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1. Introduction.

Let $L$ be a finite dimensional simple Lie algebra over the complex field, $H$

an n-dimensional Cartan subalgebra, $\Phi$ the set of (nonzero) roots of $L$ relative
to $H$, and $\Pi=\{r_{1}, \cdots , r_{n}\}$ a simple system of roots. Chevalley [2] showed that
$L$ has a basis $B=\{e_{r}|r\in\Phi\}\cup\{h_{1}, \cdots , h_{n}\},$ $h_{i}\in H$, such that the constants of
structure of $L$ relative to this basis are all integers.

Let $L_{Z}$ be the free abelian group on a given Chevalley basis. Let $R$ be a
commutative ring with identity. The Chevalley algebra of $L$ over $R$ is defined
to be $L_{R}=R\otimes_{Z}L_{Z}$ . Similarly, we define $H_{R}=R\otimes_{Z}H_{Z}$, where $H_{Z}$ is the free
abelian group on $\{h_{1}, \cdots , h_{n}\}$ . In [5] and [11], the general ideal structure of
$L_{R}$ has been worked out, subject to restrictions on certain integers, for instance
that 2 and 3 not be zero or zero divisors in $R$ . In the present paper, we show
how the center of $L_{R}$ can be easily and quickly determined from the Cartan
matrix of $L$ , for any commutative ring $R$ with identity, even when 2 or 3 may
be zero in $R$ . Calculation of the center of Chevalley algebras over general com-
mutative rings with identity does not seem to appear in the literature, but
specialization of our main result here to the case of a field of positive character-
istic yields immediately results of other authors ([1], [3], [4], [9], and, implicitly,
$[7, 8])$ about centers of Lie algebras of Chevalley type over fields.
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2. Background and preliminary results.

In this section, we set forth the notation and information needed for cal-
culating the center of $L_{R}$ . First, we recall the equations of structure of $L$
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relative to the Chevalley basis $B$ .
(1) $[e_{r}, e_{-T}]=h_{r}$, a certain [10, Lemma 1] integral linear combination

of $h_{1},$ $\cdots$ $h_{n}$ .
(2) $[h_{i}, h_{j}]=0$ for all $i,$ $j=1,2,$ $\cdots$ , $n$ .
(3) $[e_{r}, e_{S}]=N_{rs}e_{r+s}$ , if $r+s\neq 0$ , where $N_{rs}$ is zero if $ r+s\not\in\Phi$ and otherwise

is $\pm(p+1)$ , where $P$ is the largest integer $i$ such that $ s-ir\in\Phi$ .
(4) $[h_{i}, e_{s}]=c(s, r_{i})e_{s}$ , where $c(s, r_{i})=2(s, r_{i})/(r_{i}, r_{i})$ is the Cartan

integer $P-q,$ $q$ the largest $j$ such that $ s+jr_{i}\in\Phi$ .
Note that for any root $r$ , we have in fact,

(4) $[h_{r}, e_{s}]=c(s, r)e_{s}$ .

Next, recall that if $h=\sum_{i=1}^{n}k_{i}h_{i}\in L_{R}$ , then for any $j=1,2,$ $\cdots$ , $n$ ,

(5) $[h, e_{j}]=\sum_{i=1}^{n}k{}_{i}C(r_{j}, r_{i})e_{j}$ .

We now can make the following basic definition.
2.1 DEFINITION. Let $f:H_{R}\rightarrow H_{R}$ be the R-homomorphism defined by $f(h_{j})$

$=\sum_{i=1}^{n}c(r_{i}, r_{j})h_{i}$ .
Since $H_{R}$ is a free R-module, it is natural to represent $f$ by its matrix relative

to the basis $\{h_{1}, \cdots , h_{n}\}$ . This matrix is the Cartan matrix $C=(c(r_{i}, r_{j}))$ . We
note that we can rewrite (5) as
$\langle 5^{\prime})$ $[h, e_{j}]=f(h)_{j}e_{j}$ ,

where $f(h)_{j}$ is the j-th coordinate of $f(h)$ . We can describe the center $Z$ of $L_{R}$

easily in terms of $f$.
2.2 PROPOSITION. $Z=Kerf$.
PROOF. First, observe that $Z\subseteqq H_{R}$ . For if $z=\sum_{r\in\Phi}k_{r}e_{r}+\sum_{i=1}^{n}k_{i}h_{i}\in Z$ , then for

any root $s$ we have

$0=[z, e_{-S}]=k_{s}h_{s}+\sum_{r\neq-s}k_{r}N_{rs}e_{r+s}+s(\sum_{i\Leftarrow 1}^{n}k_{i}h_{i})e_{s}$ .

