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Extremal length and univalent functions

II. Integral estimates of strip mappings
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Introduction.

In 1971, Jenkins and Oikawa used extremal length techniques to obtain
quantitative results on the boundary behavior of conformal mappings. This
became the starting point for further investigations in that direction (e.g. [3],
[5] [6], [7], and [8]); these have led to completely new theorems as well as
to improvements over classical proofs and results.

At the core of [7] are two general theorems in which the real and
imaginary parts of the mapping function of a strip onto a parallel strip are
approximated by quantities related to extremal length. The general theory
developed in [7] has applications to many areas of conformal mapping;
several of these were explored in itself. The authors are devoting a series
of subsequent papers to further applications of that general theory. In [8], the
first paper of the series, the results of [7] are applied to the problem of the
angular derivative. In the present paper we apply to J. Lelong-Ferrand’s
extensions of the Ahlfors Fundamental Inequalities [1] as well as her asympto-
tic formula for the strip mapping presented in her book [4, pp. 187-2047.
Among the interesting applications of her theorems is a series of criteria for
the existence of the angular derivative [4, pp.205-215]. By our methods we
are able to derive sharper versions of her results and to compare her asympto-
tic formula with others.

Our proof of Ferrand’s extension of the Ahlfors First Inequality by use of
extremal length techniques is included in [8], Proposition 3. (We present there
only the lower estimate of the module of the pertinent quadrilateral; in view
of [2, p.665] this is all that is needed to obtain the estimate involving the
real part of the mapping function). In the present paper we deal therefore
only with her extension of the Second Inequality.
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The particular form of the integral involved in the error terms of Ferrand’s
theorems leads also to a simple proof of the Jenkins-Oikawa inequality [2,
[Theorem 2], which underlies their version of Ahifors’ Second Inequality
(see §4).

1. A module estimate in terms of the Ferrand integral.

The central result is the following

THEOREM 1. Suppose Q is the quadrilateral {w=u-+iv|e_(w)<v<e; (W),
a<u<b} where ¢.(u) and ¢_(u) are absolutely continuous functions and 6(u)=
o+ (W)—@-(W=I>0 for ucla, b]. If 2(a, b) denotes the extremal distance
between the vertical sides of Q, then

s gyt il afprel o

provided each of the integrals in the brackets i1s smaller than [/8.

In the special case when ¢.(uw)=l/2 and ¢_(W)=—1/2 in [a, b] the latter
restriction is not needed and (1) holds with the constant 5/l replaced by 5/2l.

REMARK. Theorem 1 is only of interest when ¢} or ¢” (or both) are not
bounded in [a, b]. Otherwise the inequality (1) follows immediately from [7,
(13.4)] with the constant 5 replaced by another constant which depends on
the bounds for [¢’| and |[¢’].

Proor. 1. We show first that we may assume ¢,, p.€C'[a, b]. We
write ¢ for either ¢, or ¢_. Since ¢’€L'[a, b] there exists a sequence {g,}
of continuous functions in [a, b] such that '

lo'—gal={ I’ —galdu< T, n=12 -

Then
] g 9" ”:‘gi<l+l90’l)—so’2(l+lgnl)
el T || e |
v |90/gnl Ign_SD/!
=te—v'I+| a5 | ()
=2gn—g/I <.
Let

Gn=p(@+| g0 dt grw=g.(w), us(a, b)
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so that
1
lgbn(u)—go(tt)Iéllgn—go’ll<;, n=1,2, -, u€la, b].

Suppose ¢ and ¢, are the approximations to ¢, and ¢., respectively,
determined in the above manner. Define

go:(u)ZgbI(u)*% and ¢n (u)=¢n (u)+%-

Then
0=¢.(u)—or (u)<721- and 0=¢._(u)—¢, (u)g——i—
and
_ 4 4
ﬁ(u)zﬁn(u)ZsDZ(u)—son(u)zﬁ(u)—;zl—;. (3)

Let n>4/l. The quadrilateral Q,={a<u<b, ¢, (u)<v<e%(u)} is contained
in Q. If 2,(a, b) denotes the extremal distance between the vertical sides of
Q, we have therefore

A(a, b)=2,(a, b). (4)

Suppose we proved that (for all sufficiently large n)

dne, 0=, 6%) +7;i/n LI, (ﬁ,z);i’l!l +1, (fiﬂ)sodlit |

Then we obtain (1) from (4), (2), and (3) by letting n — oo.

