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On a conjecture of Nakai on Picard principle
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A nonnegative locally H\"older continuous function $P(z)$ on the punctured
closed unit disk $0<|z|\leqq 1$ will be referred to as a density on $\Omega$ : $0<|z|<1$ . We
view $\Omega$ as interior of the bordered surface: $0<|z|\leqq 1$ ; so we consider the
boundary $\partial\Omega$ to be the circle: $|z|=1$ . The elliptic dimension of a density $P$ on
$\Omega$ at $z=0$, dim $P$ in notation, is defined to be the dimension of the half module
$\mathcal{F}_{P}$ of nonnegative solutions of the equation $\Delta u=Pu(\Delta=\partial^{2}/\partial x^{2}+\partial^{2}/\partial y^{2})$ on $\Omega$

with vanishing boundary values on $\partial\Omega$ : $|z|=1$ . After Bouligand we say that
the Picard PrinciPle is valid for $P$ at $z=0$ if dim $P=1$ . We are interested in
determining those densities $P$ on $\Omega$ for which the Picard principle is valid.
We observe the following example of Nakai $[26, 29]$ : Let $P_{\mu}(z)=|z|^{-\mu}$ and
$P_{-\infty}(z)=0$ . Then

1 $(\mu\in[-\infty, 2])$

(1) dim $P_{\mu}=\{\mathfrak{c}$

$(\mu\in(2, +\infty))$

where $\mathfrak{c}$ is the cardinal number of continuum. In this connection Nakai con-
jectured that the Picard principle is valid for general densities $P(z)$ on $\Omega$ with
$P(z)=O(|z|^{-2})(z\rightarrow 0)$ . The Purpose of this paper is to prove this conjecture in
the affirmative. Namely we shall prove the following

MAIN THEOREM. The Picard Principle is valid for any density $P(z)$ on $\Omega$

with $P(z)=O(|z|^{-2})(z\rightarrow 0)$ .
The proof of this theorem will be given in Section 1. A formulation of

the Harnack inequality by S. It\^o [11] will play an essential role in our proof.
The author is grateful to Professor It\^o for his advice on this inequality. In
Section 2 we will discuss the order of the generator $g(z)$ of $\mathcal{F}_{P}$ as $z\rightarrow 0$ for
$P(z)=O(|z|^{-2})(z\rightarrow 0)$ . We will establish the following inequality:

(2) $C_{1}\log\frac{1}{|z|}\leqq g(z)\leqq C_{2}|z|^{-c}$

on $\Omega$ where $C_{1}$ and $C_{2}$ are positive constants and $c=\sup_{\Omega}|z|P(z)^{1/2}$ . In the final
Section 3 we will mention two generalizations of the main theorem. We will
show that the condition $P(z)\leqq const$ . $|z|^{-2}$ on $\Omega$ in the main theorem can be
relaxed to $P(z)\leqq const$ . $|z|^{-2}$ only on a sequence of disjoint concentric annuli $A_{n}$

$*)$ The author is grateful to Professor Nakai for the valuable discussions with him.



360 M. KAWAMURA

in $\Omega$ converging to $z=0$ such that $\inf_{n}$ mod $A_{n}>0$ . In this form, the result
will further be generalized to certain ends of Riemann surfaces.

\S 1. General densities $P(z)=O(|z|^{-2})$ ( $z\rightarrow 0$).

1.1. A density $P(z)$ on $\Omega$ : $0<|z|<1$ is, by definition, a locally H\"older

continuous function $P(z)$ on $0<|z|\leqq 1$ . We denote by $\mathcal{F}_{P}$ the half module of
nonnegative solutions of $\Delta u=Pu$ on $\Omega$ with vanishing boundary values. We
are interested in characterizing those densities $P$ on $\Omega$ for which the Picard
Principle is valid, $i$ . $e$ . $\mathcal{F}_{P}$ has a single generator. For rotation free densities
$P(z),$ $i$ . $e$ . densities $P$ with $P(z)=P(|z|)$ on $\Omega$ , the problem may be viewed as
being almost brought to its completion (cf. Brelot $[2, 3]$ , Nakai $[26, 29]$ , Kawa-
mura-Nakai [14], Godefroid [6] etc.). For rotation free densities, we know
([29], [14]) that if two densities $P_{1}$ and $P_{2}$ are related as $P_{2}(z)\leqq P_{1}(z)$ or
$P_{2}(z)=const.P_{1}(z)$ on $\Omega$ , then the Picard principle is valid for $P_{2}$ if it does for
$P_{1}$ . Hence for rotation free densities $P(z)$ with $P(z)=O(|z|^{-2})(z\rightarrow 0)$ the Picard
principle is valid since it does for $|z|^{-2}$ . What happens to general densities
$P(z)$ with $P(z)=O(|z|^{-2})(z\rightarrow 0)$ ? For general densities $P(z)$ , we only know two
fragmentary results:
If

