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§1. Introduction.

Let M be an n-dimensional compact connected manifold. For every Rieman-
nian metric g on M, let —4, be the Laplace-Beltrami operator acting on smooth
functions on M. Let A,(g) be the least positive eigenvalue of 4,. M. Berger
(1] p. 138) posed the problem : Does there exist a positive constant k(M) such
that

A(g) vol (M, gl'"=k(M),

for every Riemannian metric g on M? J. Hersch showed that if M is dif-
feomorphic with the 2-dimensional sphere S?, then for every Riemannian metric
gon M,

A,(g)area (S?, g)<8r.

The equality holds if and only if (S?%, g) is the canonical sphere.
In the present paper, let M be a compact connected. Lie group. Let us consider
the problem: Does there exist a positive constant k(M) such that

A(g) vol (M, g)*'" = k(M)

for every left invariant Riemannian metric g on M? For this problem we claim
(cf. theorem 4) the following : The only compact Lie group M which has a positive
answer for this problem is a torus T™, that is, if the compact connected Lie
group M has a non-trivial commutator subgroup, then there exists a family of
left invariant Riemannian metrics g(t)(0<t<o)on M such that ltl_l:g A(g(t))=c0,

ltln;l A(g()=0 and vol (M, g(1)) is constant in t. In particular, since SU(2) (resp.

SO(3)) is diffeomorphic with S® (resp. P(R)), the above shows that M. Berger’s
conjecture is negative for S® and P*(R). It is known (cf. [1]) that, for a torus
T™, there exists a positive constant 2(7T") such that A,(g)vol(T", g)":<k(T")
for every left invariant Riemannian metric g on 7™

In §2, we shall express the Laplace-Beltrami operator on a connected Lie
group in term of the left invariant vector fields. In § 3, we shall give an estima-
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tion for 4,(g) for every left invariant Riemannian metric on a compact connected
Lie group. In §4, we shall prove theorem 4 and in §5, we shall calculate 4,(g)
for some Riemannian metrics on SU(2) and SO(3).

The author expresses his gratitude to Professor H. Ozeki who suggested
him this problem.

§2. The Laplace-Beltrami operator for a left invariant Riemannian
metric.

2.1. Let M be an n-dimensional connected Lie group, and let m be the Lie
algebra of all left invariant vector fields on M. Let (,) be an inner product
on m. Let g be a Riemannian metric on M defined by

(2]-) gm(Xm: Ym):(X; Y): X, Yem

where X,, Y,, are the tangent vectors at meM corresponding to X, Y. Let
—4, be the Laplace-Beltrami operator on M, that is

2.2) 4, f=—Trace, (Hess (f))

for a smooth function f on M. Here let Hess (f)=V(df) be the Hessian of f,
where V is the covariant derivation with respect to the Riemannian metric g
on M. The Hessian A=Hess (f) is a covariant symmetric 2-tensor on M, and
n . . .
so let Trace, (h)= > g"h;;, where (g%) is the inverse matrix of (g;;) and (g;),
i,j=1

(hiy) are the components of g, & with respect to the local coordinate (x,, -+, x5).
Then it is known (cf. p. 135) that

2.3) dyf=— Zn‘,g”( o7 ST of )

7, j=1 axiaxj k=1 Y axk

where ['% is the Christoffel symbol of the Riemannian connection for g. More-
over we have the following theorem.

THEOREM 1. Let M be a connected Lie group and m be the Lie algebra of
M. Then we have, for a smooth function f,

(24) dof== 2 YA+ 3 Trace (@d (YY),

where {Y}, is an orthonormal basis of m with respect to (, ) and Trace (ad(X))
is the trace of an endomorphism ad(X) of m. For Xem,

Xf(m)=| -5~ fom exp (10|

t=0

ProoOF. Since the left translations L., xM, are isometries with respect
to g, the operator 4, satisfies 4, o L (f)=L, ° 4,(f) for a smooth function f
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(cf. p. 387), and so we may prove at the identity e of M. Take the
local coordinate (x,, --+, x,) around e defined by the mapping exp(i)xiYi)H
1=1

(x1, -+, x5). For x=exp(X), Xm, we have (cf. p. 95)