2. We now assume that ¢,, op.=C'[a, b] and proceed with the following
construction. For the moment we write ¢ in place of ¢,.

Let M=2 be a constant and let {/,}, n=1, 2, -+ denote the intervals in
[a, b] in which |¢/(u)|=M. In each [, we have either ¢'(u)=M or ¢'(u)=<—M.
If ' (u)=M in J,=[a,, B.] then clearly ¢ (u)=¢ (@,)+(u—a,)M=g(u) there.
We define ¢,(u)=g(u) in the largest interval Jx a,Su=pB%<b in which
gw)=¢(u). We have pB,=p% and the point (8% g(B8%)) is the first point of
intersection of the ray v=g(u), u=a,, with v=¢(u) or with the line u=b,
whichever is met first. For uc[a, b], us/* we set ©n(U)=¢ (u).

If (u)<—M in J. the definitions of ¢n and J* are analogous; if J,=
Layn, Bn] then Jx=[a*, Br] where a=af=a,=p,.

In both cases ¢,(u)=¢(u) and ¢, has a continuous derivative, except
possibly at two points where it has left and right hand derivatives, bounded
for all n in [a, b]. While the intervals J, are disjoint the J* may overlap.
We denote by J, and J¥ the interiors of [, and J¥, respectively.
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3. Before proceeding further we need several inequalities :

, o' ()
P IE T g

and therefore for any measurable set £ C [a, b]

S0/2(u>

V(E):SElw’(u)lduéSEmdu+111(E). (5)
Hence
90/2
(=) mn= o Lt
or
* o
mu»ﬂﬁflg T (6)
From (5) and (6) we obtain
M g)/Z
VUDZ 3oy s g 4 (7)

Also, if ]* denotes a subinterval of J%, which contains J,, then we deduce
similarly

* 1 o
m(j)_M lg*l—!-[goldu : (8)

Finally, we note that, for uela, b]

M @/2
_ < * << ¢
By hypothesis Sb go’z(l—l-]go’l)‘ldué-é—; since M=2 we obtain
0" u< AL
o(—gnw=2] TE o dus2 o= (9)
Moreover
min ¢, (4)= mm go(u) (10)

uefa,bl
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In the following we shall consider the set E,= Knj J¥. Note that if J,CJ5&
m=1

and J, C J¥ then either JfC J¥ or J¥ D J%. It is then easily seen that we
can pass to a suitable disjoint family {/%} of subintervals of the /¥, and
apply (8) to obtain '

_— n, 1 "
— rTR Y SV
m (E,) m(,}ilfm)=m2=1 M—1 57;‘; 1+le’| du

(11)

- l SD/Z
M1 SEn NP

where \U’ and X/ denote union and summation over the subset of m=1,2, -, n.
If E=\UJ%, then
m=1

1 S0/2
< 10\

mB)= 371 SE e 4™ ¢
Furthermore we note that m(E—E,)— 0 as n — oo,

4, We assume M=2 and define for us[a, b1={

Sn(u)=min (¢, (u), @2 (u), -+, ¢a(u)).

From (9) we have for all n
0 W22 () Zp W)~ . (13)

Furthermore, f, is continuous in [ and for ueI—E, L )= W), fr(u)=¢'(u).
There are at most finitely many points in £, where f,(u) does not exist and
at all other points of E, we have f,(u)=+M. At the exceptional points
fn has a right and left hand derivative boundedzby B=max |¢'(u)|. Thus
fneLlip(l) in I with the Lipschitz constant B. uel

We estimate now

[ rr@au=, sidus| praut| | seaw
,, (14
=Mm(E)+ | ordut|  frau

I~

1+M

On I—E we have |¢/(u)|<M and there 1< T+l

Hence
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/2

/2 < ®
SI_Ego du=(1+M) SI“E T+ o] du

/2

1+1 o'

—(M+1)S Y du— (M+1)S Tfmdu

Using this inequality in (14) and (11) to estimate m (E,) we have

/2 MZ s0/2
9 <
J, rrans a0y T 4 3 b, T+1g7] ¢

/2

= @ 2 _
M+ | o dut Bm (E—E)

(M+1>S AN S O jutBm(E—E,)
=\ 1o’ M—1 )& 1+]|¢/| e

We choose now M=2 and obtain with ¢,=B*m(E—E,)

Sb ;,Qdu§4SZTfl%l~du+en (tim ¢, =0). (15)

