On some dissipative boundary value problems for the Laplacian

By Daisuke FUJIWARA and Kôichi UCHIYAMA

(Received Feb. 26, 1971) (Revised June 18, 1971)

§ 1. Introduction.

Let Ω be a bounded domain in \mathbb{R}^{n+1} with boundary Γ of class C^{∞} . $\overline{\Omega} = \Omega \cup \Gamma$ is a C^{∞} -manifold with boundary. For a function u in $C^{\infty}(\overline{\Omega})$ and $s \in \mathbb{R}$, $||u||_s$ denotes Sobolev norm of u of order s.

We consider Laplacian $\Delta = \frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_{n+1}^2}$ in Ω together with the homogeneous boundary condition

$$\mathcal{B}u\bigg|_{\Gamma} = \frac{\partial u}{\partial \nu} + (a+ib)u + (a_0+ib_0)u\bigg|_{\Gamma} = 0,$$

where ν is the unit exterior normal to Γ , a and b are real C^{∞} -vector fields on Γ and a_0 and b_0 are real C^{∞} -functions on Γ .

The following problem is still open: "Characterize those couples (Ω, \mathcal{B}) for which there exists a constant C such that the estimate

(1.1)
$$-\operatorname{Re} (\Delta u, u) + C \|u\|_{0}^{2} \ge 0$$

holds for any u in $C^2(\bar{\Omega})$ satisfying $\mathfrak{G}u|_{\Gamma}=0$.

A well-known necessary condition for the estimate (1.1) to hold is that

$$(1.2) |b(x)| \leq 1,$$

where |b(x)| is the length of the vector b(x), $x \in \Gamma$ ([6]). On the other hand if |b(x)| < 1 at every point $x \in \Gamma$, then there exist constants $C_0 > 0$ and C_1 such that the estimate

$$-\operatorname{Re}\left(\Delta u, u\right) + C_1 \|u\|_0^2 \ge C_0 \|u\|_1^2$$

holds for any u in $C^2(\bar{\Omega})$ satisfying $\mathfrak{B}u|_{\Gamma}=0$. (J. L. Lions [8], see also [1], [6], [10].)

In this note assuming (1.2), we are concerned with the following estimate:

Main part of this work was done when D. Fujiwara was staying at the Courant Institute of Mathematical Sciences, New York University, with the National Science Foundation, Grant NSF-GP-19617.

(1.4)
$$-\operatorname{Re}(\Delta u, u) + C_1 \|u\|_0^2 \ge C_0 \|u\|_{\frac{1}{2}}^2, \quad C_0 > 0, \quad C_1 = \text{Const.}$$

for any u in $C^2(\bar{\Omega})$ satisfying $\mathfrak{L}u|_{\Gamma}=0$.

In the previous paper [3] in more general situation one of us proved a necessary and sufficient condition for the estimate (1.4) to hold. Combining this with the recent result of Anders Melin [9], we can write down a necessary and sufficient condition (Theorem 1). Since this condition is rather implicit, here we shall also give a necessary condition and a sufficient one which are more explicit.

Our estimate (1.4) can be localized. Lions' result implies that difficulty occurs at every point x_0 on Γ where $|b(x_0)|=1$. If we set $l(x)=1-|b(x)|^2$, the assumption (1.2) means that $l(x) \ge 0$ and l(x) vanishes at x_0 . We shall consider the Hessian $L(x_0)$ of l(x) at x_0 . Identifying the tangent space $T_{x_0}(\Gamma)$ of Γ at x_0 with its dual by natural metric, we consider $L(x_0)$ as a linear transformation in $T_{x_0}(\Gamma)$.

The vector field a(x) on Γ induces a linear map Γ_*a ; $T_{x_0}(\Gamma) \to T_{x_0}(\Gamma)$ defined by the covariant differentiation $\xi \to \Gamma_\xi a$ (cf. [7]). $\omega_{x_0}(\xi,\eta)$, $\xi,\eta \in T_{x_0}(\Gamma)$, will denote the second fundamental form at x_0 of the hypersurface $\Gamma \subset \mathbb{R}^{n+1}$. $M(x_0)$ will denote the first mean curvature at x_0 of Γ . Let X be a tangent vector to $T^*(\Gamma)$ at the point $(x_0, b(x_0))$, where $b(x_0)$ is identified with a cotangent vector in $T^*_{x_0}(\Gamma)$. X can be decomposed into the sum of its horizontal component ξ and vertical component η . Since $T_{(x_0,b(x_0))}(T^*(\Gamma))$ has its natural symplectic structure σ , the vertical component η can be identified with a cotangent vector to Γ , which will again be denoted as η . The horizontal component ξ can be identified with a tangent vector ξ cand ξ can be identified with a tangent vector ξ can be identif