(o), =expex(Yo=La,, » (~ad0P(T /w411

where expxx(resp. L, *) is the differential of the exponential mapping (resp. the

translation L,) at X=m (resp. the identity ¢). Then

25)  gu(®=(E (—adX)™(¥)/(n+1)1, 3 (—adXN"(V,)/(ntD1).
Hence we have

(2.6) gi(e)=0i;, Vigij(e)=—(cli+ cii)/2,

where we put [V, Yj]:ki_‘jl ctY, (1=1, j=n). In fact,

Ykgf,-(e)=[—jt—gu(exp(th))]

t=0

=[5 (B —radr o1, B (—tad¥ /D]

:((['—Yk, Y, Yj>+(yi: [—Y,, Yj]))/z-
Therefore we have
2.7 I't(e)=(cli+cip/2,

in paticular I'%(e)=cj;. For we have

rifo—(ZL o)+ 282 (- 2240 /2

0x;
~(VgafO+ Y 18—V a8 f0)/2
=(cletciy)/2
by (28] and et ch=0. Since — ()= [—L—flexp (s+OY)] _,_=Vifeo)

we obtain

4, f@)=— B YO+ 3 eV 4 f(e)

— —é Y,-2f<e)+k§ Trace (ad(Y )Y, f(e) . Q. E.D.
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The following is immediate from the above.

COROLLARY 1. Let M be a connected Lie group and m be the Lie algebra
of M. We assume m is a unimodular algebra, that is Trace (ad(X))=0 for every
Xem. Then we have, for a smooth function f,

28) dof=— 2 YA,

where {Y} 2., is an orthonormal basis of m with respect to (, ).

2.2. Let M be a connected Lie group and let m be the Lie algebra of M.
Let % be the set of all inner product on m. Fix an element (, ), in M. Let
g, be the corresponding left invariant Riemannian metric on M. Let K, be
the set of all inner products on m which induce the left invariant Riemannian
metrics with the same volume element £ as g,. To avoid mere changes of
scale, we consider only metrics induced from elements in %,.

Let {X;}%, be an orthonormal basis for (, ),. For A=SL(n, R), let Y;=

3 A4, X, (1< j<n). Then there exists a unique inner product (, )&.%, for which
k=1

{Y;}7_, is an orthonormal basis. For the left invariant Riemannian metric g
on M induced from (, ), we notice that

@9) Ay f=— B (A DunXaXnf+ 3 (A4A)n Trace @dX)Xn(f),

k 1 k 1

in particular, if m is a unimodular Lie algebra,

29 dof== 5 (At Dun X Xnf

k 1

for every smooth function f on M.
REMARK. Let M be a compact Lie group. For the M-bi-invariant Rieman-
nian metric g,, the above corollary 1 is well-known (cf. [8]).

§3. The case of a compact Lie group I.

3.1. The notations in §2 are preserved. In this part, we prepare, for the

Peter-Weyl theorem (cf. [7], [8]), some notations. Let M be a compact con-
nected Lie group.

We take an Ad (M)-invariant inner product on m as the fixed one (, ), on
m in 2.2.

Let T be a maximal torus in M and M, be the connected component of the
commutator subgroup of M. Put /[=dim.(T), p=rank (M,) and n=dim.(M). Let
4 be the root system of the complexification m® of m with respect to the Lie
algebra t of T, that is the set of non-zero elements « of the dual space t* of t
such m§={Fem®; [H, E]l=+—1a(H)E for any H&1} is not zero. We introduce
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a lexicographic order > of t* and fix it once for all. Let 4* be the all positive
roots. Let II={a,, ---, ay}(p=rank(M,)) be the fundamental system of 4 with
respect to this order >. For A<t*, define an element H; in t by (H;, H),=i(H)
for each Het. We define an inner product (, ), in t* by (4, 1")y=(H;, H,), for
A, A in t*. Let I'={He<t; exp(H)=e}. Let I be the set of all M-integral forms
on t:

I={iet*; A(H)e2zxZ for all He1l}.
Put '

D={2l; (4, a:)=0 (1=i=p)}.

In this paper, a finite dimensional unitary representation of M is called a
representation of M. For a representation (z, V) of M, we use the same letter
for its differential representation of m and the extension to m®, that is

r(Xp=[ - alexpXOw| _, 7 (X+V TV W=r(Xu+ v Tx(¥ )0

for X, Yem and veV. For pet*, put Ve={veV; n(H)v=+/—-1u(H)v for each

Het}. If Ve#(0), p(resp. V#) is called a weight (resp. a weight space) for the

representation (z, V) of M. Then V= 21 V¢ (finite direct sum). This decom-
ne

position is orthogonal with respect to the M-invariant hermitian inner product
((, ) on V. Notice that

3.D) r(H)n(E.pv=+/—1(u(H) T aH)r(E. v, vEV*.