5. We return now to our original notation ¢=¢, and write f,=f3.
Next we perform the construction just described with ¢=-—¢_ and obtain for
all n=1, 2, --- a function f,=—/f5 such that, for all u=[a, 4] and all =,

p- (D=7 WS- )+ <pu ()= + ZF1 W Zp. () (16)

and

12

2 7, < N Sl (
S (F2 (W) Pdu= 4§ T e (1im &;=0). (17)
The quadrilateral Q,={a<u<b, f»w)<v<f;(u)} is contained in Q. If A,(a,b)
denotes the extremal distance between the vertical sides of @, then we have

with 6n(u):f+(u)——f;(u) (cf. [7, (13.4)]; a careful estimate in (13.3) shows
that e(s, sp)<— S (0™ )

ds

6(s)
du o (SR P+

Z(a b)<2 (a b)<S 0 ( )+ Xa_Ar(u)—'du.

Since by (16) 6, (u)>0(u)—~—2—l— we obtain from ((15) and
272
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b/ 1 1
+Sa<ﬁ“7f)d u

L v Loy a2

sl

Noting that 6, (u)=60(u) except for us E*\J E-, where E* denotes the set F
used in the construction of f} and E~ the corresponding set for f, we have

by (12)

(" (é—%—)w‘g% (m (E"+m (E7))

g“}"{gb 1f1’io/|_d“+sb 1—;_0[;0 | u}.

Thus we find

2o, 0=, s St i+ e

Letting n — oo we obtain (1).

In the case where ¢+(u)zi

5 gp_(u)é—é for ue[a, b], it follows from

(10) that f;(u)gé and f;(u)g——é. Thus 6, (u)=! and the factor %—in (18)

b 2 l
and (1) may be replaced by —212 Also the restriction S HEDI [ § (used

in (9) to ensure 6, (u)g—é-) is no longer necessary.

REMARK. It is of interest to compare the estimate of the module 2(a, b)
12

b
in (1) in terms of the Ferrand integral S du with the corresponding

e
1+]¢’|
. . . b @it ) .
estimate in terms of the integral ga Y du as given e.g. in (13.4) and
(13.3) of (for t,=0, t,=1). There are elementary examples for ¢, and ¢.
for which the Ferrand integral yields a smaller error term than the latter
integral and conversely. On the other hand, we obtained the estimate in (1)
by use of the estimate of the module for an approximating (inscribed) domain
in terms of the second integral. Because the error term in (1) is insensitive to

b
6(u) it appears that the estimate of the module in terms of S (o 99’3)%7 is

the stronger result.
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The Ferrand integral is of interest since it combines two cases: it con-
verges when (a) Swgo’zdu < oo or when (b) S lo’ldu<co, i.e. the total variation

of ¢ is bounded, for p=gp. and p=¢_. (Cf. §4).

2. Extension of the second fundamental inequality.

Our first application of our is the proof of the following
theorem which is an improvement of J. Lelong-Ferrand’s result in [4], p. 201,
(3) and (4).

THEOREM 2. Suppose R is a simply connected region with the following
property: R D Ry={w=u-+iv| —co<u<oo, p_u)<v<ep,u)} where ¢, and ¢_
are absolutely continuous, 0(u)=¢,Ww)—¢_(w), and the integrals

© QP @ @
S 1+| Idu<oo and S _1+](/>'-| du<oo, (19)

Let o, denote the crosscut of R which lies on Re w=u and intersects R,
and o (u) (£0) the length of o,.

Let F be a univalent analytic function which maps R onto the parallel strip
S={z=x+1iy| —co<x<00, 0<y<1} such that Re F(w)— *co as Rew — +oo,
respectively, for weR,. Let

()= sup Re F(w), x(u)= iélf Re F(w).

Then for u,>u,, for all sufficiently large u,,

s 2 du | S(uf @F o2 _
() — % (u) < S G0 T Su1<l+|¢+|+l+]¢|>du—l’f(ul, w).  (20a)

If the length of o, satisfies o (W)=L for all u=u, (for some u,) then

2

= —)du (20b)

T u1- 2L<1+|90+l T‘HSD I

£ (uo)—x ()= S : 06% l S

Sfor all sufficiently large u,.

