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Introduction.

In this paper, we give a certain generalization of the Hasse-Witt theory
(cf. [4]).

Let K be an algebraic function field with an algebraically closed constant
field k2 of characteristic p>0, and g be its genus. Let M be the maximum
unramified Galois extension of K. Let 4, be the group generated by 2g
elements u;, v; (1=1, ---, g) with the following fundamental relation :

(uyvyurtor?) - (ugvgug'vg')=1

Let 4, be the completion of 4, with respect to subgroups of finite index.
Then, it is well known that there is a surjective homomorphism of Jg onto
Gal(M/K), and that its kernel is contained in the intersection of kernels of
continuous homomorphism from 4, to finite groups with order prime to p.
(cf. [3]).

It is obvious that the structure of Gal(M/K) (as an abstract group)
depends on g and p. We note that for any finite group G with order prime
to p, the number of unramified Galois extensions of K whose Galois group is
isomorphic to G is determined by g. Moreover, it is well-known that the
structure of the Galois group of the maximal unramified abelian extension of
K is determined by g, p, and the invariant 7y, that was introduced by Hasse-
Witt (cf. [4]). Hence if g=1, Gal(M/K) is determined by g, p, and 7g.
But if g=2, the structure of Gal(M/K) is not determined only by g, p
and 7.

In §1, we define an unramified D,,m-extension of K as an unramified
Galois extension of K whose Galois group is isomorphic to

Dpn={0, t|6?"=1"=1, tor"'=0¢?, where i is a primitive n-th

root of unity in (Z/p™Z)*).
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In §2, we construct a certain invariant of K depending on 7, and state
our main theorem. Let %A, be the set of full representatives of divisor classes
of degree 0 of K whose orders are n. Then the invariant is the set {74} .cu,,
where 7,4 is an integer which is determined by the class of A. Then, our main
theorem gives the number of unramified D, ,-extension of K in terms of this
invariant (cf. [4]).

In §3, we give some lemmas and in §4, we prove the main theorem and
its corollaries.

In §5, we give some remarks which are mainly concerned with unramified
D, ,m-extensions of K.

In §6, we give some examples. In particular, we give examples of algebraic
function fields which have the same g, p, and 7x but have different numbers
of unramified D,,-extensions. Hence, our invariant is essentially new.

The author wishes his hearty thanks to Professor Y. lhara who suggested
the author this problem. He wishes to express his hearty thanks to Professor
Y. Morita and Dr. Takayuki Oda for encouragements and careful readings.

§1. Preliminaries and notations.

We shall use the following notations.
#(A) : the cardinal of a set A.
(a, b) : the greatest common divisor of integers a and b.

Let £ be an algebraically closed field of positive characteristic p. Let K be
an algebraic function field over k, and g be its genus. We assume that g=2.
Let L be a finite Galois extension of K. We denote by [L: K] its degree
over K, and by Gal(L/K) the Galois group.

Let 3 be a prime divisor of K, and v, be the corresponding normalized
additive valuation of K. We denote by K, the completion of K at 3 and put

D,={a EK&I”&(Q)zo}-

We denote by K* the multiplicative group K— {0}, and by K*" the sub-
group of K* consisting of n-th powers of all elements of K*. We denote by
K? the image of K under p-th power map. Finally, we denote by F, the field
with p elements.

Let G be a group, N be a subgroup of G, we put Ce(N)={c=Glor=r10
for all z= N}, the centralizer of N in G. We denote by

<u1) Ugy =7y uTlfi(ulx Ugy, =y uT>:l ’ 121; 27 ) S>

the group generated by r elements u,, u,, ---, 4, and with a fundamental rela-
tions f;(uy, u,, -+, u,)=1.
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Let L be an unramified abelian extension of K of degree n. We put
4d,={0L*| ™= K* for some integer m =1},

and for each <=4, we define an element % of Hom(Gal(L/K), k*) by
Zo . Gal(L/K)20 —> 07 0° < E*.

Then it follows from the Kummer theory that the above homomorphism
4,260 — Ay gives an isomorphism of 4;/K* onto Hom(Gal(L/K), F*). Let D,
be the group consisting of all divisors of K of degree 0 and let ®y5 be the
subgroup of all principal divisors. We denote A mod®; by A. For any
element § of 4, we associate an element A, of ®, such that A,=(f) in L.
This correspondence induces an injective homomorphism of 4,/K* into ®,/Dy.
We denote its image by c¢l;;x, and call it the divisor class group corresponding
to an extension L over K.

We define the action of the operator p on a subset of an extension field of
K in the following manner :

p(a)=a?—a.

For any Gal(L/K)-submodule A of L, we put UA:[B\(A[WK@), and call an

element of U, an unramified element of A. We note that, for any a<l,
L{a/p) is unramified over L if and only if a€U,, where «/p means a root of
the equation p(X)=a in the algebraic closure L of L. If we have pAC A,
we denote by W, a quotient of a group U, by a subgroup pA.
Let 2(K/k) be the space of k-differentials of K, and for any divisor A of
K, let
RA)={ws2(K/k); v,(w)=v,(A) for all primes 3 of K}.

Now the Cartier operator C of £(K/k) is defined as follows. Let x be an
element of K which is not contained in K?. Then, for any element o of
Q(K/k), o can be expressed uniquely as

0= g‘laf’x"'dx (a;:€K).
i=0

Then, Cw=a,-.dx.
This operator C has the following properties:
(1) Clo+w)=Clw)+C(w,) for w,, w.,€2(K/k)
(2) C(x?Pw)=xC(w) for x€K and wsQ(K/k
(3) c(dx)=0
(4) C(x'dx)=x"'dx
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(5) v,(Cl@)>v:(w)/p—1 (cf. Cartier [T], [Z1).

We denote by Lx(A) the subspace of K such that y,(x)Z—vy,(A4) for all
prime divisors 3 of K, and put [(A)=dim, Lk (A).

§ 2. Definition of invariants and the main theorem.