The set I coincides with the set of all the weights of the representations
of M. The maximal element among the weights of the representation (z, V)
in the order > in {* is called the highest weight of (7, V). The set D coincides
with the set of all highest weights of the representations of M. Since an
irreducible representation of M is uniquely determined, up to equivalence, by
its highest weight, there exists a bijection from D onto the set of equivalence
classes of irreducible representations of M. We choose, once for all, an irredu-
cible unitary representation (x4, V;) with the highest weight A1 for each A€ D.
Put d;=dim.V,.

3.2. The Peter-Weyl theorem. Let C*(M) be the set of all C-valued in-
finitely differentiable functions on M. We define a hermitian inner product ((, ))
on C*(M) by

(32) (U S)=vol) | ATTD2()

for f,, f.eC>(M). Here vol(M) is the volume of M for the volume element £.
The C-linear space C*(M) is an M-module defined by 7, f(y)=f(yx), x, yeM,

fec*(M). For Xem, let Xf(x)Z[—gg— fx exp(tX))] . For an irreducible re-

t=0
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presentation (7%, V,), 2D, let 6* be the M-submodule of ¢*(M) spanned by M-
submodules of ¢*(M) isomorphic with V; as an M-module. Let (z*®1, V:QV*)
be the representation of M defined by 7*®1(x)(v@E)=r4x)vXE for xeM, ve V;,
and £ V;* where V;* is the dual space of V; Define a homomorphism @, of
Vi QV* into C*(M) by

D;,(vRE)(x)=E(x (X)), xeM, veV; and EcV;*.
Then @, is an M-homomorphism, that is
Vgpo D=0, (752®1)(X)

for all x&M. The Peter-Weyl theorem can be stated as follows:

THEOREM (Peter-Weyl). 1) For any A< D, the homomorphism @, defines an
isomorphism of V,QV* onto 0 Let {v}i4 be an orthonormal basis of V; with
respect to the M-invariant hermitian inner product ((, ). Put nf,(x)=(x*(x)v;, v))
gléi,j§d;). Then {\/Zi}nfj}gj-:l is an orthonormal basis of 6* with respect to
() B.2).

2) If 2, 2€D, 2+, then 0* and 6* are orthogonal with respect to ((,)).
We have the following decomposition: C°°(M):Z§)¢91, that 1is, for fec>(M), f

can be expanded by
a;
f: > dz‘z ((f, ﬂfj))”{}j
AED i,j=1

in the sense of the uniform convergence on M or the L*-convergence with respect
to ((, ).

3.3. In this part, for each (, ), we calculate A,(g) for the Riemannian
metric g induced from (, ), making use of the Peter-Weyl theorem.

REMARK. Let C3(M) be the set of all R-valued infinitely differentiable
functions on M. We notice that the least positive eigenvalue 1,(g) of 4, on

(M) coincides the least positive eigenvalue of the extension of 4, on C~(M)
(cf. p. 141).

THEOREM 2. The above notations are preserved. Let (,) be any element in
My. Then the least positive eigenvalue A,(g) of 4, for the Riemannian metric g
induced from (,) is given as follows:

A(g)= min. min.  (z%Cy)v, v)),

AED- (0) vel o, (v, ) =1

where xl(Cg):——é 7 (Y,)? for an orthonormal basis {Y}%, of m with respect
1=1

to (,).

LEMMA 1. The assumptions in Theorem 2 arve preserved. For an irrveducible
representation (z*, V), A€ D, the operator 4, satisfies
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33) 4; o OvRE)=0; ° (X(CHvRE)

for all veV, E€V*
PrROOF. For Xem, vV, and £=V,*, we have

X@ @) D)=] -5 0.088)x exp (1X)]

t=0

=[- Lt xexp X))

t=0

=&z () X)w)= D La (X W&E)(x) .

Thus, due to corollary 1 in §2, lemma 1 is immediate. Q.E.D.