Proor. (a) Let Qgr(u,, u,) denote the component of R—{o,, U o4,} which
contains the quadrilateral Qg,(u;, u)=Q (uy, uz)={u;<u<u,, ¢_(u)<v<e.(w)}.
If 2z(u;, u,) and A(u,, u,) are the extremal distances between the vertical
sides in Q and Q, respectively, we have 2Ag(u,, u)=<A(u;, u,). Since x(uy)—

Z(u)=2(u,, u,) the first inequality, (20a), is an immediate consequence of
if u, is taken so large that

e (7 ! = (pl)? L
Su11+] rdu<g and Su11+['1d< @1)
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(b) To obtain (20b) we proceed as follows. The inverse F~! of F maps
the crosscuts {Rezzic(ul), 0<y<1} and {Re z=x (u,), 0<y<1} onto (generalized)
crosscuts 7, and 7, of R, respectively. Let R¥*={w=u+iv| weog,, —oo<u<oo},
the Ostrowski kernel of R, and let

u,= inf Rew, @#,= sup Rew.
- wer; N R* wEr2 N R*

Then u,;<u,<u,<#,. From the Ahlfors distortion theorem (with the constant
2 in place of 4, cf. [2, p.665]) we obtain (even if, e.g. 71N o.,=0)

u1 duy uy du
<2, | <2,
gzl o(u) ~ us 0 (1)
and since ¢ (u)=L we have
uy—u  S2L, #,—u,<2L. (22)

We repeat now the reasoning applied above with Qgr(u,, #,) and Qg,(u:, @,)
and obtain

- _ _ uy 5 (u 2 2
x(“z)“f(ul)§21§(7ﬁ1, uz)é/z@h, uz)égujﬁ—(gj‘}"l‘guj( 1_;_0[;2 + 1_;_0“0” )du

provided is satisfied with u, replaced by u,—2L. By

Using these inequalities and the fact that u,=u,—2L, #,=u,+2L we obtain
(20b).

REMARKS. The assumption that ¢ (u) be bounded is not essential for an
estimate of X(u,)—x(u;) such as in (20b). It is sufficient to have a bound for

the oscillation w(u)=2x(u)—x(u), since by (20a)
E(u)— x (u) =¥ (uy, us)to(u)+o(us,).

There are geometrical conditions on the boundary of R which will ensure this
and do not require the boundedness of ¢ (u), e.g. [9, Lemma 17, Obrock [5,
[Theorem 1V, p.200].

If R=R, then w(u)—0 as u—oo: this follows from (24) below and
in [7], and we have %(us)—x (u)=¥(uy, u)+o(1) as u; — oo,
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3. Asymptotic expression for fhe mapping function.

We now prove the asymptotic formula for the mapping function in [4,
Théoréme VI, 13a, p. 204]. It should be noted that our formulation,
below, does not require the assumption that 6(u) be bounded above made in
Ferrand’s theorem. [Theorem 3 below may be compared with our Theorem 8
in [7]. In Theorem 8 no upper or lower bound is placed on #(u); in addition
cf. also the Remark to of the present paper.

Other types of asymptotic expressions for the strip mapping function are
given in [9, Theorem IX7], [7, Section IV], Obrock [5, Theorem 2].

THEOREM 3. Suppose R is the domain {w=u+iv: —co<u<oo, p_(u)<v<
o+ (u)} where o, (u) and ¢_(u) are absolutely continuous, 0(u)=¢,(W)—@_(U)=
[>0 and the integrals (19) converge. Let F map R conformally onto the parallel
strip S={z=x+1iy | —oo<x<o0, 0<y<1} such that lim Re F(w)=zoco. Then
for weR e

_(» dt v—@_(u)
F<“’>—Suo ORI

+C+o(l), as u— —+oo (23)

where C is a real constant.

PrROOF. (a) Since by a well known inequality and by [Theorem 1, u;<u.,

guz du <Sz du

20 o as w—oo, (24)

it follows from [Theorem 1 or [Theorem 3 of that

dt

Re F(w)= g” G

+C+4+0(1) as u—o0.

(b) To prove the conclusion on Im F(w) we follow the reasoning of [7,
Section 13]. In the notation of we choose for V, the Ahlfors crosscut 6,
(s=u) and for H, the arcs {w=u+1iv, v=tp.(u)+1—t)¢p_(u)} and set A(V,,, V,;
Hi, H,)=A(sy, sa; i, t,). Let 0=t <t,=1, let @, (w)=tip(u)+(A—t)p-(u),
i=1, 2, and let Q(t,, t,) denote the quadrilateral {a<u<b, @,(u)<v<@,(u)}.
We assume f,—t,=0, where 0<d<1/2. Then @, (u)—@,(u)=(t,—1t,)0(u)=1(t,—1,)
=19, and by [Theorem 1l