$$X = (\xi, \eta) \longrightarrow \frac{1}{2} (|\eta|^2 - \langle b(x_0), \eta \rangle^2) - \langle \overline{V}_{\xi}b, \eta \rangle + \frac{1}{4} \langle \xi, L(x_0)\xi \rangle + \frac{1}{2} - |\overline{V}_{\xi}b|^2.$$

Let A be the matrix expression of this form with respect to the symplectic structure σ . Eigenvalues of iA are real and $-\mu$ is an eigenvalue of iA if μ is. As is shown in § 4, iA has at most n-1 positive eigenvalues, which we denote by $\mu_1(x_0) \cdots \mu_{n-1}(x_0)$. Then Anders Melin's result combined with our previous result gives the following

THEOREM 1. The estimate (1.4) holds for any function u in $C^2(\bar{\Omega})$ satisfying $\mathfrak{B}u|_{\Gamma}=0$ if and only if the following conditions hold:

- (i) At every point x on Γ , $|b(x)| \leq 1$.
- (ii) At every point x_0 on Γ where $|b(x_0)| = 1$, the following inequality holds:

(1.5)
$$\mu_1(x_0) + \cdots + \mu_{n-1}(x_0) + \omega_{x_0}(b(x_0), b(x_0)) - nM(x_0) + 2a_0(x_0) - \operatorname{Tr} \nabla_* a > 0$$
.

Estimating the sum $\mu_1(x_0) + \cdots + \mu_{n-1}(x_0)$, we have the following theorems.

THEOREM 2. If the estimate (1.4) holds, then the following two conditions hold:

- (i) $|b(x)| \leq 1$ at every point x on Γ .
- (ii) At every point x_0 on Γ where $|b(x_0)| = 1$ the following inequality holds;

(1.6)
$$\sqrt{n-1} \left(\frac{1}{2} \operatorname{Tr} (L(x_0)) + \operatorname{Tr} {}^{t}(\nabla_{*}b)(\nabla_{*}b) - \operatorname{Tr} (\nabla_{*}b)^{2} \right. \\ \left. - \frac{1}{2} \left\langle b(x_0), L(x_0)b(x_0) \right\rangle - |\nabla_{b(x_0)}b|^{2} \right)^{\frac{1}{2}} \\ \left. + \omega_{x_0}(b(x_0), b(x_0)) - nM(x_0) + 2a_0(x_0) - \operatorname{Tr} \nabla_{*}a > 0 \right.$$

THEOREM 3. The estimate (1.4) holds for any u in $C^2(\bar{\Omega})$ with $\mathfrak{B}u|_{\Gamma}=0$ if the following conditions (a) and (b) hold:

- (a) $|b(x)| \le 1$ at every point x on Γ .
- (b) At every point x_0 where $|b(x_0)| = 1$ the following inequality holds;

(1.7)
$$\left(\frac{1}{2} \operatorname{Tr} L(x_0) + \operatorname{Tr}^t(\nabla_* b) (\nabla_* b) - \operatorname{Tr} (\nabla_* b)^2 - \frac{1}{2} - \langle b(x_0), L(x_0) b(x_0) \rangle - |\nabla_{b(x_0)} b|^2 \right)^{\frac{1}{2}} + \omega_{x_0}(b(x_0), b(x_0)) - nM(x_0) + 2a_0(x_0) - \operatorname{Tr} \nabla_* a > 0.$$

COROLLARY 4. In the case n=2, the estimate (1.4) holds if and only if the conditions (i) and (ii) of Theorem 2 hold.

§ 2. Green's formula.