From lemma 1, the operator 4, preserves 6 for each 1€ D. So we inves-
tigate the eigenfunctions of 4, in 4 The M-invariance of ((, )) implies (x4 X)u,
v))=—((u, 74 X)v)) for Xm, and we have

(@ Cu, v)=((u, 2XCe)v))

for all u, vV, Then for each 1= D—(0), there exist positive numbers 4; (1=1
=d;) and an orthonormal basis {v;} 4 of V; such that z4C,)v;=2,v;. We choose
the dual basis {£;}%4 of Vi* for {v;} . Then

D (v, Q8 )(x)=E(x (X)) = (X (X)v;, vi))=mix)

for each xe M and
Ag(ngj):Ag@](vj®$i):@l(nj(cg)vj®si>:zj@2<vj®5i):2j7réj

by lemma 1. Therefore the functions {\/E}néj}f}:l form an orthonormal basis
of #* with respect to ((,)) (the Peter-Weyl theorem) and also eigenfunctions of
4, for the eigenvalues 2;. Then the least positive eigenvalue of 4, on 6* coin-

cides with min.{4,, --+, 24,} = . rr(l(in.)) 1((7:1(Cg)v, v)). Thus we obtain
D ya v,V))=

LEMMA 2. For A€ D—(0), the least positive eigenvalue of 4, on 6* is given
by
min.  (#%Cp)v, v)).

vEVl, (v, v))=1

Its multiplicity coincides d; times the multiplicity of the least positive eigenvalue
of T(Cy) on V.

Le a 2 and the Peter-Weyl theorem imply theorem 2.

3.4. Making use of theorem 2, we give an estimation of 2,(g).

We choose an orthonormal basis of m with respect to the inner product
(, ), as follows: For acd, let E, be a root vector such that tE,=E_,, (Eq,
E_).=1 and [E,, E_o]=+/—1H,. Here the mapping z is the conjugation of
m¢ with respect to m. For aed*, put U,=FE +E_,, Vo=+/—1(E.—E_,) belong-
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ing to m. Let;{H;}', be an orthonormal basis of t with respect to (, ),. Then

1 1
. ——U,, —— H;; 1=
(3.4) {\/zU gV His asd', 15is <1
is an orthonormal basis of m with respect to (, ),

For AeSL(n, R), (n=dim.M), let g be the left invariant Riemannian metric
on M induced from the inner product for A as in 2.2. Then, due to (2.9’), we
can express 7X(C,) as follows:

(35) ”Z(Cﬁ:“’;‘a. 3, (A A Ea+ w (B Na X Eg) + w(E-p)
+ —;_a,ﬁzeﬁ(A ' A)ap(HEq) — X E- )X Eg) —aXE_p))
__1/_23 3 (A ST E)+ 7 E- )N E)—7HE-5)
Qa.?wm tA) e T E ) — X E-2)) @ Eg)+ 7 (E_p)
‘“;715% (A A) ol (T E )+ 7 E-)m (H)
+r H Y7 E)+ 7 E-4)))
j __2-1 3 (A E) —E- ) (H)

+ A H YA E )~ THE_)
— 3, (A Aym i H)HH)

Now let v, V, be the highest weight vector with ((v; v;)=1. Then, due
to we have 74E)v;=0 (a€4*) and 7Y E )X E_Jvi=nX[Es E-o)vi=
—A(H)v;. Thus we have
1

2a€+

(2 (Cvz, v)=5 2 (A A)aat(A ' A)se)A(Ha)

2 (A IHIAH,).

Therefore, together with theorem 2, the least positive eigenvalue A,(g) of 4,
on C=(M) is estimated as follows:

36) L@ min, [+ 2 (A At (A 4 )AH)

SD-(0) aeA
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l
+, 3, (A A IHIH))
Since ((A *A)ij)isi.jsi 1S @ symmetric positive definite matrix of degree /,

ji: (A *A)y;AH)A(H ;) =( Z (A *A)) E AH)?)

i 1

l
:(,-Zl (A*A))4, Ay .
Hence by we have

M@= min, [+ 2 (A At (A DedHI+ 3 (A A2, Do)

=<0)

=Trace (A'A) min. [ > A(HL)+Q, A),]
AED-(0) acdt

=Trace (A A)(g,).

Therefore we have theorem 3.

THEOREM 3. Let M be an n-dimensional compact connected Lie group. Let
g0 be the M-bi-invariant Riemannian metric. For any A€SL(n, R), let g be the
left invariant Riemannian metric on M induced from A asin 2.2. Then the least
positive eigenvalue A,(g) of 4, has the following estimation:

A(g)=2.(g,) Trace (A*4).

§4. The case of a compact Lie group II.

4.1. First, let M=T™ be an n-dimensinal torus, that is a compact connected
abelian Lie group. Let t be the Lie algebra of T Put I'={Het; exp (H)=¢}.