1 b du 5 b QF by Qp
. < B
Aa, b ty, )= r—s Sa 800 + Gty [S T dzH—Sa Tt a’u] (25)

provided each of the integrals in the brackets is §{5 (§ L (t2~t1)>. Since
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It o (A=) ot | S(p7F+e™)V?

and since the function x?(1+x)! for x>0 increases with x we have

o < 9"’“’9"' R L
1+H103 = 1+ Vo2 +¢2 = 1+t 1+]el] 7
Hence, by (19) each of the integrals in the brackets in (25) will be =1[§/8 for

all sufficiently large a and all b>a.
We also note that

b
g i )J<a py=2(a, b; 0, 1).
Now we determine as in [7, Section 137 d=d(a) such that A(a, d(a))=1
hich implies du__1 By (25)
whic plie . B = y

t"_tl

[ 0 Coffr + oy )]

Z(Htp Htg; Va: Vd(a))g

tz—tl

> :
1], )10<1+‘¢+1 + l—HgD )

Hence
AHus, Hiy Vo Vaeo)=(t—t)Z =1
where 7 denotes the integral in the denominator, and is arbitrarily small for
all sufficiently large a (=S;,). This verifies Condition II of uniformly for
all ¢t with 6=t=1—0.
Hence, by of [M]

Im F(w)= 00) +o0(l) as u—oo (26)
uniformly for w=u-+iwe R with Bé%%%él-&

Since 0=Im F(w)=<1 for weR and § may be chosen arbitrarily small, it
follows by a simple argument that (26) holds uniformly for we R.
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4. Boundaries of bounded variation.

Finally we apply to quadrilaterals Q@ where ¢, and ¢_ are of
bounded variation. This application is suggested by the inequality which holds
when ¢ is absolutely continuous:

S"S”—lzduzjbl '1—‘ﬂdu<5"1 'ldu=V(a, b) @7)
o THlpT 47 )W T T2 019 7
where V(a, b) is the total variation of ¢ in [a, b]. This fact can be used to
deduce from our the theorem of Jenkins and Oikawa [2, Theorem
2] used in the proof of their version of Ahlfors’ Second Fundamental Inequality.
THEOREM 4. Suppose Q={—60,w)<v<8,w), a<u<b} where 6,, 6, are
positive functions and have respective finite total wvariations V,, V, on [a, b].
Suppose 0, (w)=60" on [a, b]. If A(a, b) denotes the extremal distance between
the vertical sides of Q then, with 0(u)=0,w)+06,u),

b d 5
Ma, 0=\ gt s Vit Vo). 28)
REMARK. [Theorem 7 in is stated for the case that Q (in our [Theoreml

4) is the (Ostrowski) kernel of the quadrilateral considered whose module is
A(a, b). Since the module for the kernel is an upper bound for the module of
the quadrilateral, is all that is needed. The bound #;(u)=L is not used in
our formulation.

PROOF. Let a=u,<u;<u,< -+ <u,4=b be a partition of [a, b]. In each

interval [u,, #y.:] let m,= min 6,(u). If m,<m,y,, v=0,1, ---, n—1, con-
UELUY , Uy 1]

Up+17T Upsg

nect the point (u,.;, m,) with the point ( 2

R mm) by a straight line

segment S,.q; if m,> myeq, connect (4y4q, Mys:) With (_u%’ m,,) by a
straight line segment s;,. Then for v=0, 1, ---, n we define a function ¢ (u)
in [u,, #,+.] as the ordinate of the point on a connecting segment s, or s,
whose abscissa is u if such segments occur; otherwise define it to be m,.
The function ¢{(u) is clearly absolutely continuous in [a, b], 0= (u)=
6,(u) and its total variation in [a, b] is =V,.

Using 6, instead of 6, we construct in the same manner an absolutely
continuous function, —¢®™, such that 6 =—¢® (u)=6,(u) and its total varia-
tion in [a, b] is =V,.

The quadrilateral Q,={a<u<b, o™ (W)<v<eP(u)}CQ; hence the ex-
tremal distance between the vertical sides of @, satisfies 2,(a, b)=2(a, b).
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Let 0, (u)=¢® (u)—¢™ (u). Applying Theorem 1| to @, (in the case ¢, (u)=1/2,
¢-(u)=—1/2) and using we obtain
b du 5
< <
/2((1, b):'z'n(ai b):Sa 011, (u) _I_ 40(m) (V1+V2>'

If we let n— oo so that the norm of the partition tends to 0 the integral on

the right hand side converges to Sb Ed(% and follows.
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