Let S be the unit circle, whose generic point will be denoted by s. For any $C^{\infty}(\bar{\Omega}\times S)$ -function u(x, s), its restriction $\varphi(x, s)$ to $\Gamma\times S$ is a $C^{\infty}(\Gamma\times S)$ -function. We can uniquely solve the Dirichlet problem:

(2.1)
$$\left(\Delta + \frac{\partial^2}{\partial s_1^2} \right) w(x, s) = 0 \quad \text{in} \quad \Omega \times S$$

$$w(x, s)|_{\Gamma \times S} = \varphi(x, s) \quad \text{on} \quad \Gamma \times S.$$

We shall denote by \mathcal{P} the Poisson operator $\varphi \to w$. Setting v = u - w, we have decomposition of any $C^{\infty}(\bar{\mathcal{Q}} \times S)$ function u:

$$(2.2) u = v + w.$$

If u satisfies the boundary condition

$$\mathcal{B}u(x, s)|_{\Gamma \times S} = 0$$
, $x \in \Gamma$, $s \in S$,

then Green's formula implies that

(2.3)
$$-\operatorname{Re} \iint_{\boldsymbol{Q}\times s} \left(\Delta + \frac{\partial^{2}}{\partial s^{2}}\right) u \,\bar{u} \,dx \,ds$$

$$= -\operatorname{Re} \iint_{\boldsymbol{Q}\times s} \left(\Delta + \frac{\partial^{2}}{\partial s^{2}}\right) v \,\bar{v} \,dx \,ds + \operatorname{Re} \iint_{\boldsymbol{\Gamma}\times s} T\varphi(x, s) \overline{\varphi(x, s)} \,d\gamma \,ds \,,$$

where $d\gamma$ is the hypersurface element of Γ . The operator T is a pseudo-differential operator of order 1 on $\Gamma \times S$ defined by

(2.4)
$$T\varphi = \frac{\partial P\varphi}{\partial \nu}\Big|_{\Gamma \times S} + (a+ib)\varphi + (a_0+ib_0)\varphi.$$

In [4] it is proved that the estimate (1.4) holds if and only if the following estimate

(2.5)
$$\operatorname{Re}(T\varphi, \varphi) + C_1 \|\varphi\|_{-\frac{1}{2}}^2 \ge C_0 \|\varphi\|_0^2, \quad C_0 > 0, \quad C_1 = \text{Const.}$$

holds for any φ in $C^{\infty}(\Gamma \times S)$.

In the next section we shall calculate the symbol of Re T near an arbitrary point x_0 on Γ .

\S 3. Symbol of T.

Poisson operators can be described, modulo C^{∞} -operators, by their symbols (cf. [2], [3], [5], [10]). First we shall calculate the symbol of P in our case and next that of the operator T. We will take the following coordinate system: We fix an arbitrary point x_0 on Γ . We make y_{n+1} -axis coincide with the direction of the interior normal and the hyperplane $y_{n+1}=0$ coincide with the tangent hyperplane of Γ at x_0 .

Then Ω is given by

$$(3.1) y_{n+1} - \varphi(y') > 0,$$

where $\varphi(y')$ is a C^{∞} -function of variables $y' = (y_1, \dots, y_n)$. We may assume that the Taylor expansion of $\varphi(y')$ is given by

(3.2)
$$\varphi(y') = \sum_{i} \omega_{i} y_{j}^{2} + \sum_{i \neq k} \omega_{i \neq k} y_{i} y_{j} y_{k} + O(|y|^{4})$$

where ω_j , ω_{ijk} are constants satisfying

$$\omega_{kij} = \omega_{ijk} = \omega_{jik}.$$

Whenever we take summations with respect to indices i, j, k, \dots , these indices range from 1 to n independently. Einstein's convention will not be used.

For any two real vectors $\xi = (\xi_1, \dots, \xi_n)$, $\eta = (\eta_1, \dots, \eta_n)$ tangent to Γ at x_0 , the bilinear form $\omega_{x_0}(\xi, \eta) = 2 \sum_j \omega_j \xi_j \eta_j$ is the second fundamental form.

 $2/n\sum_{i}\omega_{j}$ is the mean curvature $M(x_{0})$ of Γ at x_{0} (cf. [7]).

