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0. Statement of results.

In this paper we study the biholomorphic automorphism of C? which leaves
two coordinate axes invariant. E. Peschl investigated the automorphism of this
type in [I]. We say such an automorphism is of axial type. If F=(f(x,),
g(x, y)) is an automorphism of axial type, then F takes the form;

f:xe¢<x,y>
F: {

g:ye‘/’(xﬂl) ,

where ¢ and ¢ are holomorphic functions. We say that a function f(x,y) is
a component of an automorphism (of axial type) if there is a function g(x, )
such that

- { X' =f(x,)
Uyr=g(x, )

is an automorphism (of axial type).

Our results are as follows.

THEOREM. (1) Let ¢(x,y) be a polynomial and set f(x,y)=xe?*¥. Then
f(x,y) is a component of an automorphism of axial type if and only if ¢(x,)
takes the form A(x™y™*'), where m and n are non-negative integers and A is a
polynomial of one variable.

(2) The transformation

x! = xoAE™yn+h
T: {
y'=g(x,)

is an automorphism of axial type if and only if g takes the form
y-exp[— i A +HE |

where H is a holomorphic function of one variable.
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§1. Discriminant D(t).

Let ¢(x,y) be a polynomial, and set f=x-exp[¢(x, ¥)]. We discuss the
necessary condition for f becomes a component of an automorphism of axial
type.

We consider the analytic set S.={(x, v): f(x, y)=c}. This is the inverse
image of the line x’=c¢. Then S, is non-singular and is biholomorphically
equivalent to the complex plane C. And S, does not intersect the y-axis for
every ¢, except 0.

Set x=e¢’. The analytic set S,={(t, ¥): f(e!, y)=c} is given by the equation
¢(e’, y)+t=logc. And every branch of log ¢ gives an irreducible component
of §c. On the other hand, the mapping

{ x=e
T
y=y
gives the universal covering space of C*—(y-axis). Then S, is a covering Rie-
mann surface of S, and this covering has no ramifying point and has no rela-
tive boundary. Then every component of S, is biholomorphically equivalent
to C. In particular S={(t, y): ¢(e’, )+t=0} is equivalent to C.
Set
B(x, )=¢o(X)y" + G, ()" 4 -+ ()Y +Pa(x),

where ¢;(x) is a polynomial (i=0, 1, ---, n).

LEMMA 1. (1) ¢,(x) is a monomial ax™.

(2) ¢@u(x) is a constant.

ProoF. (1) We consider S as a covering Riemann surface over f-space.
S is equivalent to C, and S has no relative boundary over any point f. This
implies that ¢,(¢*) is zero-free. Consequently ¢,(x) is a monomial.

(2) If the transformation

x’:xe¢(x,y)
F:
y’:yeS‘b(‘r;y)

is an automorphism, it maps x-axis biholomorphically onto x’-axis. Then x'=

x-exp[¢(x,0)] is a linear function of x. Hence ¢,(x) is constant. This implies
our assertion.

Now we consider the transformation
x'=x-exp[—¢,]
T: {

y'=y,
then FoT takes the form
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{ x'=x-exp [y(x)y"+ -+ +&_(x)y+0
y'=y-exp[¢'(x, y)].

Hence we may suppose that the constant ¢,(x) is equal to 0.
Let D(t) be a discriminant of ¢(e’, y)+t=0 as an algebraic equation fo " v.
Namely ;

aX", ¢ (X), - eeeees , P i(X), 8
aX®, G (X)), weeenee , G X)), ¢
(th, ¢1<X>’ ......... ’t
D(f): naXh, (n_1)¢1(X)’ ...... , ¢n—-1(X)
NAXP, e , Gn1(X)
naX”, ......... ,¢n—1<X) ’

where we used the symbolical notation X=e'. It is apparent that D(¢) is a
polynomial of # and X. And D(?¢) is not identically zero.

ProprosITION 1. D(t) is a monomial of X.

