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\S 0. Introduction.

Let $k$ be an algebraically closed ordinary differential field of characteristic
zero, and $K$ be a one-dimensional algebraic function field over $k$ . We assume
that $K$ is a differential extension of $k$ .

The following definition is due to M. Matsuda [3]: $K$ is said to be free
from Parametric singularities if $\nu_{P}(t^{\prime})\geqq 0$ for each prime divisor $P$ of $K$, where
$\nu_{P}$ is the normalized valuation belonging to $P$ and $t$ is a prime element in $P$ .

Let $F$ be an algebraically irreducible element of $k\{y\}$ of the first order, and
$K(F;k)$ be the associated differential algebraic function field with $F$ over $k$ .
Then, M. Matsuda [3] obtained the following theorem: Suppose that $K(F;k)$

is free from parametric singularities. Then, it is of Riccati type over $k$ if its
genus $g$ is zero; it is a differential elliptic function field over $k$ if $g$ is one.

We say that $K$ is of Clairaut tyPe over $k$ if the following two conditions
are satisfied:

(i) $k$ contains an element $x$ such that $x^{\prime}=1$ ;
(ii) There exists an element $y$ of $K$ such that $K=k(y, y^{\prime})$ with

$G(y-xy^{\prime}, y^{\prime})=0$ , where $G$ is an irreducible polynomial over the field of con-
stants of $k$ .

Under the assumption (i), $K$ is of Clairaut type if and only if $K=k(K_{0})$ ,
where $K_{0}$ is the field of constants of $K$ (cf. \S 1).

M. Matsuda [4, pp. 5-6] expected that the following statement is true:
Suppose that $K(F;k)$ is free from parametric singularities. Then, there ex-
ists a differential extension field $k^{*}$ of $k$ which satisfies the following two
conditions:

(iii) The field of $\backslash constants$ of $k^{*}$ is the same as that of $k$ ;
(iv) $K(F;k^{*})$ is of Clairaut tyPe over $k^{*}$ .
This statement is true in the case where $g=0,1$ . It is derived from

known results (cf. \S 5). We shall prove that it is true in the case where
$g>1$ and that $k$ itself can be taken as $k^{*}$ in this case if $k$ satisfies the
condition (i).
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THEOREM. SuppOse that $K$ is free from parametrjc singularities and the
genus $g$ is greater than one. Then, $K=k(K_{0})$ .

In the special case where $K$ is a hyperelliptic function field over $k$ , this
theorem is known (Painlev\’e [6, p. 68], Schlesinger [8, p. 118]).

By Briot-Bouquet’s theorem, $k$ contains a nonconstant element if $K(F;k)$

is free from parametric singularities and if its genus is greater than one
(Matsuda [3]).

In \S 2 we shall state some known results on Weierstrass points (cf.
Hurwitz [1], Iwasawa [2]).

The author wishes to express his sincere gratitude to Dr. M. Matsuda
for his kind advices. He simplified the author’s original proof of Theorem
by introducing Lemma in \S 3.

\S 1. Clairaut type.

PROPOSITION 1. Under the assumptiOn(i), $K$ is of Clairaut type if and only
if $K=k(K_{0})$ .

PROOF. Suppose that the condition (ii) is satisfied by $K$. Set $a=y-xy^{\prime}$

and $b=y^{\prime}$ . Then, the differentiation of $G(a, b)=0$ gives us

$y^{\prime\prime}(G_{b}-G_{a})=0$ .
Here, the term in the parenthesis does not vanish, since its degree in $y^{\prime}$ is
less than that of $G$ . Hence, $y^{\prime\prime}=0$ . We have $K=k(a, b)$ and $a^{\prime}=b^{\prime}=0$ . Con-
versely suppose that $K=k(K_{0})$ . We show that $K_{0}$ is a one-dimensional algebraic
function field over $k_{0}$ the field of constants of $k$ . Since $K_{0}\neq k_{0}$ , there exists
a transcendental constant $a$ of $K$ over $k_{0}$ . It is transcendental over $k$ . Any
constant $c$ of $K$ is algebraic over $k_{0}(a)$ , because it is algebraic over $k(a)$ . We
have

$[k_{0}(a, c) : k_{0}(a)]\leqq[K:k(a)]$ .
Hence, $[K_{0} : k_{0}(a)]\leqq[K:k(a)]$ . We have $K_{0}=k_{0}(a, b)$ for some element $b$ of
$K_{0}$ , and $K=k(K_{0})=k(a, b)$ . Let us set $y=a+bx$ . Then, $y^{\prime}=b$ and $K=k(y, y^{\prime})$ .

\S 2. Weierstrass points.