Then there exists a basis {H;}%; of t such that [I'={ i nH;;n,eZ 1=i=n)}.
i=1

Let (, ), be the inner product of t defined by (H;, H;),=0;; (1=1, j<n). For

AeSL(n, R), put H/= EA”H Let (,) be the inner product defined by

(H/, H?)=0,;(1=i, j=n). Then the Laplace-Beltrami operator 4 (resp. 4,) on T™
corresponding the Riemannian metric induced from (, ) (resp.(, ),) is given by

Af:_i,?él (AtA);HH(f) (resp. Aof:—ig H(f)

for a smooth function f on T™. Let I'* be the dual lattice of I" in t*, that is
F*z{émili; m;eZ (1=i=n)} where {A;}1, is the dual basis of t* for {H;}%,.
Then the Peter-Weyl theorem says that each feC~(T") can be expanded by
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J= 2 {(f, X)), .
7Er*

Here ((f,, fz))ZSTnfl(x)—fz(—x)Q(x) where 2 is the volume element corresponding
to the Riemannian metric on 7™ induced from (,) or (, ),. The function %,
for »= é m;.€ '™ is given by X,(x)=exp (Zn\/:_li‘;l‘ x;my) (x=exp (é xH)ET™).
Then the spectrum of 4 on C~(T") is

Spec (4)={4x® 3 (A *A)mm;; meZ (1<i<n))
1,j=1
= {4x*(H, H),; HE(A)}.

Here I'(A) is the lattice in t spanned by {H(A)}7.,, H,(A)= kz A; H,. That is,
=1

Spec (4) coincides with the spectrum of the Laplace-Beltrami operator for the
Riemannian metric on the flat torus t//°(4) induced from the inner product (, ),
on . Since A=SL(n, R), the volume of the flat torus t/I'(A) is constant in A.
Then there exists (cf. [1], [2]) a positive constant A(7™) such that the least
positive eigenvalue 2,(d) of 4 is bounded upper by k(T") for all A=SL(n, R).
If n=2, then the so called equilateral torus attains the maximum of 2,(4) among
the flat tori t/I'(A), A=SL(2, R).

4.2. Conversely, we obtain

THEOREM 4. Let M be a compact connected Lie group. We assume M has
the non-trivial commutator subgroup, that is the commutator Lie subalgebra m, of
m is not zero. Then there exists a family of left invariant Riemannian metrics
g(t) (0<t<co) on M such that ltiglo. A (g())=00, lt1£r01 2.(g®))=0 and vol(M, g(1)

s constant in t.

PrROOF. Put r=44*>0 and p=rank (M,). Let 3 be the center of m and let
Z, be the connected subgroup of M corresponding to ;. Put ¢g=dim.3 Then
t=t,+3 ({;=t~\m,) and m=m,+3. Choose an orthonormal basis {H;}i-; of t with
respect to (, ), such that {H,}2, spans t, and {H,.;}¥, spans 3. Let A be a
diagonal matrix in SL(n, R) which has the components :

Aga=Aga=1t"?, acsd*,
A=t @=prEr 15i=p,

Ap+i. p-H':lLl/2 ’ léléq ’

for any positive number ¢. Let (,) be the inner product on m induced from A.
Then the decomposition m=m;-+3 is orthogonal with respect to this (, ). Let
B (resp. g(1), g.(t), g,(t)) be the left invariant Riemannian metric on the com-
pact Lie group M,XZ, (resp. M, M,, Z,). Let Az, (resp. dgcy, dgycer, dgyy) bE
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the corresponding Laplace-Beltrami operator on M,XZ, (resp. M, M,, Z,). Let

(@) (resp. 2,(g(D), 2,(g.(D), 2:(g4(?))) be the least positive eigenvalue of Az,
(resp. 4>, Aglm, Agou))- Then
LEMMA 3. The above notations are preserved. We have

A(g(®)=min. {4,(g,(1)), 2:(go()} =min.{4,(g:(1)), t:(go(1))}.
PrROOF. Since the covering mapping M,XZ,=(m, z)—mz< M is the Rieman-

nian covering mapping of (M,xZ, g()) onto (M, g(t)), due to p. 145,
Spec(d, ) C Spec (dzay). So 4,(g(1)=2,(&(t)). Due to p. 144,

Spec (d3wy)={A+2"; A=Spec (d;, ), A ESpec (dgy)}-
So,
21(§(t)):min- {2(g:(1)), A.(go(t))}. Q.E.D.