Proor. We regard S as an n-fold covering Riemann surface over the ?-
space. Because S is non-singular in (¢, y)-space, there is a ramifying point
over every zero of D(f). According to the relation of Riemann-Hurwitz, there
must be only finitely many ramifying points, because the genus of S is finite.
Set

D(t)=a(t)e* +a,_ (e P+ - +ay(He'+ay(t),

where «a,(t) (1=0,1, -, k) is a polynomial of ¢. From the above argument D(¢)
has only finitely many zeros. Then D({) takes the form Q(f)-exp [B(#)], where
Q(t) is a polynomial of ¢t and B(t) is an entire function of {. Consequently we
have the equality

a (et a,  (He® Voo L (D=Q(H)eFD, oo (*)

The function of left hand side is of increasing order one. Then the function
exp[B(#)] is of increasing order one also. According to the theorem of Polya
in the theory of entire function, 5(#) is a linear function.

Then p(#) takes the simple form pt. From the equality (*) we have

kt (=13t ...
111—?‘3 ak(l)e _%—ak—lg%?)ept)—{— "‘ao(t> :1,
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for positive real value £. Then we have Re p=k. When ¢ is a purely imaginary
value we have

lay(t)e® +ay (e Dt o fay(t)| S M-tV

for some integer N and a positive constant value M. Then we have Im p=0.
Consequently A(f) is equal to kt. This completes the proof.

§2. Necessary condition.

We consider the polynomial of two variables

O(x, y)=ax"y*+ ()Y e FPa (X)),

where a is a constant. And we put the following condition (A).

(A) The discriminant D(x,t) of the equation ¢(x, y)—t=0, as an algebraic
equation for y, is a monomial of x.

This condition is equivalent to the following condition (B).

(B) When we regard C,={¢(x, y)=t} as a covering Riemann surface over
x-plane, the ramifying point and the equivalent point (namely; the reducible
point of C, as an analytic set in (x, y)-space) of C, are situated over x=0 for
every t, with a finite number of exception.

LEMMA 2. Suppose there are a polynomial of two variables F(x,y) and a
polynomial of one variable G such teat (x, y)=G(F(x,¥)). If ¢ satisfies the
condition (A), then F satisfies the condition (A) also.

PROOF. Assume that ¢ satisfies the condition (B). Let p,, p,, -**, pr be the
totality of the roots of G(z)—t=0. Then we have

C= U {F(x, D=pd.

Consequently F(x, v) satisfies the condition (B).

If ¢(x,y) has no above decomposition, we say ¢ is primitive. If ¢(x,y) is
primitive, every C, is irreducible and nonsingular in (x, y)-space except finite
values of .

PROPOSITION 2. Suppose ¢(x,y) satisfies the condition (A). Then ¢(x,y) is
decomposed to a polynomial of one variable and a monomial x™y",

To prove this proposition we need the following lemma.

LEMMA 3. Let y=£&(x) be an algebraic function. Suppose this function has
exactly n values £,(x), -+, &,(x) in C¥*=C—{0} for every x in C*. Then we have

§(x)=cx™",

where ¢ is a complex constant and m is an integer relatively prime to n.
PrROOF. Set D,=x-plane—{0}. And set D,=y-plane—{0}. Then x=¢°
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realizes the universal covering of D,. And &(¢") is a single valued function
according to the monodromy theorem, then this function realizes the universal
covering of D,. (Because the inverse mapping £ ' gives an unramified cover-
ing D, over D, according to the assumption for £) On the other hand, the
universal covering of D, is given by the mapping y=e®. Because the s-space
and the f¢-space are biholomorphically equivalent, then we have s=at-b.
Consequently &(e") takes the form e**’. The assumption that £&(x) is an n-
valued algebraic function indicates the equality a=m/n. This is our assertion.