Let A be an n-division point of ®,=D,/Dy. Then, the dimension [ of
£2(A) is given by
g it AcDy

=

Now, we assume that n divides p—1. Let {w;} be a basis of £2(A), and
let x be an element of K such that (x)=A?"!, Then, it follows from the basic

properties of the Cartier operator that
CR(AP) C 2(A).
Since {xw;} is a basis of £(AP), there is a matrix C,=(c;;) of M,(k) such that
C((xwp))=C4(w;), thatis, C(xwi)=> criw;.

Let 74 be the rank of C,C, - C,?"™", where C,*® is the matrix (¢s;7*).

We claim that this 7, does not depend on the choice of a basis of £2(A)
and a representative of a class of A. To see this, let {;} be another basis of
£2(A), and C/; be the matrix such that

C((x74))=Ca((74)).

Then, there is a regular matrix S of GL,(k) such that
(vk)zS(wk)-

Then, we have

C(xn)=C(S(xwp)).
It follows from the basic properties of Cartier operator (see §1) that

C(S(xwp))=SYP C((Awy) )=SUP Ca(@p)=SY? C4 S (:)=Cla(n4).

Hence, we have C,=S“?»(C,S"!, Therefore,

CLC@ ... Cpt-b=(swm» C, S™H(SWPC, S YD ..l (SWPC, 5~1)<pl-1)
=SWPC,C,P .. CAcp‘—b (S~1)<p‘-1)_
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Since S is regular,
rank C’, C?> --- Cf‘{pl—l)zrank CoC P oo CA(pl—l)_

Hence 7, does not depend on the choice of basis of Q2(A).

Let A, be another representative of A. Then, there exists a function y of
K such that (y)A,=A. Let x, be a function of K such that A,7'=(x,).
Then, {yw;} is a basis of 2(A,) and (x,)=(y? 'x). Hence,

C((x; y0))=C((y? xw4) )= yCs(w}) ):CAl ((ywy)).

We have C,=C,,, and 7,=74,. Hence, 7, does not depend on the choice of
representative of class A. Terefore, 7, is uniquely determined by A. If we
call %A, the set of all n-division points of D,/Dy, the set {ys}zex, is an
invariant of K (depending on n). Especially if n=1, {r4}zex, consists of one
element 7%, which was introduced by Hasse-Witt [4].

DEFINITION 1. A group G is said to be (m, n) type if there exists abelian
groups A of order m and H of order n such that G is a semi-direct product
of H and A, with H as its normal subgroup.

DEFINITION 2. An unramified Galois extension of K is said to be (m, n)
type if its Galois group is (m, n) type. Especially, an unramified Galois exten-
sion of K of (n, p™) type is said to be D,,n-type if its Galois group is
isomorphic to

Dypn={0, t|e?"=t"=1, ot '=¢" with i a primitive n-th root of

unity mod p™) .

Then, we note that n divides p—1 if »n is prime to p.

Now, the main results of this paper can be stated as:

THEOREM. Let K be an algebraic function field with an algebraically closed
constant field of positive characteristic p, and let g be its genus. We assume
that g=2. Let n be a positive integer such that n divides p—1. Then, the
number of unramified D, -extensions of K is equal to

S (pa—D/(p—D),

where A runs over full representatives of divisor classes of K of order n.

COROLLARY 1. Let K be as in Theorem. Let n be a positive integer prime
to p. Then, the number of unramified Galois extensions of K of (n, p) type is
determined by {r.}, where {A} are full representatives of divisor classes of K
of degree O whose orders divide p—1 and n.
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COROLLARY 2. Let K be as in Theovem. Let L be an unramified abelian
extension of K of exponent p—1. Then, the Hasse-Witt invariant of L 1is

equal to
2 T4 H
A

where A runs full representatives of divisor classes of K of degree 0 which
corrvespond to L over K. '

COROLLARY 3. Let K and n be as in Theorem, and m be a positive integer.
Then, the number of unrvamified D, m-extensions of K is equal to

pmrA_p(m—l)TA

1 pm_pm—l 4

where {A} are as in Theorem.

§3. Some lemmas.

Let K be an algebraic function field with an algebraically closed constant
field of characteristic p, and L be an unramified abelian extension of exponent

p—1.
Let WL:Q(pKamL)/pL:UL/pL. Since n divides p—1, p(K)=OK for

= 4,;. Hence we can define a sub-module Wy of W, by
WgK:UgK/paK (Cf. §l>.

Let A be a Gal(L/K)-module. Then we put for any element X of
Hom (Gal(L/K), F¥),
A*={ucs Alu’=X(o)u}.

LEMMA 1. Let L be an abelian extension of K of exponent p—1. Then,

W= @ Wk

fed /k

and
Wox =Wt

where Xy is an element of Hom (Gal(L/K), F%) corresponding to 6 (cf. §1).

Proor. Let u be an element of U,. Since L= GﬁBﬁK: E()BLZﬂ, u can be

expressed as
U= ; ao,

where a,60K=1L% and the sum runs full representatives of 4,/K*. Then for
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any element ¢ of Gal(L/K),
u’= ; Xo(O') ag.

We note that
=n if A=K* where n=%§Gal(L/K),
X (o)

oZGair (L/K) :0 lf aEK'\.

Hence a4 can be expressed as

that is, ap= Usk.
Since L= E?ﬁK and n divides p—1,

U,= %B Ugg and pL= @9 p9K. Hence,
Wi=U_L/pL=( @ UﬂK)/(G‘? POK) = 605 Wk .

So the first assertion holds.
On the other hand, since n divides p—1, W, can be expressed as

Wi=@ Wis

[

and Wy <, W6, Then the second assertion holds from these facts and the
first assertion. g.e. d.

LEMMA 2. Let K, L be as in Lemma 1. Let M be an unramified Galois
extension of K of (n, p) type containing L. (For the definition of (n, p) type,
see §2). Then there is an element 6 of 4, and a subgroup <{a mod pdK)> of Wyx
of order p such that M 1is generated over L by an element 1/p(a). Moreover
0 mod K* and the subgroup {a mod pdK) is uniquely determined by M. Conversely
for a subgroup {amod PpOK) of Wyx of order p, L(1/p(a)) is an unramified
Galois extension of K of (n, p) type containing L.