Now for an irreducible representation (7%, V)), 2D, of M, we have, due
to (3.5),

4.1) T{Cow)=—t 2 (THEJTHE_)+aXE_)nX(Es)
y q
—¢=(n=mIp ‘:"‘1 77.'1(Hi>2—-t ;1 TE'Z(HPH)Z
=t Cpn)H PP —t)(— 3 THHY)

Here 7*(C,p)=— EZA)+(nZ(Ea)yzZ(E_a)—{—n‘(E_a)ﬂ‘(Ea))—_él) w*(H,;)* is the Casimir
operator for (z*, V;). Then it is known (cf. [7]) that

7(Cow)v=0+25, Dov  for all veV,
1

5 L. Hence we have
a=4

where 0=

(4.2) min. (X (Cy)v, )

’UEVZ, (v =1

= min. [H@420, Dyt (— 3 2(H ), ).

VeV 5 (0, 0)) =1

Therefore 1) if t=1 (i.e. - »/?—t=0), then the right hand side of is

(4.3) HA-26, De+-(t="2/P 1) min. ((—é T H )W, ).

DEVZ, (v, v))=1

2) if t=1 (i.e. -~ »/?—;=<0), then the one of is

4.3') HA+26, Dot (- PIP ) max. ((—éni(Hi)zv, ).

‘DEVZ, (v, )=1
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LEMMA 4. For an irreducible representation (n*, V;), A€ D of M,

min. (= 3 2XHw, v)=min.{(s, mo; g, weight of V3,

UEVZ: (v, v))=1

and

max. ((— _é *(Hy)%, v))=max.{(u;, t)e; g, weight of V;}.

'DEVZ, (v, v))=1

Here for pet*, let pycty* be the restriction to t, of p and (py, pa), be the inner
product on t, induced from (, ).

Proor. Corresponding to the decomposition V,= EI V#, for every veV,
rne

put v:#EIZi)1 i e Vi a,:€C where {v, }1...qimve iS an orthonormal
» =1, dim.V~‘

basis of V# with respect to ((,)) for each weight x of V,. Then

@y (EAH = Dl (S eHY)

p€Il,i=1,",dim

= > la,u,ilz(,ul’ ﬂl)o .

nEIl =1, dim.V*
Then the maximum (resp. minimum) of with the condition

(@, v)):yelz':ﬂ,-",dim.l’”la#’ilzzl ’
coincides with the desired result. Q.E.D.
The case of 1); t=1. There exists 1, D—(0) such that V,, has a non-zero
0-weight vector v,, that is z%(H)v,=0, for all H=t. Then coincides
12,426, A,),. Hence
2 (g()=t(A,+20, Ao), -

Therefore we have lnirgl. A(g()=0.

The case of 2); t=1. Let D, be the set of all highest weights of M, with
respect to the order on i, induced from the one on t. Then for an irreducible
representation (7%, V) of M,, A€ D,, by and lemma 4, we obtain

(4.5) max. ((@HCq o)V, V)=HA+20, D)o+ (=217 —f)

’UEV,ZV (v, m)=1

xmax.{(g, #)o; p, weight of V;}

n-q
where nZ(Cglm):—“Zl 7XY;)? for an orthonormal basis {Y;}7=¢ of m, with

respect to the inner product on m, corresponding to A. It is noticed (cf.
19-06) that for every irreducible representation (z%, V) of M,

(/1: #)oé(zr 2)0
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for all weight x4 of V; In fact, for each weight p of V;, there exist an ortho-
gonal transformation S with respect to (, ), and a weight v of V; such that

»
p#=S@) and v D,. Every weight v of V, can be expressed as v=A1— Zlmi“i’
m;=0(1=i<p). Then

Y4 D
(2, 2)o:(V+ zgl ma;, v+ l; miai)o

—(V V)0+2(V, 27’17,1 z)0+<2miaz’ th z) (Vr V)0—</,l, ﬂ)o

Then the right hand side of (4.5) is greater than #(1, 20),. Hence we have

A(g:(t)=t min. (20, 4),.
2ED1-(0)

We notice that Cl— min. (28, 2),=min.{(25, 4y)o, =+, (24, 2,)0} >0. Therefore

E€D1-(0)
by lemma 3,

A (gt)=t min. {4,(g,(1)), C;},

that is lim. 2,(g(#))=o0. Q.E.D.
t—rc0

§5. The case of SU(2) and SO(3).