Let $k$ be an algebraically closed field of characteristic zero and $K$ be a
one-dimensional algebraic function field over $k$ of genus $g$ . For a divisor $A$

of $K$ we shall define a vector space over $k$ :

$L(A)=$ {$x\in K;(x)A$ is an integral divisor} $U\{0\}$ ;

here $(x)$ is the principal divisor of $x$ in $K$ different from zero. Its dimension
is finite and denoted by $1(A)$ . Let $P$ be a prime divisor of $K$. Then, there
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exist $g$ positive integers $n_{1},$
$\cdots$ , $n_{g}$ such that $L(P^{n})\neq L(P^{n-1})$ for any positive

integer $n$ different from $n_{1},$
$\cdots$ , $n_{g}$ . The prime divisor $P$ is called a Weier-

strass point of $K$ if the set $\{n_{1}, \cdots , n_{g}\}$ is not $\{$ 1, 2, $\cdots$ , $g\}$ . If $g$ is greater
than one, the set of Weierstrass points of $K$ is finite and its cardinarity $N$

satisfies
$N\geqq 2g+2$ .

The equality holds if and only if $K$ is a hyperelliptic function field over $k$ .

\S 3. Hurwitz’s formula.

Let $M$ be a subfield of $K$ containing $k$ properly. Then, it is a one-dimen-
sional algebraic function field over $k$ . We have Hurwitz’s formula:

$2g=\sum_{P^{i}}(e_{P^{\prime}}-1)+2eg_{0}-2(e-1)$ ;

here $e=[K:M];g_{0}$ denotes the genus of $M;P^{\prime}$ runs over prime divisor of
$M;e_{P^{\prime}}$ denotes the ramification exponent of $P^{\prime}$ with respect to $M$.

LEMMA. SuppOse that $P_{i}$ and $u_{i}(1\leqq i\leqq r)$ are Prime divisors and elements
of $K$ respectively such that for each $i$ we have $\nu_{P_{i}}(u_{i})<0$ and $\nu_{Q}(u_{i})\geqq 0$ if $Q$ is
a prime divisor different from $P_{i}$ . Take $k(u_{1}, \cdots , u_{r})$ as M. Assume that $g>0$

and $r\geqq 2g+2$ . Then, either $K=M$ or $e=2$ and $g_{0}=0$ .
PROOF. Let $Q_{i}$ be the restriction of $P_{i}$ to $M$. Then, $\nu_{Q_{i}}(u_{i})<0$, where

$\nu_{Q_{i}}$ is the normalized valuation belonging to $Q_{i}$ . For any prime divisor $P$ of
$K$ different from $P_{i},$ $P$ is not an extension of $Q_{i}$ because of $\nu_{P}(u_{i})\geqq 0$ . Hence
$Q_{i}=P_{\iota^{e}}$ . We have

$\sum_{P^{l}}(e_{P^{i}}-1)\geqq r(e-1)$ .
By Hurwitz’s formula

$g\geqq(e-1)g+eg_{0}$ ,

since $r\geqq 2g+2$ . Therefore, either $e=1$ or $e=2$ and $g_{0}=0$ , because $g>0$ .

\S 4. Proof of Theorem.

Let $\{P_{1}, \cdots , P_{\gamma}\}$ be the set of all Weierstrass points of $K$. Then,

$r\geqq 2g+2$ .
Set $P=P_{1}$ . There exists a positive integer $n$ such that

$l(P^{n-1})\leqq l(P^{n})=l(P^{n+1})$ .
Take an element $u$ of $L(P^{n})$ which does not belong to $L(P^{n-1})$ . Let $Q$ be
any prime divisor of $K$ different from $P$ . By our assumption that $K$ is free
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from parametric singularities, we have $\nu_{Q}(t_{Q}^{\prime})\geqq 0$ , where $t_{Q}$ is a prime element
in $Q$ . Hence, $\nu_{Q}(u^{\prime})\geqq 0$, because $\nu_{Q}(u)\geqq 0$ . We shall prove that $\nu_{P}(t_{P}^{\prime})>0$ . To
the contrary, let us suppose that $\nu_{P}(t_{P}^{\prime})=0$ . Then $u^{\prime}$ is contained in $L(P^{n+1})$

but not in $L(P^{n})$ . This contradicts our assumption on $n$ . Hence, $\nu_{P}(t_{P}^{\prime})>0$ .
There is a positive integer $m$ such that $m\leqq g$ and $l(P^{m})=2$ . Let $\{1, u\}$ be a
basis of $L(P^{m})$ . Then,

$u^{\prime}=a+bu$

with $a,$
$b$ in $k$ . For any $P_{i}$ different from $P$ , there is an element $\epsilon_{i}$ of $k$

such that
$\nu_{P_{i}}(u-\epsilon_{i})>0$ .