$\int_{\Omega-E}P(z)\log\frac{1}{|z|}$dxd $ y<\infty$

for a closed subset $E$ of $\Omega$ thin at $z=0$ , then the Picard principle is valid
(Nakai [28]);

If

$\int_{\Omega}P(z)dxdy<\infty$ ,

then the Picard principle is valid (Nakai [32], Kawamura [13]). None of these
two results can take care of densities $P(z)=\mathcal{O}(|z|^{-2})(z\rightarrow 0)$ and we need some
completely new device to establish the following

THEOREM. For a general densities $P(z)$ on $\Omega$ sati $s$fying

(3) $P(z)\leqq c^{2}|z|^{-2}$

with a suitable constant $c$ the Picard principle is valid.
1.2. The duality theorem. The unique bounded solution $e=e_{P}$ of

(4) $L_{P}u\equiv\Delta_{\mathcal{U}}-Pu=0$

on $\Omega$ : $0<|z|<1$ with continuous boundary values 1 on $\partial\Omega$ : $|z|=1$ will be
referred to as the P-unit (cf. Singer [40]). Consider the associated operator
$\hat{L}_{P}$ with $L_{P}$ which is introduced by Nakai $[31, 32]$ :
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(5) $L_{P^{\mathcal{U}}}\equiv\Delta u+2\nabla(\log e_{P})\cdot\nabla u$

for $u\in C^{2}(\Omega)$ where $e_{P}$ is the P-unit on $\overline{\Omega}=\Omega\cup\partial\Omega$ , and $\nabla f=(\partial f/\partial x, \partial f/\partial y)$ . We
say that the Riemann theorem is valid for $\hat{L}_{P}$ at $z=0$ if $\lim_{z\rightarrow 0}u(z)$ exists for
every bounded solution $u$ of

(6) $\hat{L}_{P}u=0$

on $\Omega$ and continuous on $\partial\Omega$ . Nakai ( $[31, 32]$ ; cf. also Heins [8], Hayashi [7],

Nakai [28]) showed the following duality theorem: The Picard principle is
valid for an operat0r $L$ if and only if the Riemann theorem is valid for the
associated operat0r $\hat{L}$ .

1.3. The maximum-minimum principle. Let $\Omega_{t}$ be $0<|z|<t$ and $\partial\Omega_{t}$ be
$|z|=t$ for $t\in(O, 1$]. And consider classes $\mathcal{F}_{t}$ and $\mathcal{B}_{t}$ of nonnegative and non-
negative bounded solution of (4) on $\Omega_{t}$ with boundary values zero and continuous
boundary values on $\partial\Omega_{t}$ , respectively. Then it is known that (cf. Brelot [2],

Ozawa [33], Royden [36], Nakai [28])

(7) $\mathcal{F}_{t}\cap \mathcal{B}_{t}=\{0\}$ ,

$i$ . $e$ . $z=0$ is of parab0lic character.
For a nonnegative solution $u$ of (4) the maximum principle is valid. On

the other hand, Nakai [28] showed the following maximum-minimum principle
for the solution of the associated equation (6): Let $v$ be a bounded nonnegative
solution of (6) on $\Omega_{s}(s\in(O, 1$ ]). Then

(8) $\sup_{z\in\Omega_{t}}v(z)=\max_{z\in\partial\Omega_{t}}v(z)$ , $\inf_{z\in\Omega_{t}}v(z)=\min_{z\in\partial\Omega_{t}}v(z)$

is valid for any $t\in(O, s)$ .
1.4. $It\hat{0}’ s$ form of the Harnack inequality. We denote by $\Delta(z_{0}, R)$ the open

disk: $|z-z_{0}|<R$ and $\overline{\Delta(z_{0},R)}=(|z-z_{0}|)\leqq R)$ . Suppose that a density $P(z)$ is
given on $\Omega,$ $\overline{\Delta(z_{0},R)}\subset\Omega$ , and $0\leqq P(z)\leqq c$ on $\overline{\Delta(z_{0},R)}$ for some $c>0$ . Then S. It\^o
[11] showed the following:

The inequality

(9) $u(z)\leqq 4e^{R\wedge c}u(z_{0})$

is valid for any $z\in\overline{\Delta(z_{0},R/2)}$ and for any nonnegative solution $u$ of (4) on
$\overline{\Delta(z_{0},R)}$ .