Proor. It follows from the Artin-Shreier theory that M is an unramified
cyclic extension of L of degree p if and only if there exists a unique subgroup
{amodpL) of W, of order p such that M=L(1/p(a)). Moreover, M is a
Galois extension of K if and only if for any c=Gal(L/K),

L(%(a"))zL(%(a)).

It holds if and on.ly if <(a’? modpL)>=<{a modpL). That is, (a modpl) is a
Gal(L/K)-module. Hence there is an element X of Hom(Gal(L/K), F}) such
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that <a mod pL)> C W%#. It follows from the Kummer theory and that
there exists an element # of 4, such that W}=Wyx. Hence {a mod pL) C Wyg.
Assume that {a modpL)> CWyx for 6 of 4,. Then, it follows from
that Wyx N\ We x=0 if 66 mod K*. Hence =6’ mod K*.
Conversely, let <a mod pL)> be a cyclic subgroup of Wyx of order p. Then
it is clearly a Gal(L/K)-module. Hence L(1/p(a)) is a Galois extension of K
of (n, p) type containing L. q.e. d.
COROLLARY. Let K, L be as in Lemma 2. Then there is a one-to-one

correspondence between the set of unramified extensions of K of (n, p) type
containing L and the set

U {subgroup of Wyk of order p}.

G4 /K
Proor. We put

U= {unramified extensions of (n, p) type containing L}
and
S= U {subgroups of Wpx of order p}.
fed /k*

It follows from that for any element M of U, there is an element
{amodpL) of S such that M=L(1/p(a)), and that this {a mod pL) is uniquely
determined by M. Hence there is a mapping from U into S. Conversely for
any element {a modpL) of S, L(1/p(a)) is an unramified extension of (n, p)
type, that is, an element of U. Moreover if <a, modpL)>=<{a,modpL>,
L(1/p(a,))=L(1/p(a,)). Hence the above correspondence is one-to-one.

g.e.d.
REMARK 1. Let K, L be as in Let

Sp= {subgroups of Wyx of order p}.

It follows from that Sy N\ Sp=0 if =6’ mod K*. Therefore it follows
from the corollary to that the number of unramified extensions of K
of (n, p) type containing L is equal to
X 45,
Gcd, /K
REMARK 2. Let L=K(f) be an unramified cyclic extension of K such that

[L:K] divides p—1. We put n=[L:K]. Then it follows from
that an unramified Galois extension of K of (n, p) type containing L is gen-

erated over by an element 1/p(a), where {(a modpL) is an element of Ssi.
Then, K(1/p(a)) is an unramified D, ,-extension of K, where n,=[K(6%): K].
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In fact if we put v=1/p(a), the conjugates of v have the forms {’(v+i), with
i€F, and { a primitive n,-th root of unity. We define elements of Gal (K (v)/K)
as follows:

t(v)=Lv, o@W)=v+1.

Then z*(v)=06?(v)=1, and zoz '(v)=v+{*. Since ¢ is a primitive n,-th root
of unity and contained in F,, <o, t)=D,,,. On the other hand #Gal(K(v)/K)
=4#D,,p,=n,p. Hence Gal(K(v)/K)=D,,,.
Therefore, K(v) is an unramified D, ,-extension of K if and only if
{a mod pL) is an element of Sy:, with i an integer prime to n. Therefore, the
number of unramified D, ,-extensions of K containing L is equal to
15si.

(i,n)=1
§4. Proof of the Theorem.

Let L=K(#) (" K) be an unramified cyclic extension of K of degree n.
We assume that n divides p—1. Let A be a divisor of K which corresponds
to # as in §1. It follows from Remark 2 after that there is one-to-
one correspondence between the set of unramified D, -extensions of K contain-
ing L and the set <z,>>j:1 Sy, where S, i8 the set of subgroups of order p as
defined in Remark 1 after Lemma 2 Therefore, the proof of can be
reduced to the fact

*) pra=4Wsx .

If A=D;, this is nothing but the theory of Hasse-Witt [4]. Hence we assume
that A<®y,. In this case, we can prove (*) using the method shown in

Hasse-Witt [4].

PROPOSITION 1. There are distinct primes &, -+, &,_, of K such that
dim, 2(AG, --- 8,_,)=0, that is [(AG, --- G,_,)=0.

PrROOF. Since dim, 2(A)=g—1>0, there is a non-zero element w, of £2(A).
The zeroes of w, is finite, so there is a prime divisor of K such that yg, (w;)<
ve,(A®,). Hence 2(A)RQ(AG,), so dim, 2(A)—dim, 2(AE,)>0. On the
other hand,

dim, 2 (A®)=g—2+1(AG,)
and

dim, Q2 (A)=g—1.

Since [(A®,)=0, dim, 2 (A)—dim, 2 (A&,)=<1. Hence dim, 2 (A®,)=g—2. Assume
that there are distinct i primes &,, ---, &, of K such that dim,2(A®, ---&,)
=g—1—1. If 1=g—1, the assertion holds. If i<g—1, then using the above
arguments, we can show that there is a prime divisor &;,; such that
dim, (AG, --- &;;,,)=g—2—1. By induction on i, the assertion holds.
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Let us take a prime divisor &; of L which is an extension of &; and take
a prime element 7; with respect to Lg;. Since any prime divisor of K is com-

pletely decomposed in L, Kg,=Ls;. Hence, we can take an element of Kg,
(especially of K) as a prime element of Lg;. Since @ is contained in K; for all

prime divisors 3 of K, there is an element & of the adele ring Rx of K such
that (£),=6, where (£), is the 3-th component of & Hereafter, we shall denote
& simply denote by #. Let »; be an element of the adele ring Ry such that

(r4),=0 if 3xG;
(ri)y=1/m; if 3=6,.
PROPOSITION 2. There exists a matrix By of M,_,(k) such that
(rH=B4(r;) (mod 6K+ Rk(0)),

where Ry (0)={re Rx|v,({(r),)=0}.