We have
$\epsilon_{i}^{\prime}=a+b\epsilon_{i}$ ,

since $\nu_{P_{i}}(t_{P_{i}}^{\prime})>0$ . Set $v=u-\epsilon_{2}$ . Then, $(v)=EP^{-m}$ , where $E$ is an integral
divisor of degree $m$ . By inequalities

$m\leqq g<2g+1\leqq r-1$

there is an index $i$ such that $\nu_{P_{i}}(v)=0$ . Take such an index $i$ . We have
$\epsilon_{i}\neq\epsilon_{2}$ . Set

$w=(u-\epsilon_{2})/(\epsilon_{i}-\epsilon_{2})$ .
Then, it is an element of $L(P^{m})$ being a transcendental constant over $k$ .
Thus, for every Weierstrass point $P_{i}$ , there exists a transcendental constant
$w_{i}$ over $k$ such that for each $i$ we have $\nu_{P_{i}}(w_{i})<0$ and $\nu_{Q}(w_{i})\geqq 0$ if $Q$ is a
prime divisor different from $P_{i}$ . Let $M$ denote $k(w_{1}, \cdots , w_{r})$ . By Lemma,
either $K=M$ or $e=2$ and $g_{0}=0$ . Suppose that we are in the latter case.
Then, $r=2g+2$ . Let $k_{0}$ and $M_{0}$ denote the fields of constants of $k$ and $M$

respectively. Then, $M=k(M_{0})$ and $M_{0}$ is $k_{0}(w_{1}, \cdots , w_{r})$ being a one-dimensional
algebraic function field over $k_{0}$ . The genus of $M_{0}$ is zero, since it is not
greater than $g_{0}$ (cf. Rosenlicht [7, Lemma 3]). Hence, there exists a trans-
cendental constant $\gamma$ over $k$ such that $M_{0}=k_{0}(\gamma)$ . We have $\Lambda f=k(\gamma)$ . There
exists an element $y$ of $K$ such that $K=M(y)$ and

$y^{2}=\Pi(\gamma-\alpha_{i})$ $(1\leqq i\leqq s)$ ,

where $s=2g+1$ or $2g+2;\alpha_{i}$ is in $k$ and $\alpha_{i}\neq\alpha_{j}(i\neq j)$ . Changing indices $i$ if
necessary, we assume that

$\nu_{P_{i}}(\gamma-\alpha_{i})>0$ $(1\leqq i\leqq s)$ .

We have $\alpha_{i}^{\prime}=0$, since $\gamma^{\prime}=0$ and $\nu_{P_{i}}(t_{i}^{\prime})>0$ ; here $t_{i}$ is a prime element in $P_{i}$ .
This proves $y^{\prime}=0$ .
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\S 5. Case $g=0,1$ .

Let $\Omega$ be a universal extension of $k$ .
PROPOSITION 2. SuPpose that $K$ is free from parametric singularities, and

that $g$ is either $0$ or 1. Then, there exists a differential subfield $k^{*}$ of $\Omega$

finitely generated over $k$ which satisfies (iii) and the following two conditions:
(v) $K$ and $k^{*}$ are linearly disjoint over $k$ ;
(vi) $k^{*}(K)$ is generated by its constants over $k^{*}$ .
PROOF. Case $g=0$ . We have $K=k(t)$ with

(1) $t^{\prime}=a+bt+ct^{2}$ ; $a,$ $b,$ $c\in k$

for some element $t$ of $K$ (cf. [3, Theorem $F]$ ). Let us set $k_{1}^{*}=k$ and define
$k_{r}^{*}$ inductively as follows: If the set of all solutions of (1) in $k_{r}^{*}$ is infinite,
then we set $k_{r+1}^{*}=k_{r}^{*}$ . In the contrary case let us take a generic point $u$ of
the general solution of (1) over $k_{r}^{*}(t)$ in $\Omega$ . If the Peld of constants of $k_{r}^{*}(u)$

is $k_{0}$ , then we set $k_{r+1}^{*}=k_{r}^{*}(u)$ . In the contrary case, there exist in $\Omega$ infinitely
many solutions of (1) which are algebraic over $k_{\gamma}^{*}:$ For we consider the
rational function field $\Sigma(u)$ over $\Sigma$ , where $\Sigma$ is the algebraic closure of $k_{r}^{*}:$