We include here an outline of the proof of It\^o [11] for the sake of con-
venience to the reader. Let $u$ be a nonnegative solution of (4) on $\overline{\Delta(z_{0},R)}$ and
let $e_{c,\rho}$ be the c-unit of $\Delta u=cu$ on $\overline{\Delta(z_{0},\rho)}$ for $0<\rho\leqq R$ . We first show the
following inequality

(10) $ e_{c,R}(z_{0})\cdot(2\pi)^{-1}\int_{0}^{2\pi}u(\zeta)\rho d\theta\leqq u(z_{0})\rho$



362 M. KAWAMURA

where $\zeta=z_{0}+\rho e^{i\theta}$ . Let $v$ be the solution of $\Delta u=cu$ with $u=v$ on $\partial\Delta(z_{0}, \rho)$ , and
let $G(z, \zeta)$ be the Green’s function of $\Delta u=cu$ on $\Delta(z_{0}, \rho)$ . Since the constant
function $c$ is rotation free, $\partial G(z_{0}, \zeta)/\partial n_{\zeta}$ (where $n$ denotes inner normal) is also
rotation free, we have that

$ v(z_{0})=(2\pi)^{-1}\int_{0}^{2\pi}v(\zeta)\rho(\partial G(z_{0}, \zeta)/\partial n_{\zeta})d\theta$

$=\rho(2\pi)^{-1}(\partial G(z_{0}, \zeta)/\partial n_{\zeta})\int_{0}^{2\pi}u(\zeta)d\theta$

$=e_{c,\rho}(z_{0})\cdot(2\pi)^{-1}\int_{0}^{2\pi}u(\zeta)d\theta$ .

Since $0\leqq P(z)\leqq c$ and $u=v$ on $\partial\Delta(z_{0}, \rho)$ , the comparison principle assures that
$v(z_{0})\leqq u(z_{0})$ . Observing that $e_{c.\rho}(z_{0})\geqq e_{c.R}(z_{0})$ we deduce (10).

Let $z$ be any point in $\overline{\Delta(z_{0},R/2)}$ and set $|z-z_{0}|=r$. Integration of both
sides of (10) by $\rho$ on $(0,2r)$ yields

(11) $\int\int_{\Delta(z_{0},2r)}udxdy\leqq 4\pi r^{2}(e_{cR}(z_{0}))^{-1}u(z_{0})$ .

Since $u$ is subharmonic in $\overline{\Delta(z,r)}\subset\overline{\Delta(z_{0},2r)}$ , we have that

\langle 12) $u(z)\leqq(\pi r^{2})^{-1}\int\int_{\Delta(z,r)}udxdy\leqq(\pi r^{2})^{-1}\int\int_{\Delta_{(z_{0},2\gamma)}}udxdy$ .

On the other hand c-unit $e_{c,R}(z)$ is represented by the modified Bessel function
of the first kind of zero order $I_{0}$ (cf. Bowman [1]), $i$ . $e$ . $e_{c.R}(z)=I_{0}(\sqrt{c}|z-z_{0}|)$

$/I_{0}(\sqrt{c}R)$ , where

$I_{0}(x)=1+2^{-2}x^{2}+2^{-2}\cdot 4^{-2}x^{4}+2^{-2}\cdot 4^{-2}\cdot 6^{-2}x^{6}+\cdots\leqq e^{x}$ $(0\leqq x)$ .
By (11), (12) and the above fact, we obtain (9).

1.5. Uniform Harnack inequality $I$. For a density $P(z)$ on $\Omega$ : $0<|z|<1$

with $P(z)=\mathcal{O}(|z|^{-2})$ we shall reform It\^o’s form of the Harnack inequality as
follows. We may assume that $0\leqq P(z)\leqq c^{2}|z|^{-2}$ on $0<|z|\leqq 1$ for some nonnega-
tive number $c$ . Let $a$ and $s$ be real numbers such that $a\in(O, 1)$ and $s\in(O, 1$].

We maintain the following concentric circle form of the Harnack inequality:
LEMMA. There exists a positive number $K_{1}$ depending only on $a$ and $c$ such

that

(13) $u(w)\leqq K_{1}u(z)$

for any nonnegative solution $u$ of $L_{P}u=0$ on $\Omega_{s}$ and for any $z$ and $w$ with
$|z|=|w|=t<s/(1+a)$ .

To prove this assertion take arbitrary points $z_{0}$ and $w$ on the circle
$\Gamma_{0}$ : $|z|=t,$ $(t<s/(1+a))$ . Let $\Gamma$ be a subarc of $\Gamma_{0}$ with the initial point $z_{0}$ and
the terminal point $-z_{0}$ such that $ w\in\Gamma$ . Consider a finite sequence of the
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closed disks $\Delta(z_{k}, at/2)$ such that $z_{k}\in\Gamma\cap\partial\Delta(z_{k-1}, at/2)$ and $z_{k}\neq z_{k-2}$ . We observe
that