PROOF OF THE PROPOSITION 2. We may assume that ¢(x, y) is primitive.
Let C, be the compactification of the covering Riemann surface C, over Rie-
mann sphere P. Let v be the sum of the degrees of ramifications of é;. Then
the Euler characteristic p of C‘; is given by —p=—2n+v. Since C, is irre-
ducible, we have p<2. Consequently we have v=2n—2. Because the ramify-
ing point and the equivalent point of C‘t are situated only over the points
x=0 and x==o0, v is at most 2n—2. Then we have v=2n—2 and p=2. This
implies that é; is biholomorphically equivalent to P and that ét has ramifying
points of the degree of ramification n—1 over x=0 and x=oco. Since the co-
efficient function of »" in ¢(x,y) is a monomial, C, has a relative boundary
over x=0. And every C,, except finite, does not intersect the y-axis, then ¢
is constant there. And ¢ is constant zero on the x-axis, then ¢ is constant
zero on the y-axis.

We consider ¢(x, y)—t=0 as an algebraic function y={,(x). Let @ be the
Riemann surface of this algebraic function over [x|<oco. Then the following
properties are satisfied.

(1) G, is irreducible, nonsingular, of order of multiplicity 1 and equal to
& for every t, except finite.

(2) ¢(x,3)=0 on {(x,): xy=0}.

(3) {i(x) has exact n values over every x except x=0 and x=o0,

These properties ensure the assumption of for {(x). From (2)
¢(x, y) takes the form x™y™Q(x, ), where m’ and n’ are positive integers and
Q(x, y) is a polynomial. By we have the equality of the sets;

{(x, 3): ™y Q(x, y)—t=0t={(x, ) : x™y"—c(£)=0},

for general values of t. Consequently we have m’=m, n’=n and Q(x, y)=
constant. This completes the proof.

§3. Conjugate function.

From the results of preceding arguments we know the necessary condi-
tion. Namely; if a function f(x, ¥)=x-exp[¢(x, y)] becomes a component of
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an automorphism of axial type then ¢(x, y) is decomposed to a polynomial of
one variable and a monomial x™y".
In the remainder of this paper we discuss about the conjugate function
7(x, y) of this f(x, y) such that
x'=f(x, ¥)
T: {

y'=g(x,y)
becomes an automorphism of axial type. Set
J(x, y)=x-exp e+ x™y e (x™y")*+ - e (a™y") ],
where m=0 and n>0. We consider the following automorphisms.

T x/:x.exp [__Ck(xmyn)k]
k-
y'=y-exp [(m/n)c,(x™™*¥],  k=0,1,-, ¢.

Then f(x, y) is reduced to the function x by the transformation Ty-7, «--- T,.
Hence the conjugate function g(x, y) is given by

glx, »)=T, - T,L - T (K(x, »),
where K(x,y) is a conjugate function of x. If the transformation
{ x'=f(x, )
T:
y'=g(x,y)

becomes an automorphism of axial type then the transformation

§=¢
S: {
n'=K(, 9)
is an automorphism of axial type, because every T, is an automorphism of
axial type.
LEMMA 4. The transformation
§'=¢§
S: {
n'=K(&, n)

is an automorphism if and only if K takes the form (n+ A(&))-exp [H(E)], where
A(§) and H(E) are entire functions. And in particular S is an automorphism of
axial type if and only if K takes the form nexp[H()].

Proor. The sufficiency is trivial. Then we show the necessity. Because
K(&’, 7)—n'=0 defines only one 7 for given & and 7/, this equality is trans-
formed to the form n=G(&’, ’). And the former is linear in 7’, then G(&/, 7’)
=B(&)y'— A(&’). Consequently we have
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e ()
7 BE) -

Since B(§) must be zero free, we have B(§)=exp[—H(&)]. This implicates
our assertion.
PROPOSITION 3. Let f(x,y) be a function of the form x-exp [¢(x, y)], where

A(x, V)=cotci(x™Y") - c(x™Y") P e A (xTYTE
Then the transformation
x'=f(x,3)
T: {
y'=g(x,)

is an automorphism of axial type if and only if

g(x, y)=y-exp [—(m/n)¢(x, y)+H(x")],

where H 1s an entire function.
Proor. From the above argument, g is given by

g(x, y):T/_ng;zl—l To—l(yeH(ar)) .

By an elementary calculation we have the required result.
By these propositions we have the theorem stated at the beginning.
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