Proor. Since [(AG, - & -G, )=v+(g—2)—g+1=v—1, there is an
element v;,, of K such that u@%(ﬂvi,p):—v, v%(ﬁvi,,,)g—l if 1#7, and vy (Ov;,.)
=0 is &' #6;, ; for any integer v=2. Since Lg; =k((x;)), we can express
fv;,, as

_ L
Oviv—= 20 c 7}
lz-v

where ¢, is an element of %2 and c¢_,#0. We can choose fv;,, so that c_,=1.
Then,

ve: (Ovs, p— 1/ )P —Cocpo1y OVs, p-1)=—(p—2)
v@;(evi,p—C—<P—1>0Ui,p~1>2—1 if %7,
Vg ((9‘[)1',1,_(,"(1;;1)61}1;,1;?1)20 if @/igi and @;.

Repeating this process, we can show that there are elements v; of K and by
of % such that

voy (L/m)P— 35 biy(1/7)—00) 20,

ve (Ov)=0 if G+E;.

We put B, =(b;;). Then, it follows from the above formulas that

ri— gbu r;—0v:E Rg (0). q. e d.



Generalized Hasse-Witt invariants 111

Let {®;}; be a divisor system that is defined in [Proposition 1. Then,
we put
Lp(®F - @2 )={x=L|vg(x)=—ve(®?--- §2_,) for any prime &} of L

and
Vox= jrj:(eK N pKs, N L (®F -+ G3-)).

Then in the following proposition, we shall consider the relation between Vor
and Wyx= (a\(ﬁKmsz)/pﬁK.

PROPOSITION 3. Wiyx=Vyx.

Proor. Let u be an element of Vyx. If u is integral at a prime divisor
& of L, it follows from Hensel’'s lemma and the fact that % is algebraically
closed that u is contained in POy . Hence u mod pKe Wyx. Conversely for
any unramified element u of K, we are going to prove that there exists an
element w of Vyx such that u=fw (mod pfK).

First take a prime®’ of L such that & #@®,. If vg(u)=0, u belongs to
Do =pDg . Assume that vg (u)<0. Then there exists an integer m such that
vg (u)=—pm. Let © be the restriction of & to K. Since [(AG, - G&,_,G™)
=1, there is an element v’ of K such that ve (v )=—m, vg;(0v)=—1, and
ve (Bv)=0 otherwise. Hence 6v’ can be expressed in Ky as

Hv’:izzmain:i,
where 7z is a prime element of Ky and a;=k. Similarly u can be expressed as
u= > b;7% with b,k Since k is perfect field, there is an element a of %

iz—pm
such that a?=b_,,. We can choose v’ so that a_,=a. Then

ve (u—p(@v))=—p(m—1), (m=2), ve (u—p(@v’))=min(0, ve-(u))

if 8 is a prime of L which is different from & and &]. Repeating this
process, we can show that there is an element v” of K such that

v (u—p(Gv”)=0

for any prime divisor & of L which is different from &;. Since uegf—\l (K N
=1
pKg,), there is the set of integers k; such that vg;(u)=—pk;. Let m be the

largest number of k;. Then the assertion holds if we have m=1. Assume
that m>1. Then since [(A®, --- & --- G, )=Fk;—1, for any integer k; such
that k2;=2, there is an element v,, of K such that
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Yo, (Wki):—ki

ve;(Ovs)=—1 if i#j

vy (Bvp,)=0 if @ is a prime divisor different from &; and G;.
We can express u and fv,, as

U= 2 bjﬂ.'j, 61}121-: 2 ajnj,
jz-pkj Jz~kj

with 7 a prime element of K. Then there is an element a of %k such that a?

=b_pr;- We can take u as a_,,=a. Then,

ve (u—p(v;))=—p(m—1) if &=
Zmin(— p, ve (1)) if &=®; (=)
=min(0, vg (1)) if &'=x@;, &

Repeating this process, we can show that there is an element v of K such that
ve (u—p(@v))=—>p if &=GE,,
=0 if @&=x@,.

That is, u—p@v)eL, (&P ---&2.,). Since 7 'K, there is an element w of
K such that fw=u—9p(fv). Then w satisfies the required conditions.

We note that this fact implies that the homomorphism f of VgK:ﬁl(ﬁKﬂ
ba) N\ Ly (7 - §p-,) into Wox= (0K N\ K)/p0K defined by t

F i Ver —> Wek
U Y]
u —> ymodpdK
is a surjective homomorphism.
Finally, let u be an element of Vyx such that ¥=0(modpfK). Then u can
be expressed as u=(fx)?—6fx with an element x of K. Since usL,(G% .- G%_)),
va; (0x)=—ve; (&), that is ve, (x)=—ve, (A®,) for any 1=i=g—1 and ve(x)=

—ye(A) for any prime divisor different from &;. This implies x&Lz(A®, ---

G,.).
On the other hand, it follows from the choice of &, that dim,Lx (A&, ---
®&,_1)=0. Hence we have x=0. This implies that f is injective. g.e. d.
We put

Ry={(coe k7 "(ch) B4="(c))}.

This is an F,-vector space of finite rank. Now we are going to calculate the
rank of Wngfa\(pKzﬂﬂK)/bﬁK in terms of R,.
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PROPOSITION 4. Vyx=R,.

ProOOF. Let us take an element u of Vygz. Then there is an element ¢; of
k such that

Ou=(ci/m:)?—ci/7; (mod Dg,),
that is,

Bu="(c?)(r)—4(c) (r:) (mod Rx (0)). (1)
On the other hand, by

(r)=B4(ry) (mod R« (0)+0K).
That is, there is an element v; of K such that

(Ov)=(r5)—B4(r:) (mod Rk (0)). (2)
Hence

HeB) (Ov)=4cB) (rD)—"(c}) Ba(ry) (mod Rk (0)). (3)

It follows from (1) and (3) that
6 (u—"cH)))="(c)) Ba(r)—"(c)(r)ELg (AB, -+ G, _,).
It follows from the choice of &,, -, ®,_; that
u—"*(c®) (v;)=0.