$\Gamma\subset^{p}\bigcup_{k=0}\overline{\Delta(z_{k},at/2)}\subset\Omega_{s}$ ,

if $p=1+$ [ $\pi/2$ arcsin $(a/4)$], where $[]$ denotes the Gauss symbol. Observe that
the maximum of $c^{2}|z|^{-2}$ on $\overline{\Delta(z_{k},}$at) is attained at the point $(1-a)z_{k}$ and that
the maximum value equals $c^{2}(1-a)^{-2}t^{-2}$ . Thus we have that $P(z)\leqq c^{2}(1-a)^{-2}t^{-2}$

on $\overline{\Delta(z_{k},}$at) for each $k(k=0,1,2, \cdots , p)$ . By applying It\^o’s form of the Harnack
inequality to the disk $\overline{\Delta(z_{k},}$at), we deduce that

$u(z)\leqq K_{0}u(z_{k})$

if $z\in\Delta(z_{k}, at/2)$ for any nonnegative solution $u$ of (4) on $\Omega_{s}$ , where $K_{0}=4$ exp
$\{ca/(1-a)\}$ . In particular, by setting $z=z_{k+1}$ on the above inequality and using
these inequalities $k$ times $(k\leqq P)$ , we have that $u(w)\leqq K_{0}^{k}u(z_{0})$ . Since $K_{0}>1$ , we
deduce that $u(w)\leqq K_{0}^{p}u(z_{0})$ . We stress that $K_{0}^{p}$ depends only on $a$ and $c$ . By
setting $K_{1}=K_{0}^{p}$, we have the desired conclusion.

1.6. Uniform Harnack inequality II. Consider the associated equation (6)

with (4). We shall prove that a similar inequality as in 1.5 is valid for non-
negative solutions of (6) on $\Omega_{s}$ . This inequality will play an essential role in
the proof of the theorem.

Let $a,$ $c$ and $s$ be real numbers as mentioned in 1.5. Then we have the
following

LEMMA. There exists a Positive number $K$ dePending only on $a$ and $c$ such
that

(14) $v(w)\leqq Kv(z)$

for any nonnegative solution $v$ of $L_{p}v=0$ on $\Omega_{s}$ , and for any $z$ and $w$ with
$|z|=|w|=t<s/(1+a)$ .

To prove this take an arbitrary nonnegative solution $v$ of (6) on $\Omega_{s}$ and let
$e_{P}$ be the P-unit of (4) on $\Omega$ and set $u=ve_{P}$ . Observe that $e_{P}$ and $u$ are both
nonnegative solutions of (4) on $\Omega_{s}$ . By Lemma in 1.5, we have that

$e_{p}(z)\leqq K_{1}e_{P}(w)$

and
$v(w)e_{P}(w)\leqq K_{1}v(z)e_{p}(z)$

for any $z$ and $w$ such that $|z|=|w|=t<s/(1+a)$ . Since $e_{P}$ is positive on $\Omega_{s}$ ,
the above two inequalities imply that $v(w)\leqq K_{1}^{2}v(z)$ . By setting $K=K_{1}^{2}$ we have
the desired conclusion.

1.7. Proof of the theorem. In view of the duality theorem in 1.2, we only
have to show that the Riemann theorem is valid for the associated operator
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$L_{P}$ at $z=0,$ $i$ . $e$ . $\lim_{z\rightarrow 0}v(z)$ exists for every bounded solution $v$ of (6) on $\Omega$ with
continuous boundary values on $\partial\Omega$ .

Let $v$ be an arbitrary bounded solution of (6) on $\Omega$ and take any $s\in(O, 1$].

Set
$m(s)=\inf_{z\in\Omega_{S}}v(z)$

and
$v_{s}(z)=v(z)-m(s)$ .

Since the associated operator $L_{P}$ is linear and a constant function is a solution
of (6), the function $v_{s}$ is a nonnegative bounded solution of (6) on $\Omega_{s}$ . Thus
the maximum-mimimum principle in 1.3 is applicable to $v_{\iota}$ on $\Omega_{s}$ . Then, there
exist two points $w_{t}$ and $z_{t}$ on $\partial\Omega_{t}$ such that

$\sup_{z\in\Omega_{t}}v_{s}(z)=\max_{z\in\partial\Omega_{t}}v_{s}(z)=v_{s}(w_{t})$

and
$\inf_{z\in\Omega_{t}}v_{s}(z)=\min_{z\in\partial\Omega_{t}}v_{s}(z)=v_{s}(z_{t})$

for each $t$ in $(0, s)$ . From Lemma in 1.6, we have that $v_{s}(w_{t})\leqq Kv_{s}(z_{t})$ for any
$t$ with $t<s/(1+a)$ , where $a$ and $K$ are as in 1.6, $i$ . $e$ .

(15) $\sup_{z\in\Omega_{t}}v(z)-m(s)\leqq K(\inf_{z\in\Omega_{t}}v(z)-m(s))$ .