In this section, we investigate the behavior of 2;,(g) for left invariant
Riemannian metrics on SU(2) and SO(3).

_ V=10 «
J— e Mtz J— — .
Let M=SU2)={x=SL(2, C); x'%=1}, and m——éu(Z)—{( & —v=1 (9> caeC,
0ER} isomorphic with 20(3) as a Lie algebra. Let(X, Y),=—B(X, Y)=—4 Trace

(XY) for X, Yem where B is the Killing form on m. Let t:{(\/Bl 0“\/_—7 (9) ;

963}- Let 4*={a}, a; ta(vi(;le_\fqﬁ)wzeele. Put E,= (8 ‘/01/2)

)

(\/—i/z ) and He= (G
element — - U,= ‘L(«/:(')i/z «/0»1/2) 1y (1?2 -(1)/2

E__a: >. Then (a, a)(]: (Ha: Ha)O: 1/2' The

«/2 D) NEREE ) and Hi=

a~2~/f2~(0 _1> form the basis of m as in . Put H, _( 0 —«/:I)'
Then I'={He<t; exp (H)=¢} =277 H, *=2 Z(\/O—l _?/_ ) I={aet*; A(H*)
€Z}={la; |€1/2Z} and D={2; (A, a)y=0}={la; [€1/2Z, [=0}. In case of
M=S0(3), under the identification of &u(2) with &(3), D={la; (€Z, [=0}.

v 2H
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For A=SL(3, R), let 4,4, be the Laplace-Beltrami operator on SU(2) (resp.
SO@3)) of the left invariant Riemannian metric g(A) on SU(2) (resp. SO(3)) in-
duced from A as in 2.2. Then the estimation of the least positive eigen-
value 2,(A) of 4,4 on SU2) (resp. SO(3)) becomes

G A= min, 204 At (A Aoy (A 4 A)

le1/2z,1>0

. l 2
(resp. (4= lg;;;;;o[z (A At (A D) +5-(A A, ).

Age 0 0
Let A:( 0 Agz O )ESL(3, R) such that A= Apa=t2, Ay=t" (t>0).
0 0 Ay

Let g(f) be the Riemannian metric on SU(2) (SO(3)) induced from A. For an
irreducible representation (z?, V), A=Ila< D, of SU(2) (SO(3)), (4.1) becomes

(6.2) 7 (Cor)=taX(Cy )+ (¢ *—=1)(—*(H®) .

For veV,, nz(Cgm)v:%l(H-l)v. Let v; be the highest weight vector of V,.

Put v,=v,, v,o, =1 E_ vy, vioe =1 (E_o)vi-1, ---. Then the (2[+1) elements {v,,
Vi1 =, U1oy, Uy} of V; form a basis of V,; such that

nZ(Ha)vm:\/Z—lmvm (m=I, [—1, -, 1—1, —I).

The (2[41) elements ma (m=1, [—1, ---, 1—I, —1) of t* form all weights of V;
with the weight vector v,. Put w,=bnv,, b.<R to be normalized with respect
to ((,)). Then

mzw
2 M

t
(5.3) ﬂl(Cgm)wm:—2—l(l+1)wm+(t‘2——t)
Hence for (7%, V),

(5.4) min.  (z*(Cga)v, V)

VEV 5, (0, 1)) =1

=gl win (3 lealm) (5]

T lemi2=1,cpec

12—t 4
5 max. (3 [enlm?) (21),
f\: Lilezil, n=

12—

2

= A+ 1)+
1 min. (¥ Jeal'm?) (ZD).

= tlcmLZ:l,
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l l 0 (ez),
va on_ 12 . 2,02) —
Here max.(mzz_)tlcml m®)=[? and mln.(mgllcml m*)= _i—_ (l&Z).

Therefore we have
THEOREM 5. 1) Let M=SU(Q2), diffeomorphic with S®. For A=SL(3, R),

1

A= 4

Trace (A*A).

There exists a family of left invariant Riemannian metrics g(t) (¢>0) on SU(2)
such that

¢ 12 1 . S
Z—I— 3 <t> _3/46“> with the multiplicity 4,
A(g(t)=, &,,/lﬁ <t:_f}6A> with the multiplz:city 7,
¢ <t<71.6f) with the multiplicity 3.