Now we choose a new coordinate system $x = (x', x_{n+1}), x' = (x_1, \dots, x_n)$ given by

(3.4)
$$y_{i} = x_{i} - \frac{x_{n+1} \frac{\partial \varphi}{\partial x_{i}}}{\sqrt{1 + \sum_{i} \left(\frac{\partial \varphi}{\partial x_{i}}\right)^{2}}}, \quad i = 1, 2, 3, \dots, n,$$
$$y_{n+1} = \varphi(x') + \frac{x_{n+1}}{\sqrt{1 + \sum_{i} \left(\frac{\partial \varphi}{\partial x_{i}}\right)^{2}}}.$$

In fact, the Jacobian $\frac{D(y_1, \cdots, y_{n+1})}{D(x_1, \cdots, x_{n+1})}$ equals one at the origin and (x_1, \cdots, x_{n+1}) can be a coordinate system in some neighbourhood of the origin. We have the Taylor expansion

(3.5)
$$x_{i} = y_{i} + 2\omega_{i} y_{i} y_{n+1} + 4\omega_{i}^{2} y_{i} y_{n+1}^{2} - 2\omega_{i} y_{i} (\sum_{j} \omega_{j} y_{j}^{2})$$

$$+ 3y_{n+1} \sum_{jk} \omega_{ijk} y_{j} y_{k} + O(|y|^{4}),$$

$$x_{n+1} = y_{n+1} - \sum_{i} \omega_{i} y_{i}^{2} - 2(\sum_{i} \omega_{i}^{2} y_{i}^{2}) y_{n+1} - \sum_{ijk} \omega_{ijk} y_{i} y_{j} y_{k} + O(|y|^{4}).$$

The metric is

$$\begin{split} ds^2 &= dy_1^2 + \cdots + dy_{n+1}^2 \\ &= \sum_i (1 - 2\omega_i x_{n+1})^2 dx_i^2 + 4(\sum_i \omega_i x_i dx_i)^2 \\ &- 12x_{n+1} \sum_{i \neq k} \omega_{ijk} x_k dx_i dx_j + dx_{n+1}^2 + O(|x|^3 |dx|^2) \,. \end{split}$$

The symbol of the Laplacian $-\left(\varDelta + \frac{\partial^2}{\partial s^2}\right)$ on $\varOmega \times S$ is given by

(3.6)
$$\sum_{j} (1 + 4\omega_{j} x_{n+1} + 12\omega_{j}^{2} x_{n+1}^{2} + O(|x|^{3})) \xi_{j}^{2} + \xi_{n+1}^{2} + \sigma^{2}$$

$$+ \sum_{ij} (12x_{n+1} (\sum_{k} \omega_{ijk} x_{k}) - 4\omega_{i} \omega_{j} x_{i} x_{j} + O(|x|^{3})) \xi_{i} \xi_{j}$$

$$- 2i \sum_{j} (-2 (\sum_{i} \omega_{i} \omega_{j} x_{j}) + 3x_{n+1} (\sum_{i} \omega_{iij}) + O(|x|^{2})) \xi_{j}$$

$$+ 2i (\sum_{i} \omega_{j} + 2x_{n+1} \sum_{i} \omega_{j}^{2} + 3 \sum_{ij} \omega_{iij} x_{j} + O(|x|^{2})) \xi_{n+1} .$$

Let $A_2(x, \xi', \xi_{n+1}, \sigma)$ denote the principal symbol of $-\left(\varDelta + \frac{\partial^2}{\partial s^2}\right)$. This is a polynomial of ξ_{n+1} of degree 2. $\tau^+(\tau^-)$ denotes the root of $A_2(x', 0, \xi', \xi_{n+1}, \sigma)$ with positive (negative, respectively) imaginary part. τ^{\pm} has the Taylor expansion

(3.7)
$$\tau^{\pm} = \pm i(\rho_1 - 2\rho_1^{-1} \sum_{ij} \omega_i \omega_j x_i x_j \xi_i \xi_j + O(|x|^3))$$

where

$$\rho_1 = (|\xi'|^2 + \sigma^2)^{\frac{1}{2}}, \quad (\xi_1, \dots, \xi_n).$$

Committee of the state of the s

Let $f(x, \xi, \sigma) = f_{-2}(x, \xi, \sigma) + f_{-3}(x, \xi, \sigma) + \cdots$ be the symbol of the fundamental solution \mathcal{F} of $-\Delta - \frac{\partial^2}{\partial s^2}$ and its asymptotic expansion. Then the principal symbol is