For a fixed $s$ , on letting $t\rightarrow 0$ in the above inequality, we have that

lim $supv(z)-m(s)\leqq K(\lim_{z\rightarrow}\inf_{0}v(z)-m(s))$ .

Since $\lim_{s\rightarrow 0}m(s)=\lim\inf_{z\rightarrow 0}v(z)$ , again letting $s\rightarrow 0$ in the above inequality we
deduce that $\lim\sup_{z\rightarrow 0}v(z)-\lim\inf_{z\rightarrow 0}v(z)\leqq 0,$ $i$ . $e$ . $\lim_{z\rightarrow 0}v(z)$ exists.

The proof of the theorem is herewith complete.

\S 2. Order of generator of $\mathcal{F}_{P}$ .
2.1. In view of Theorem in 1.1, if the density $P(z)$ on $\Omega:0<|z|<1$ satis-

fies that $P(z)=O(|z|^{-2})(z\rightarrow 0)$ , then dim $P=1,$ $i$ . $e$ . the half module $\mathcal{F}_{P}$ of non-
negative solutions of (4) on $\Omega$ with vanishing boundary values on $\partial\Omega$ has a
single generator $g,$

$i$ . $e$ . $\mathcal{F}_{P}=R^{+}g$ . We are interested in the question to deter-
mine the rate of growth of $g$ as $z\rightarrow 0$ . For a density $P(z)=\mathcal{O}(|z|^{-2})$ , we first
estimate the growth from the above as follows:

THEOREM. If a density $P(z)$ satisfies $P(z)\leqq c^{2}|z|^{-2}$ on $\Omega$, then the generator
$g$ of $\mathcal{F}_{P}$ has the order $|z|^{-c},$ $i$ . $e$ . $g(z)=O(|z|^{-c})$ as $z\rightarrow 0$, where $c>0$ .

2.2. To prove the theorem in 2.1 it is sufficient to show that there exist
a positive solution $g\in \mathcal{F}_{P}$ and an $r\in(O, 1)$ such tbat $g(z)\leqq v(z)\equiv|z|^{-c}-|z|^{c}$ on
$\overline{\Omega}_{r}$ since dim $P=1$ . We observe that $v$ is a rotation free positive solution of
$\Delta v=c^{2}|z|^{-2}v$ on $\Omega$ and $v=0$ on $\partial\Omega$ . Again observe that for a fixed $ w\in\Omega$ there
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exists a positive solution $u\in \mathcal{F}_{P}$ with $u(w)<v(w)$ . Set $D=\{z\in\Omega;u(z)<v(z)\}$ .
The set $D$ is an open set in $\Omega$ containing $w$ . Let $G$ be a connected component
of $D$ containing $w$ . Then we have that any circle $C:|z|=t(0<t<|w|)$ inter-
sects $G$ . In fact, contrary to the assertion assume that there exists a circle
$C:|z|=t(0<t<|w|)$ such that $ C\cap G=\emptyset$ . Since $G$ is a connected component of
$D$ containing $w,$ $G$ is contained in an annulus: $t<|z|<1,$ $i$ . $e.\overline{G}$ is compact in
$\overline{\Omega}$ . Since $u=v$ on $\partial G$ and $P(z)\leqq c^{2}|z|^{-2}$ , by the comparison principle, we have
that $u\geqq v$ in $G$ . This contradicts the definition of $G$ . Hence $C\cap G\neq 0$ .

Let $z_{t}$ be a point in $C\cap G$ for $t\in(O, |w|)$ . Take an $a$ such that $ 0<a<\min$

$(1, (1-|w|)/|w|)$ and determine the number $K_{1}$ of (13) in 1.5 for $a$ and $c$ . Set
$g=u/K_{1}$ . Then, $g$ is the required function. In fact, by (13) we have that
$g(z)\leqq K_{1}g(z_{t})=u(z_{t})<v(z_{t})=t^{-C}-t^{c}=v(z)$ for $z$ with $|z|=t$ and for any $t\in(O, r)$

where $r=|w|/(1+a)$ .
2.3. We have discussed in 2.1 and 2.2 about the upper order of a gener-

ator $g$ of $\mathcal{F}_{P}$ and obtained that $g(z)=\mathcal{O}(|z|^{-c})(z\rightarrow 0)$ if $P(z)\leqq c^{2}|z|^{-2}$ . We next
proceed to the determination of the lower order of $g$ as $z\rightarrow 0$ .

Before doing this, we mention the following unpublished remark of Hideo
Imai: For any density $P$ on $\Omega$ and any nonzero $u\in \mathcal{F}_{P}$,

(16) $\lim_{z\rightarrow}\inf_{0}(\frac{1}{2\pi}\int_{0}^{2\pi}u(ze^{\ell\theta})d\theta)/\log\frac{1}{|z|}>0$ .