Hence, $k_{s}=0$ , so that $z\in H_{R}$ . Next, since $z\in Z$ , the expression $s(\sum_{i=1}^{n}k_{i}h_{i})$ is zero

for all roots $s$ . This holds in particular if $s$ is any simple root $r_{j}$ , in which case by
\langle $5^{\prime}$ ) we have $f(z)_{j}=0$ . Hence, $f(z)=0$ which shows $Z\subseteqq Kerf$. But, the converse
inclusion follows easily from (5). For suppose that $f(h)=0$ for $h=\sum_{i=1}^{n}k_{i}h_{i}$ . Then

$f(h)_{j}=\sum_{i=1}^{n}c(r_{j}, r_{i})k_{i}=0$ for each $j$, so that $[h, e_{j}]=0$ for all $j$ . Since $H_{R}$ is
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abelian, $h\in Z$ . Q. E. D.
The final piece of information needed to calculate $Z$ is a list of the ele-

mentary divisors of $C$. The matrix of integers $C$ can be diagonalized over $Z$ ,
and so over $R$ , by elementary row and column operations. By simple calculation,
or reference to [5], we have the following.

2.3 LEMMA. For $L$ of the type indicated, the Cartan matrix can be reduced
by elementary row and column operations to the corresponding diagonal matrix.

$A_{n}$ : diag $(1, 1, \cdots , 1, n+1)$ ; $B_{n}$ and $C_{n}$ : diag (1, 1, $\cdots$ , 1, 2);
$D_{n},$ $n\geqq 4,$ $n$ even: diag (1, 1, $\cdots$ , 1, 2, 2);
$D_{n},$ $n\geqq 5,$ $n$ odd: diag (1, 1, $\cdots$ , 1, 4);
$E_{6}$ : diag (1, 1, 1, 1, 1, 3); $E_{7}$ : diag (1, 1, 1, 1, 1, 1, 2);
$E_{8}$ : $I_{8}$ ; $F_{4}$ : $I_{4}$ ; $G_{2}$ : $I_{2}$ .

3. Center of $L_{R}$ . Our main result now follows directly from those in
Section 2.

3.1 THEOREM. Let $Z$ be the center of $L_{R}$ . Then

(a) If $L$ is of type $E_{8},$ $F_{4}$ , or $G_{2}$ , then $Z=0$ .
(b) If $L$ is of type $A_{n}$ , then $Z=0$ unless $n+1=0$ in R. If $n+1=0$

in $R$ , then $Z$ is a l-dimensional subspace of $H_{R}$ .
(c) If $L$ is of tyPe $B_{n},$ $C_{n}$ , or $E_{7}$ , then $Z=0$ unless $R$ has characteristic 2.

If $R$ has characteristic 2, then $Z$ is a l-dimensional subspace of $H_{R}$ .
(d) If $L$ is of type $D_{n},$ $n$ odd, then $Z=0$ unless $4=0$ in $R$ ,

in which case $Z$ is a l-dimensional subspace of $H_{R}$ .
(e) If $L$ is of $tyPeD_{n},$ $n$ even, then $Z=0$ unless $R$ has characteristic 2.

If $R$ does have characteristic 2, then $Z$ is a 2-dimensional subspace of $H_{R}$ .
(f) If $L$ is of type $E_{6}$ , then $Z=0$ unless $R$ has characteristic 3,

in which case $Z$ is a l-dimensional subspace of $H_{R}$ .
PROOF. From Lemma 2.3, we see that the Cartan matrix has full rank, and

then by Proposition 2.2 $Z=0$ , unless one or more elementary divisors are zero
$inR$ . In case not all elementary divisors are nonzero, $Chasrankn-linallcases$ ,
except for $D_{n},$ $n$ even, when it has rank $n-2$ . Thus, by Proposition 1.2, $Z$ is
l-dimensional in $H_{R}$ in all cases except (e) of the statement, when it is two-
dimensional. Q. E. D.

As we noted in the Introduction, Theorem 3.1 generalizes some results of
other authors on centers of Lie algebras of classical type. While generally re-
quiring more work than the foregoing, and being carried out only over fields,
their methods have the advantage of generally yielding more information than
just determination of the center. In [4] for instance, the centers of more general
Chevalley algebras (cf. [6]) are also determined. The method used in the present
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paper does not apply directly to the extended Chevalley algebras, because of
the role played by the Cartan matrix. Modifying our method along the lines of
[6] will yield the centers of the more general Chevalley algebras, but aside
from applying over general commutative rings rather than just fields, it is no
more efficient than the calculations used in [4].
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