Let $\gamma$ be a transcendental constant of $\Sigma(u)$ over $\Sigma$, and let $P$ be a prime
divisor of $\Sigma(u)$ such that $\nu_{P}(\gamma-\gamma_{1})>0$ and $\nu_{p}(u-\xi)>0$ for some constant $\gamma_{1}$ of
$\Sigma$ and some element $\xi$ of $\Sigma$ ; We have $\nu_{P}(u^{\prime}-\xi^{\prime})>0$, and $\xi$ is a solution of
(1): Since such prime divisors exist infinitely, it follows that $\Sigma$ contains
inPnitely many solutions of (1). We take a solution $v$ of (1) in $\Sigma$ which is
different from any solution of (1) in $k_{r}^{*}$ , and set $k_{r+1}^{*}=k_{r}^{*}(v)$ . Thus, $k_{r}^{*}$ is
defined inductively. Let us set $k^{*}=k_{4}^{*}$ . Then, $k^{*}$ satisPes (iii), (v), and it
contains three solutions $t_{1},$ $t_{2},$ $t_{3}$ of (1) different from each other. The cross-
ratio

$\{(t-t_{1})(t_{3}-t_{2})\}/\{(t-t_{2})(t_{3}-t_{1})\}$

is a transcendental constant $c^{*}$ over $k^{*}$ . We have $k^{*}(t)=k^{*}(c^{*})$ .
Case $g=1$ . Since $g=1$ , we have $K=k(u, v)$ with

$v^{2}=R(u)=u(u^{2}-1)(u-\delta)$ ; $\delta\in k$ ; $\delta^{2}\neq 0,1$

for some elements $u$ and $v$ of $K$. By our assumption $K$ is free from paramet-
ric singularities, if $u^{\prime}=0$, then $\delta^{\prime}=0$ and $v^{\prime}=0$ (cf. [3, p. 452]). In this case
we can set $k^{*}=k$ . Suppose that $u^{\prime}\neq 0$ . Then, $\delta^{\prime}=0,$ $K=k(u, u^{\prime})$ and

(2) $(u^{\prime})^{2}=\lambda R(u);\lambda\in k;\lambda\neq 0$

(cf. [3, p. 451]). If $K$ contains a transcendental constant over $k$ , then there
exists in $k$ a nonsingular solution of (2) (cf. [3, p. 453]). In this case we set
$k^{*}=k$ . In the contrary case let us take a generic point $\xi$ of the general
solution over $K$ in $\Omega$ : We set $k^{*}=k(\xi, \xi^{\prime})$ : The field of constants of $k^{*}$ is
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the same as that of $k(u, u^{\prime})$ , that is $k_{0}$ . In any case $k^{*}$ satisfies (iii), (v), and
it contains a nonsingular solution $\xi$ of (2). Let us define a new differentiation
signed by the dot in $k^{*}(u, u^{\prime})$ by

$\dot{x}=\mu x^{\prime}$ , $\mu^{2}=\lambda^{-1}(2/\delta)$ ,

and set
$w=2\xi/(1+\xi)$ , $z=2u/(1+u)$ .

Then, $k^{*}(u, u^{\prime})=k^{*}(z,\dot{z}),$ $w\in k^{*}$ , and $w,$ $z$ satisfy

$(\dot{y})^{2}/4=S(y)=y(1-y)(1-\kappa^{2}y)$ , $\ddot{y}=2S_{y}$ , $\kappa^{2}=(1+\delta)/(2\delta)$ .
We define two elements $a$ and $b$ of $k^{*}(z,\dot{z})$ by

$a=$ {$z(1-w)(1-\kappa^{2}w)-\dot{z}$Cb $/2+w(1-z)(1-\kappa^{2}z)$} $/(1-\kappa^{2}zw)^{2}$ ,

$2b=\{C(w, z)\dot{z}-C(z, w)\iota\dot{v}\}/(1-\kappa^{2}zw)^{3}$ ,
where

$C(w, z)=\kappa^{2}z\{w(1-z)(1-\kappa^{2}z)+z(1-w)(1-\kappa^{2}w)\}$

$-(1-\kappa^{2}zw)^{2}+2S(z)/z$ .

Then, $a=b=0,$ $b^{2}=S(a)$ and

$z=\{a(1-w)(1-\kappa^{2}w)+b\iota\dot{v}+w(1-a)(1-\kappa^{2}a)\}/(1-\kappa^{2}aw)^{2}$ ,

$\dot{z}=\{C(a, w)\dot{w}+2C(w, a)b\}/(1-\kappa^{2}aw)^{3}$

(cf. [3, pp. 452-453], [4]). We have

$k^{*}(u, u^{\prime})=k^{*}(z, z)=k^{*}(a, b)$ .
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