In particular, if $P$ is rotation free with dim $P=1$ ,

(17) $\lim_{z\rightarrow}\inf_{0}u(z)/\log\frac{1}{|z|}>0$ .

A typical example is the generator $\log(1/|z|)$ of $\mathcal{F}_{0},$
$i$ . $e$ . $\mathcal{F}_{P}$ with $P\equiv 0$ . In

view of these one might feel that for any density $P$ on $\Omega$ with dim $P=1(17)$

is always valid. It may be of some interest, in this connection, to recall the
following result of Nakai [27] (cf. also Kawamura [12]): There exists a finite
density $P(i. e. \int_{\Omega}P(z)dxdy<+\infty)$ such that $\lim\inf_{z\rightarrow 0}v(z)=0$ for any positive

solution $v$ of (4) on $\Omega$ . As already mentioned the Picard principle is valid for
any finite, and hence for the above, $P$ (Nakai [32]). Therefore (17) may not
be valid for the generator $g$ of $\mathcal{F}_{P}$ even for $P$ quite close to $0$ in some sense
such as finiteness. However, we are fortunate enough to obtain the following:

THEOREM. If a density $P(z)$ satisfies $P(z)\leqq c^{2}|z|^{-2}$ on $\Omega$ , then

(18) $\lim\inf_{z\rightarrow 0}g(z)/\log\frac{1}{|z|}>0$

for the generator $g$ of $\mathcal{F}_{P}$ . In particular $\lim_{z\rightarrow 0}u(z)=+\infty$ for any nonzero
$u\in \mathcal{F}_{P}$ .

2.4. The proof of the theorem in 2.3 goes on analogous way as in 2.2.
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Take a fixed point $ w\in\Omega$ . Then there exists a $u\in \mathcal{F}_{P}$ such that $\log(1/|w|)$

$<u(w)$ . Set $D=\{z\in\Omega;\log(1/|z|)<u(z)\}$ and let $G$ be a connected component
of $D$ containing $w$ . Then we have that any circle $C:|z|=t(0<t<|w|)$ inter-
sects $G$ as in 2.2. There exist an $r(0<r<|w|)$ and $K_{1}$ as in (13) such that
$u(z_{t})\leqq K_{1}u(z)$ for $|z|=|z_{t}|=t,$ $0<t<r$, where $z_{t}\in C\cap G$ . By setting $g=K_{1}u$, we
have that $\log(1/|z|)<g(z)$ for $|z|<r$ as in 2.2. Since $g$ is a generator of $\mathcal{F}_{P}$,

we have the desired conclusion.

\S 3. Generalizations of the main theorem.

3.1. Reexamining the proof in 1.7 of the theorem in 1.1 we naturally

come to being aware of the following: In the implication of

(19) $\lim_{z\rightarrow}\sup_{0}v(z)-m(s)\leqq K(\lim\inf_{z\rightarrow 0}v(z)-m(s))$

in 1.7 from (15) in 1.7, $i$ . $e$ .
(15) $\sup_{z\in Q_{t}}v(z)-m(s)\leqq K(\inf_{z\in\Omega_{t}}v(z)-m(s))$ ,

we only have to take the inferior limit in (15) as $t\rightarrow 0$ instead of taking, as
was done in 1.7, the limit in (15) as $t\rightarrow 0$ . Therefore having (15) for every
$t\in(O, 1)$ is superfluous for establishing (19). We only have to have (15) for a
decreasing zero sequence $\{t_{n}\}$ with $t_{n}<s/(1+a)$ . Supposing the validity of (15)

for $t=t_{n}(n=1,2, \cdots)$ , and letting $ n\rightarrow\infty$ , we deduce (19). Examination of the
proof of (15) in 1.7, we at once see that (15) is valid for $t=t_{n}(n=1,2, \cdots)$ by
only assuming $P(z)\leqq c^{2}|z|^{-2}$ on annuli

(20) $A_{n}$ : $a_{n}\equiv(1-a)t_{n}\leqq|z|\leqq(1+a)t_{n}\equiv b_{n}$ ,

$n=1,2,$ $\cdots$ . Here observe that mod $A_{n}=\log(b_{n}/a_{n})=\log((1+a)/(1-a))$ . Converse-
ly, let $\{A_{n}\}$ be a sequence of closed disjoint concentric annuli $A_{n}$ in $\Omega$ such
that $A_{n+1}$ separates $z=0$ from $A_{n}$ . In order to obtain the above mentioned
situation, $i$ . $e$ . $A_{n}$ is represented as in (20), it is necessary and sufficient for
$\{A_{n}\}$ to satisfy $\inf_{n}$ mod $A_{n}>0$ . Such a sequence $\{A_{n}\}$ will be referred to as
satisfying the condition [A]. We then obtain the following generalization of
the main theorem:

THEOREM. If a density $P(z)$ on $\Omega:0<|z|<1$ satisfies $P(z)\leqq c^{2}|z|^{-2}$ on $A=$

$\bigcup_{n=1}^{\infty}A_{n}$ , where $c$ is a nonnegative constant and $\{A_{n}\}$ is a sequence of annuli in
$\Omega$ with the condition [A], then the Picard Principle is valid for $P$.