Hence (c;)(r;)—%c?)B,(r))=0. Hence ¥(c;)—*c®) B,=0, that is, ‘(c;)€R,4. If
u=0, Yc?)(v;)=0. Hence we have *(c?)(fv,)=0. It follows from (2) that {fv;} is
linearly independent over k. Hence we have (¢;)=0. Therefore we can define
a homomorphism g of Vyx into R, as follows:

g Vog — Ry
) W
Ou  —>(cy)

such that u=(c®) (v,). »
We are going to show that this homomorphism is an isomorphism. Let ‘(¢;)
be an element of R,. Then,

(B (Ov)="(cR)(r)—"(c)) Ba(r:) (mod R (0))
=) (D) —"c)(r) (mod R (0)).

Hence Ou= 2 c%0v;€ Vyx. This implies that g is surjective. Finally if (¢;)=0,
then we have u=0. This implies that g is injective. Hence we have R, =W,x.
g.e.d.
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It follows from Satz 10 of Hasse-Witt that
l'ankpp RAZBA,

where 4 is the rank of B,BP -.- B¢'"". Therefore the proof of is
completed if we have the following proposition.

PROPOSITION 5. 04=74.
PrROOF. We put

R(A)={reRx|v,((r);)=—v,(A) for any prime 3 of K}.
Let »; be elements of Ry that are defined in Assume that

gf)lciri/ﬁzo (mod R(A)+K) with elements ¢; of k.
i=1
Let v be an element of K such that
' i‘:‘:,:ciri/ﬁzv(R(A)) for some ¢; of k.

Then, vg,(fv)=—1 for any prime divisor @&; that is defined in [Proposition 1.
Since [(A®, --- G,_,)=0, we have v=0. That is,

Elcin:O (mod R (0)).

Therefore, we have ¢;=0 for all . This implies that {r;/6§ mod R(A)+K} is
linearly independent over k. On the other hand, dim,(Rg/(R(A)+K))=
dim, 2(A)=g—1. Hence '

{ri/6 mod R(A)+K} forms a basis of Rg/(R(A)+K).
Therefore, we can choose the dual basis w,, -+, w,_; of £2(A) such that
(@i, 7:/0)=6j,
where (w, <‘;)=€V‘_,Ret~7co§3 for any weQ(K/k) and {€Rg (cf. [7]). Here the
following formula holds for any wsQ(K/k) and {€ Rg;
(0, £9)=(Cw, £)* (cf. Lang [6]).
Let B,=(b;,) be as in Then,

b=, Dbsre/0) and r2=3b,,7, (mod R(A)+0K).
Hence

(i, Sbyar4/0)=(s, 72/6)=(w;, 67"(r;/6)")
=(ws, x(r;/0)P)=(xw1, (r;/0)P)=(C (xs), (r;/6) ).
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Let C,=(cy;) be as in §2. Then, C(xw;)=> c¢;;0;. Hence
‘ bji=(Z cuiwy, v;/0)P=c?;.
Hence ‘C%®=B,. Hence 6,=74. g.e.d.

COROLLARY 1. Let n is prime to p. Let K be an algebraic function field
with an algebraically closed constant field k. Then the number of unramified
Galois extensions of K of (n, p) type is determined by {y.}., where {A} is a
complete set of representatives of divisor classes of degree 0 whose orders divide
p—1 and n.

PrOOF. Let L be an unramified abelian extension of K of degree n.
Then it is sufficient to prove that the number of unramified Galois extensions
of K of (n, p) type containing L is determined by {y.}4.

Let M be an unramified Galois extension of K of (n, p) type containing L.
G=Gal(M/K)=Gal(L/K)-Gal(M/L) because n is prime to p. We put A=
Gal(L/K) and P=Gal(M/L). Then, $A=n and #P=p, and PGal(M/K).
Let L, be the subfield of L which corresponds to the centralizer of P in G.
Then, M is an abelian extension of L,. Hence there is a unique cyclic exten-
sion M, of L, of degree p such that M=M,-L. It is easy to say that
Gal(M/M,) is a normal subgroup of Gal(M/K). Since Gal(L,/K)=G/Cs(P)
is isomorphic to a subgroup of Aut(P)=F3%, L, is an unramified cyclic exten-
sion of degree dividing p—1. We put n,=[L,: K.

Now we are going to prove that Gal(M,/K) is isomorphic to

Dy, p={0,, tlo,’=7,"1=1 and 7,0,7,"'=0,*

with ¢ a primitive n,-th root of unity mod p).

In fact, let G,=Gal(M,/K), P,=Gal(M,/L,), and A,=Gal(L,/K). It is
sufficient to show that Cg, (Py) is P,. Since G,=G/Gal(M/M,), for any element
r of Cg(P), rmodGal(M/M,) belongs to Cg (P;). Conversely, let r be an
element of G such that z mod Gal(M/M,;) belongs to Cg,(P,). Then, roz™lo7 '
Gal(M/M;) "\ P={1}. Hence, 7 is an element of Cs(P). Hence, Cg, (P,)=P;.

It follows from the above consideration that any unramified Galois extension
of K of (n, p) type containing L is a compositumn of L and an unramified
D,,-extension of K. Conversely, let L, be the subfield of L whose Galois group
over K is cyclic of order n, dividing p—1. Let M,; be an unramified D,, ,-
extension of K containing L,. Then, M=M,-L is a Galois extension of K of
(n, p) type containing L. Moreover Gal(M/L,)=Cs(P), where P=Gal(M/L), G=
Gal(M/K). Infact, let L, be the subfield of L corresponding to Cs(P). We put
G,=Gal(M,/K) and P,=Gal(M,/L,). Since Gal(M/L,)is abelian and Gal(M/L,)
is C¢(P), Gal(M/L,;)D Gal(M/L,). On the other hand, since G,=D,,, P,=
C¢,(Py). That is, P,=Gal(M,/L,)=Gal(M,/L;). Hence, L,=L,.
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It follows from the above considerations that the number of unramified
Galois extensions of K of (n, p) type containing L is determined by {r,} where
{A} is the set of divisors which satisfies the conditions stated in [Corollary 1.

g.e. d.