2) Let M=S0(3), diffeomorphic with P*(R). For A=SL(3, R),
. 1 1
A1<A)§ Z((A zA)aa“}'(A tA)dd)+ ?(A tA)u .

There exists a family of left invariant Riemannian metrics g(t) (t>0) on SO(3)
such that

-2

—é——{- tz (t>1) with the multiplicity 6,
21<g<t)>=1 1 (t=1) with the multiplicity 9,
t (t<1) with the multiplicity 3.

§6. The case of SU(2).
Following p. 146, we prepare some notions. For a Riemannian manifold
(M, g) with the involutive isometry o, that is ¢?=id, let

Cr={fec=(M); f-o=f}, C-={fec>(M); fe o=—f}.

Put Cj=C*"\C7(M) and C7;=C N\C7(M) where C7(M) is the eigenspace for the
eigenvalue 4 of 4, in C*(M). Let

A (g)=inf.{1>0; Cj+0}, A7 (g)=inf.{1>0; C7+#0}.
Then M. Berger has conjectured (cf. p. 146)

(6.1) i(g)=4(g).
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In this section, we investigate this problem in case of SU(2)=S%. We pre-

serve the notations in §5. Let x,=exp (47rH,J,):(__(1) __(1)>ESU(2). Let ¢ be the
left translation of SU(2) by x,. Then ¢ coincides the mapping S?=p— peS*
(the antipodal point of p) under the identification SU(Z)B(__% g)»—»(a, pe

{(a, p)=C?; |a|*+1B|*=1}=S*. Then the Riemannian metric g(¢) (0<t<oo)
in §5 satisfies

(6.2) a*g(t)=g(t)

due to the left invariance of g(¢). For this isometry ¢ of (SU(2), g(?)) (0<t <o),
we calculate A;7(g(#)) and A7 (g(¥)) as follows:
THEOREM 6. Let M=SU(2)=S®. The above situations are preserved. Then

we obtain
(1=t<0),

t t2
Aey= 2772

t (0<<1),

Ar(g(t)= %4— t; (0<t<o0).

Thus, in particular, we have ‘
+ —_ l
2 (g(®) <A (g(@®) (0 <t< Tg") ,

which implies M. Berger’s conjecture (6.1) is negative for S°.
PrOOF. For 1=la€ D (I=1/2Z), the matrix elements r},. (cf. 3.2) of (%, V))
satisfy
{ Thw © 0=Tbn if meZ (m=1, -1, -, 1—1, —1),

Thm o 0=—nbn if m&eZ (m=1, -1, -, 1—1, —1).

Because we have 7z, o 6(x)=((r (xeX)Wm , Wn)=(7 X)Wy , 7' (exp(—47Ha))wn))
=exp (v —1 2xm)rt.(x). Then we have

{ (1) if 2=la (€ Z), all 74, belong to C*,
(2) if 2=la(leZ), all 7}, belong to C-.
Moreover, since 4, (xhm)=2m nhm where n4C,))Wn =2An wn, (cf. proof of

lemma 2), all z2,, satisfy

mm'

6.3) Bycomhae={ L+ D+ =) —(—’?;f)-zw} )

for all 2=la (I€1/2Z), by [5.3).
Thus, together (1) and (2), we have
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. ¢ ) (m/)z
[,z (g(t)=min. _ min. _l._l{71(1+1)+(t ) }

lez m'=l,1-

l Ar(gi))= min. rr}u} e {’;—l(l+l)+(t‘2-—t) (m”)? }

1E2, le1/22 me 2

In case of /eZ, we have

t 2
7\ =+ 2 (1=5t<0),
mr=1 llplix'?-'l-l -L{%I(H-1)+(t-2—t)ﬁ(j;j—}: : ’
T t (0<t<1).
Then
i-I- e (1=t<0)
zr<g<t>>=| 2 2 7
¢ 0<t<).
In case of [&Z, [1/2Z, we have ,
t 12
=1 (1=<t<o0)
ne 2 9 ’
mm {—l(l-’rlH—(t‘ ) (W;) }-—
me=l,4-1,1=1, - t 12—¢
gl(l—{—l)-i- 3 0<t<1).
Then
_ t 12
A7 (g(t))=—4—+—8f (0<t<c0). Q.E.D.

Added in proof. Recently S. Tanno [The first eigenvalue of the Laplacian
on spheres (to appear)] showed M. Berger’s conjecture in introduction is negative
for all odd dimensional spheres. From its content one sees that the one in §6 is
also negative for all odd dimensional spheres.
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