3.2. Consider a parabolic end $\Omega$ of a Riemann surface in the sense of
Heins [8], $i$ . $e$ . the relative boundary $\partial\Omega$ of $\Omega$ is a single analytic Jordan curve
and $\Omega$ has an isolated single ideal boundary point $\delta$ of parabolic character. A
density $P=P(z)dxdy(z=x+iy)$ on $\Omega$ is a 2-form on $\overline{\Omega}=\Omega\cup\partial\Omega$ with nonnegative
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locally H\"older continuous coefficients $P(z)$ . The elliPtic dimension of a density
at $\delta$ , dim $P$ in notation, is defined (Nakai [31, 32]) to be the dimension of the
half module $\mathcal{F}_{P}$ of nonnegative solutions of the equation

(21) $L_{P}u\equiv\Delta_{\mathcal{U}}-Pu=0$ $(i. e. d^{*}d_{\mathcal{U}}-uP=0)$

on $\Omega$ with the vanishing boundary values on $\partial\Omega$ . The elliptic dimension of
the particular density $P\equiv 0$ at $\delta,$ $i$ . $e$ . dim $0$, is called the harmonic dimension
of $\delta$ . As in Section 1, we say that the Picard Principle is valid for a density
$P$ at $\delta$ if dim $P=1$ .

3.3. Consider an end $\Omega$ with dim $0=1$ at $\delta$ . To further generalize the
result in 3.1, we take an Evans harmonic function 1 on $\Omega$ (cf. $e$ . $g$ . Nakai [23,
24], Sario-Nakai [37], Sario-Noshiro [38]), $i$ . $e$ .

(a) $l\in \mathcal{F}_{0}$

(b) $\lim_{z\rightarrow\delta}l(z)=+\infty$

(c) $\int_{\partial\Omega^{*}}dl=-2\pi$ .

Since dim $0=1$ at $\delta$ , such an $l$ is unique on $\Omega$ and $l$ is a generator of $\mathcal{F}_{0}$ .
Using 1 we introduce a pOlar coordinate differential $(dr, d\theta)$ with its center $\delta$ :

$\left\{\begin{array}{l}dr/r=-dl\\d\theta=-*dl.\end{array}\right.$

Then $r=e^{-l}$ is a single valued function on $\Omega$ but $\theta$ is a multi-valued function
on $\Omega$ . We may use $re$

io as local parameters at each point of $\Omega$ except for the
isolated set of $\Omega$ where $rdrd\theta=rdr_{A}d\theta=0$ . We denote by $E$ the set of $r\in(O, 1)$

such that the level line $\{z\in\Omega;r(z)=r\}$ is an analytic Jordan curve in $\Omega$ .
Clearly $E$ is an open subset of $(0,1)$ with $0\in\overline{E}$ . Let $\{a_{n}\}$ and $\{b_{n}\}$ be two
sequences in $(0,1)$ such that $a_{n+1}<b_{n+1}<a_{n}<b_{n}$ and $[a_{n}, b_{n}]\subset E(n=1,2, \cdots)$ .
Then

(22) $A_{n}=\{z\in\Omega;a_{n}\leqq r(z)\leqq b_{n}\}$

is an annulus with mod $A_{n}=\log(b_{n}/a_{n})$ . We say that $\{A_{n}\}$ satisfies the condi-
tion [A] if

(23) $\inf_{n}$ mod $A_{n}>0$ .
The existence of such a sequence $\{A_{n}\}$ is a property of $\Omega$ , which may not
hold in general. A typical example of such an $\Omega$ is the punctured unit disk
$0<|z|<1$ .

3.4. Consider a density $P$ on $\Omega$ . Then $ P/rdrd\theta$ is a single valued func-
tion on $\Omega$ with values in $[0, +\infty]$ finite on $\Omega$ except for the set where $ rdrd\theta$

$=0$ . We can represent as
(24) $ P=P(r, \theta)rdrd\theta=P(re^{i\theta})rdrd\theta$ .
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In particular, $re^{i\theta}$ is a genuine polar coordinate on each of $A_{n}$ . Then we
have the following generalization of Theorem in 3.1 and, of course, of the
main theorem:

THEOREM. SuppOse there exists a sequence $\{A_{n}\}$ of annuli as in (22) with
the condition [A] in $\Omega$ . If a density $ P=P(re^{t\theta})rdrd\theta$ on $\Omega$ satisfies $P(re^{t\theta})\leqq c^{2}r^{-2}$

on $U_{n=1}^{\infty}A_{n}$ , then the Picard principle is valid for $P$ at $\delta$ .
In fact, since the duality theorem and the maximum-minimum principle

are also valid on $\Omega$ (cf. [31]) and since the Harnack principle is only used on
$\bigcup_{n=1}^{\infty}A_{n}$ , the proof for the theorem in 3.1 can be verbatim applied to the
present one.