COROLLARY 2. Let K be as in Theorem and let L be an unramified abelian
extension of K of exponent p—1. Then, the Hasse-Witt invariant v, of L 1is
equal to AE)’A, where A runs full representatives of divisor classes of degree 0
which correspond to L over K.

Proor. It follows from that

Wo= (K N L)/sL=3 Wox,

where the sum runs full representatives of 4,/K* On the other hand, it
follows from the proof of that the F,-rank of Wyx is 74, where A is
a representative class of K corresponding to §. Therefore

ri=ranky, Wi=27,. q.e.d.

§5. Remarks and generalizations.

Now, we shall consider unramified Galois extensions of K of (n, p™) type.
We assume that n divides p—1 and mainly consider unramified D, ,=-extensions
of K (cf. [Corollary 3 to [Theoreml).

First, we review the properties of Witt vectors. Let R be a commutative
ring of characteristic p. We denote by W, (R) the ring of Witt vectors of
length m with components in R (cf. [8]). Let a=(a,, ai, -+, Am-y), b=(b,, by,
s, bp_1) be elements of W, (R). Then, the r-th component of a+5b is ex-
pressed as

(a+b)T:ar+bT+fT(a0) al) Tty ar—l, b()) b17 e br—l);

where f, is an element of F,[X,, X,, -+, X,, Y,, Yy, ---, ¥, ], and £,(0, 0, ---, 0)
=0. Similarly, the 7-th component of a.b is also represented by such a
form.

(a) Let Wn(R)=(a,O0, -, 0) with a=R.
Then this forms a multiplicative semigroup. Especially, if R* is a unit group
of R, there is an isomorphism of K* onto Wm(}?*). We denote by & an

element (a, 0, ---, 0) of W.(R). We note that, for any element b of W, (R),
a.b=(b,a, b,a?, -+, bm_1a®™ ).
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(b) We define the Frobenius endomorphism F: W, (R)— W, (R) by
F(a,, ay, -+, an-1)=(a¥, a¥, -+, ab-,).
We define p-operator by p(a)=F(a)—a. We note that the Frobenius endomor-
phism is Z/p™Z-linear, and therefore the operator p is also Z/p™Z-linear.
(¢) We define the shift V : W,(R)— W,.,(R) by
Via,, ay, -+, am-1)=(0, a,, ay, =+, Gm-1)-
This is an additive operator.
(d) We define the restriction R : W, (R)— W,(R) by
R(a,, ay, -+, ap-1)=(a,, ay, ***, Gp-1)-

This is a ring homomorphism, and commutes with the Frobenius endomorphism.
Further, we have
RVF=FRV=RFV=p.

The projective limit of the system W, (R) of rings with respect to the
restriction is denoted by W(R). It is a ring of characteristic zero on which the
operators F and V are defined and satisfy the relation FV=VF=p. If R=k is
a perfect field of characteristic p, then, W(k) is a complete valuation ring with
the unique maximal ideal pW (k). If k=F,, this W(k) is nothing but the ring
of p-adic integers and W(k)/p™W(k)=Z/p™Z.

(e) We note that if a,, a,, -+, a, are elements of R and if they are
linearly independent over F,, then, &,, &,, ---, @, are linearly independent over
Z/p™Z.

In fact, let ¢y, ¢,, =+, ¢, be elements of Z/p™Z such that c¢= 3 c¢;a;=0.
Then, the first component of ¢ has the form 2 ¢;”a;=0, with c§°>eFlp. Since
{a;} are linearly independent over F,, ¢{”=0 flor all 1=:=y. Assume that for
all 1=<i=r, and 1=;7=<k—1, the j-th components c¢{’ of c¢; are zero. Then, the
k-th component of ¢ has the form

ko i
S al the(cPan, e as, oy 6P 0, o
— k- —_ k- - k-
P ap" T e ag T, e AP a2,
Then, by the assumptions and the remark on the composition laws, 4,0, 0, ---,
k .
0)=0, so X c¢Pa?"=0. Since, ¢{® are elements of F,, we have > ¢;'®a;=0.

Since {a;} are linearly independent over F,, we have ¢{¥=0 for all 1=i=<r.
By induction on %, {@;} are linearly independent over Z/p™Z.

(f) Let L be a field of characteristic p. Let a=(a,, a,, -**, An-1) be an
element of W, (L). We denote by 1/p(a) a root of the equation

p(x)—a=0.
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Then, another root of the above equation is given by a+c¢, where ¢ is an
element of W, (F,)=Z/p™Z. Especially, if a,EpL, M=L(b,, by, -+, b;) is a
cyclic extension of L of degree p™, where b,, by, -+, bp-, are the components
of 1/p(a). Conversely, any cyclic extension of L of degree p™ is obtained as
above.

Now, let L be an algebraic function field with an algebraically closed con-
stant field %, and L, be the completion of L at ;. We put

Win.1= QW (L) N\ (Wi (L)W (L).

If n—=1, W,,, . coincides with the set W, defined in §1. It is well known that
Wn.r is a Z/p™Z-free module of rank 7;, where 7. is the Hasse-Witt invariant
of L, and there is one to one correspondence between the set of unramified
cyclic extensions of L of degree »™ and the set of cyclic sub-modules of W,
of order p™.

Let K be an algebraic function field with an algebraically closed constant
field 2 and let g be its genus. Let L be an unramified cyclic extension of K of
degree n. We assume that n divides p—1, and L=K(0), "< K.

Then, we put

Wa(0K)={a=(a,, a;, -, an-1)EWn(L), a;€0K}.

