$$
.

Noticing $T(\phi) \equiv 6\alpha^2 \mod 27$ and $T(\phi) = 3(2+15\varepsilon)\alpha^2$, we have $2(m+n)+15\varepsilon n \equiv 0 \mod 9$, and this implies $m+n\equiv 0$, $15n\equiv 0 \mod 9$, so that $m\equiv n\equiv 0 \mod 3$, which is a contradiction. Therefore x=y=0 and this completes the proof.

References

- [1] W. Casselman, On abelian varieties with many endomorphisms and a conjecture of Shimura, Invent. Math., 12 (1971), 225-236.
- [2] J.-P. Serre, Abelian *l*-adic representations and elliptic curves, Benjamin, New York, 1968.
- [3] J.-P. Serre, Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math., 15 (1972), 259-331.

- [4] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Iwanami Shoten and Princeton Univ. Press, 1971.
- [5] G. Shimura, Class fields over real quadratic fields and Hecke operators, Ann. of Math., 95 (1972), 130-190.
- [6] M. Yamauchi, On the fields generated by certain points of finite order on Shimura's elliptic curves, J. Math. Kyoto univ., 14 (1974), 243-255.

Tetsuo NAKAMURA
Department of Mathematics
College of General Education
Tohoku University
Kawauchi, Sendai 980
Japan