3.5. We remark that our first assumption dim $0=1$ in 3.3 is used to obtain
the uniqueness of the Evans harmonic function, but actually the condition
[A] $(i. e. $(23) $)$ is stronger than the condition dim $0=1$ . Heins [8] showed that
dim $0=1$ if $\Omega$ satisfies the condition [H]: There exists a sequence $\{A_{n}\}$ of
disjoint annuli with analytic Jordan boundaries on $\Omega$ satisfying the condition
that for each $n,$ $A_{n+1}$ separates $A_{n}$ from the ideal boundary $\delta$ , and $A_{1}$ separates
the relative boundary $\partial\Omega$ from the ideal boundary and

(25) $\Sigma_{n=1}^{\infty}$ mod $ A_{n}=\infty$ .
We shall show that we cannot replace the condition [A] $(i. e. $(23) $)$ by the

Heins condition [H], $i$ . $e$ . (25), in the theorem in 3.4, by a counter example:
there exist a rotation free density $P$ on $0<|z|<1$ and a sequence of annuli
$\{A_{n}\}$ with (25) such that $P(z)=0$ on $\bigcup_{n=1}^{\infty}A_{n}$ but $\dim P\neq 1$ (hence dim P $=c$ (cf.

Nakai [26])).

3.6. To construct an example mentioned above, we recall the P-unit
criterion for the rotation free densities $P(z)$ (Kawamura-Nakai [14]). The
associated function $Q(t)$ to $P(r)$ is the function on $[0, \infty$ ) defined by $Q(t)=e^{-2t}P(e^{-t})$ .
The Riccati compOnent $a_{Q}$ of $Q$ is the unique nonnegative solution of the
equation

(26) $-a^{\prime}(t)+a(t)^{2}=Q(t)$

on $[0, \infty$ ). It is known (cf. [14]) that dim $P=1$ if and only if

(27) $\int_{0}^{\infty}\frac{dt}{a_{Q}(t)+1}=+\infty$ .

Take three sequences $\{a_{n}\}$ , $\{b_{n}\}$ and $\{c_{n}\}$ such that $a_{n}=1+2\sum_{k=1}^{n-1}(1/k)$ ,
$(a_{1}=1),$ $b_{n}=a_{n}+1/n,$ $c_{n}=b_{n}+1/n,$ $(n=1,2, \cdots)$ . With the aid of these sequences
we define a continuous function $a(t)$ on $[0, \infty$ ) by $a(t)=1/(c_{n}-t)$ if $t\in[a_{n}, b_{n}]$ ,
$a(i)$ is a polygonal line if $t\in[b_{n}, a_{n+1}]$ , and $a(t)=1/2$ if $f\in[0,1]$ . We observe
that $-a^{\prime}(t)+a(t)^{2}\geqq 0$ for $t\neq a_{n},$ $b_{n}$ and the equality is valid in $(a_{n}, b_{n})$ . We
compute
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$\sum_{n=1}^{\infty}\int_{b_{n}}^{a_{n+1}}\frac{dt}{a(l)+1}\leqq 2\sum_{n\Rightarrow 1}^{\infty}\frac{1}{n(n+3)}<+\infty$

and

$\sum_{n=1}^{k}\int_{a_{n}}^{b_{n}}\frac{dt}{a(t)+1}=\sum_{n=1}^{k}(\frac{1}{n}+\log\frac{n+1}{n+2})$

$=C+\log 2+\log(k/(k+2))+d_{k}$

where $C$ is the Euler constant and $d_{k}\rightarrow 0(k\rightarrow\infty)$ . Therefore we deduce that
$\int_{0}^{\infty}(a(t)+1)^{-1}dt<+\infty$ . We replace $a(t)$ by the parabola on sufficiently small

neighbourhoods of $a_{n}$ and $b_{n}$ which are tangent to $a(t)$ so that resulting function
$a_{Q}(t)$ is of class $C^{1}$ on $[0, \infty$). We successively set $Q(t)=-a_{Q}^{\prime}(t)+a_{Q}(t)^{2}$ and
$P(r)=r^{-2}Q(-\log r)$ . This $P(r)$ is a required density.
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