It follows from (a) that for any element (b,, by, -*-, bm-1) of W, (K), we have
Gb=(6b,, 67 b,, -+, 6*™ ' b,_)). Since n divides p—1, we have #?* '€ K. Hence,
we have 8W,,(K)=W, (0K). Therefore, W, (8K) forms a subgroup of W, (L).
Moreover, we have F(W,(0K))C W,(0K). Therefore, we can define a sub-
module W, 95 of W, 1 by

Wa.ox= (\Wn (OK)NPW(K.))/ W (OK).

We say an element a of O(Wm(A)ﬂpW(Ka)) an unramified element of A for
any submodule A of an unramified extension of K.

LEMMA 3. Let K, L be as above. Then, W gix is a free Z/p™Z-module
of rank 74:, where 74i is the integer defined in §2. Moreover, we have

n-1
Wm,L: zEEO Wm,r‘)i K-

ProOOF. If m=1, this is nothing but Lemma 1. Assume that m>1. It
follows from the proof of that Wi is an F,-vector space of ranky .
Hence, it follows from the above remark that W, ,ix contains a Z/p™Z-free
module of rank7y ;.
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In fact, let ¢’ modpd*K be a basis of Wyix. Then,
{(@®, 0, ---, 0)modpW,, (0"{(;)_s } are linearly independent over Z/p™Z.

Using the same arguments, we can show that
{(@a®;, 0, «--, 0)modpW,, (L) 1} are linearly independent over Z/p™Z.

12js7,08isn-

Hence we have
Ek W.org N Wh,eix=0.

On the other hand, it follows from [Corollary 2 to [Theoreml that y,= 712_17‘41.
i=1

Hence, Wi, =2 W eix, and Wy,eix is a free Z/p™Z submodule of W, of
rank 7 4i. g.e. d.

LEMMA 4. Let K, L be as above. Let M be an unramified D, pm-extension
of K containing L. There exists an integer 1 prime to n and a cyclic subgroup
amodpWn (0PK))> of Wh.eix of order p™ such that M is generated by the
components of 1/p(a) over K. This i and the subgroup is uniquely determined
by M. Conversely, for such an a, a field generated by the components of 1/p(a)
over K is a Dypm-extension of K containing L.

Proofr. This is easily proved using the above lemma and the same argu-
ments as in the proof of and in Remark 2 after Lemma 2.

g.e.d.

COROLLARY TO THEOREM. We assume that n divides p—1. Let K be as in

Lemma 4. Then, the number of unramified D,pm-extensions of K is

pm;’A_p(m~1)?‘A

1 pm_pm—l

2

where the sum runs full representatives of divisor classes of K of order n.

Proor. It follows from that the number of unramified D,,m-
extensions of K is equal to

) > 1# {subgroups of W, six of order p™}.
. d,m)#*
It follows from that Wo.pix is a Z/p™Z free module of ranky,i.
Hence the assersion holds. »

REMARK. The above Lemmas 3 and 4 can be extended to the case when
L is unramified abelian extension of K of exponent p—1. Moreover, using the
same arguments as in the proof of Corollary 1 to Theorem, we can show that
the number of unramified Galois extensions of (n, p™) type is determined by
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{r4} where {A} are full representatives of divisor classes of K of order dividing
p—1 and n.

Next, we study unramified D,,-extensions of K with ch(k)#p. Then, if
ch(k)#2, the number of unramified D,,-extensions of K is determined by g and
its characteristic. Here, we shall show that if ch(k)=2, the number of un-
ramified D,,-extensions of K is determined by g and the Hasse-Witt in-
variant 7x.

PROPOSITION 6. Let ch(k)=2. Then, the number of unramified D,,-exten-
sions of K is equal to

ey, PP
@rr—1)- Fo

For the proof of the above proposition, let L be an unramified quadratic
extension of K. Since the number of such extensions of K is equal to 27#—1,
it is sufficient to show that the number of unramified D,,-extensions of K

(g-1__1
containing L is equal to L =1

We denote (L* N\ K?)/L*? simply by V.. We note that V is an F,-module
of rank2(2g—1) and that it can be regarded as a Gal(L/K) module by the
natural action of Gal(L/K) on L. Then, Proposition is proved if the following
two propositions hold. They are easily to proved using the same method
showed in Lemmas 1 and 2.

LEMMA 5. Let K, L be as above. Then, V,=VgPV,, where V,—
{ae V| @=a? for nontrivial automorphism t of L over K}.

LEMMA 6. Let K, L be as in Lemma 5. Then, let M be an unramified
D,,-extension of K containing L. Then there exists a subgroup <@ of V, of
order p such that M 1is generated over K by ¥ a. Conversely for such an
element of V,, K(¥ a) is an unramified D,,-extension of K containing L.

§ 6. Examples.

ExampLE 1. Let K be an algebraic function field with an algebraically
closed constant field 2 of genus 2. We shall consider the number of unramified
D,,-extensions of K. We assume that the characteristic p=3. We often
identify an algebraic function field K with the birational equivalent class of
complete nonsingular model Cx of K.

There exists six Weierstrass points {P;} of K. Then, K can be expressed

5
as K=k(x, y) with y*=T1[(x—a;). We may assume that a,=0, a,=1, a;#a;
i=1
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if i#7, and (x—a;)=(P,;/P¢)* for i1=1, 2, --,5. The basis of 2% of the space
of differentials of the first kind is given by

{dx/y, x7'dx/y}.
The full representatives of 2 division points of &,/&, are

{Pi/Ps i-1,...5, PiP;/P§ .}
and

QP/P)={(x—a)dx/y}, L2P:P;/PH={(x—a;)(x—a;)dx/y}.
Hence, the Hasse-Witt matrix of K is given by
[ —(a,a,as+a,a,+azas+a;a,y), 1 ]
a;a,043 ’ "‘(1*‘014"024*03) .

Let C, be the matrix defined in §2 for any 2-division point A. Then,

C#)p, =the coefficient of X* in  II (X—a,)

k=1
C#)pypz =the coefficient of X? in kH (X—ap).
#1,]
Let 4 be a function of % such that
d(a)=1 if a is non zero,

d(a)=0 if a is zero.

Let Ng be the number of unramified D,,-extension of K. Then,
Ni= 3 d(Crye)+ T d(Cryryird).
That is, the number of unramified S,-extensions of K is equal to
2 dlactD+ 3 dtacta)t 3 dlacta)+d(atarta)

+ 2 d(asa;tataptd(aatazastasa,)

i#j<3

+d(a,a,+asas+asa,+a,+a,+ as).
Let

- birationally equivalent classes of algebraic
Lg=— }
1curves with genus 2
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Then, M, has the structure of 3 dimensional algebraic variety.

We put

N;={equivalent classes of Cx such that Ng=15—1i}.

We put

3 3
vi=1+4 2 ai, V= E a;a;+ > aq,
i=1 ixjs8 1=1

3
Vs=a,0a;a;+ 21 a;, V4=a,a,05.
&

Moreover we put

Jo=—vst0v, 0,
Ji=— 01030 — V3V — Vi v v — Vi VRV, Vi D,
Je=—(—vi—v, v vi+vivit v, viv,—vi+viv, v+ vivivt v vivs vy

F 13 v, Vs vy — VT VR U0 Ve V3 — VR 0 Vv Vi v — V8 —vi v, — v vi—vivl),

3

Jio= H (ai—aj>2 H (a;—1)%
ixj i=1
Then it follows from the result of Igusa that M, is a subvariety of A® and
its coordinate ring is equal to

k[ LI, 3T i, BT Ji JiJeJi ]
JoJsJibs AT BT, BaJw 4

Then, it follows from the above fact that N; is an algebraic set of Mi,.
Especially, NV, consists of 7 algebraic surfaces. N, consists of 12 rational curves.
N, consists of 4 points.

In the following we show the above varieties and their parameter types.
That is, in the following table, we denote by (a,, a,, a;) the variety consists
of birationally equivalent classes of curves defined by y?*=x(x—1)(x—a;)(x—a,)
(x—a,;). That is, we obtain the coordinate ring of a subvariety of (a,, a,, a;)
type by substituting a,, a,, a; in *. In the following table £ is a root of the
following equation X2+ X—1=0. This is an 8-th root of unity.

Let Cx be the curve defined by jy*==x(x*—1)(x—a)(x—b). Then, the
Hasse-Witt invariant of Cg is always 2, but Ng varies as a and b varies.
This means that Grothendieck’s fundamental group of Cx is not determined

only by g, p, and 7x.



Table

C=S.NS,
C:=S.NS;
C;=S; NS,
Ci=S:NS;
C:=S5:N S
Ce=S:N S,
C:=S,NS;
Ce=S:N'S;
Co=S.N S,
Cio=S8;: N\ Ss
Cui=S: N\ S
Cie=S:N'S;

N3

S:N SN S,
SiM Ss M Se
SiMN SeM Ss
S M S M S5

Generalized Hasse-Witt invariants

type of parameter

a, —a, b
a, b, —a—>b
a, b, —=b/(1+b)

123

Hasse-Witt invariant

N DN DN

a, b, (—ab—a—b)/(1+a+b) 2

a, b, —ab/(a+b)

-1, a, —1—a
—1,a, —a
—1,a, —a+1
—1,a, —a/(1+a)
—1,a,1/a

—1,a, a/(a—1)

a, —1l—a, —a

a, —1—a, —a/(l4+a)
a, —1—a, —a(l4+a)
a, —a, a/(a—1)

a, —a, a®

a, —a/(1+a), —a*/(1+a)

-1 ¢ —1-¢
_1’ 52, _Ez

—-1,¢6-1, —¢
& —1+4¢, =€

DO DD DD NN DN DD DN DN DN

NN

ExaMPLE 2. We shall consider the relation between {7:}.

Let K be an

algebraic function field with an algebraically closed constant field £ of characte-
ristic p and let g be its genus. Let A be an 7 division point of &,/Gg.
If ; is prime to n, <A®=(A>. Then, it is natural to ask whether 74=74 or
We shall give some examples for this question.

not.
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First, let K=Fk(x, y) such that y*=x°—1. We assume ch(k)=11. Then, we
have g=4 and there are prime divisors Py, Py, Pys, P such that (x)=
Py Py, Pos/P? and (y+(H)=P}/P® where { is a primitive cubic root of unity.
We put A=P,,/P. Then, we have

RA)={(y+1Ddx/y* xdx/y* x*dx/y*}

QAN ={(y+Ddx/y* x*dx/y*, (y+1)xdx/y*
L(AY={(y+Ddx/y* (y+1)Pdx/y* (y-+1D xdx/y*
QAY={(y+Ddx/y? x*dx/y* (y+1D)xdx/y*.

Moreover, we have ((y+1)**)=A'*, Hence, we have

(+1)?(y+1)dx/y* 3 0 0y ,(y+Ddx/y*
c (y+1)32xdx/y* =0 4 0 xdx/y*
(y41)2x%dx/y? 0 0 — x*dy/y*®

Hence we have y4,=3. Similarly, we have 7 =7 43==74:4=3.

Next, let K=Fk(x, y) such that y*=x(x*—1)(x—1), where 7 is a primitive
12-th root of unity and let ch(k)=7. Then, there are divisors P,, P,, P_,, P;
such that (y)=P,P,P.,P;/P* and (x—i)=P%/P3. We put A=P;/P. Then,
we have

QA =Adx/y, (x—1)dx/y’}
QA ={(x—1)dx/y* (x—1)’dx/y*}
and ((x—1)%)=A°".
Then,
(x—1i)*dx/y 0 0 dx/y
C =
<(x—i)2(x——i)a’x/y2 ) (O —4)( (x—i)dx/y? )
Hence, we have y,=1. Similarly,
(x—1)*(x—1)dx/y? —4 0 (x—1)dx/y*
C =
( (x—1)*(x—1)?d x/y? ) <i+4\7/7 1 ><(x—i)2dx/y2>.

Hence, we have 7 ,=2.

It follows from the above two examples that in general 7,%#74:. But we
don’t know which relation exists between them.
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