(3.8)
$$f_{-2}(x,\xi,\sigma) = \rho^{-2} - 4\rho^{-4}x_{n+1} \left(\sum_{j} \omega_{j} \xi_{j}^{2}\right) + 16\rho^{-6}x_{n+1}^{2} \left(\sum_{j} \omega_{j} \xi_{j}^{2}\right)^{2} - 12\rho^{-4}x_{n+1}^{2} \left(\sum_{j} \omega_{j}^{2} \xi_{j}^{2}\right) - \rho^{-4} \sum_{i,j} \left(12x_{n+1} \left(\sum_{k} \omega_{ijk} x_{k}\right) - 4\omega_{i} \omega_{j} x_{i} x_{j}\right) \xi_{i} \xi_{j} + O(|x|^{3})\rho^{-2},$$
 where $\rho = \sqrt{|\xi|^{2} + \sigma^{2}}$. The second symbol is

(3.9)
$$f_{-3}(x, \xi, \sigma) = -2i \xi_{n+1} (4\rho^{-6} \sum_{j} \omega_{j} \xi_{j}^{2} + \rho^{-4} \sum_{j} \omega_{j}) + O(|x|) \rho^{-8}.$$

Now we shall denote by T^+ a pseudo-differential operator on $\Gamma \times S$ with the symbol τ^+ . We consider the mapping $Q: C_0^{\infty}(\Gamma \times S) \to Q\varphi \in C^{\infty}(\bar{\Omega} \times S)$ defined by

(3.10)
$$Q\varphi = \mathcal{F}\left(i \frac{\partial \delta(\Gamma \times S)}{\partial \nu} \otimes \varphi - \delta(\Gamma \times S) \otimes T^{+}\varphi\right),$$

where $\delta(\Gamma \times S) \otimes \varphi$ is the distribution defined by

$$\mathcal{D}(\mathbf{R}^{n+1} \times S) \ni \phi \longrightarrow \int_{\mathbf{r} \times S} \phi \mid_{\mathbf{r} \times S} \phi \, d\gamma \, ds.$$

Since the mapping Q is defined by (3.10), Q is a pseudo-Poisson operator in the sense of Boutet de Monvel (cf. [2], [3], [5], [10]). Its symbol has an asymptotic expansion with respect to homogeneous degree of (x_{n+1}^{-1}, ξ') . Following Theorem A.8 in appendix of [3], we shall calculate a few terms of it. The symbol of Q is given by the formula:

$$\begin{split} i\,e^{ix_{n+1}\tau^+} + (2\pi)^{-1} \int_{-\infty}^{\infty} x_{n+1} \frac{\partial}{\partial x_{n+1}} \, f_{-2}(x',\,0,\,\xi',\,\xi_{n+1},\,\sigma) (\xi_{n+1} - \tau^-) e^{ix_{n+1}\xi_{n+1}} d\xi_{n+1} \\ - (2\pi)^{-1} \int_{-\infty}^{\infty} \sum_{j} \frac{\partial}{\partial \xi_{j}} \, f_{-2}(x',\,0,\,\xi',\,\xi_{n+1},\,\sigma) \Big(-i \frac{\partial}{\partial x_{j}} \, \tau^- \Big) e^{ix_{n+1}\xi_{n+1}} d\xi_{n+1} \\ + (2\pi)^{-1} \int_{-\infty}^{\infty} f_{-3}(x',\,0,\,\xi',\,\xi_{n+1},\,\sigma) (\xi_{n+1} - \tau^-) e^{ix_{n+1}\xi_{n+1}} d\xi_{n+1} \\ + O((x_{n+1}\rho_{1}^{-1})^{2}) \\ = i\,e^{-x_{n+1}(\rho_{1}-2\rho_{1}^{-1}\xi_{j}\omega_{i}\omega_{j}x_{i}x_{j}\xi_{i}\xi_{j}+0(|x'|^{3}))} \\ - ix_{n+1} (\sum_{i} \omega_{j}\xi_{j}^{2} + 3\sum_{ijk} \omega_{ijk}x_{k}\xi_{i}\xi_{j} + O(|x'|^{2})) (2x_{n+1}\rho_{1}^{-1} + \rho_{1}^{-2})e^{-x_{n+1}\rho_{1}} \end{split}$$

$$+(\sum_{jk}\omega_{j}\omega_{k}\xi_{k}x_{k}\xi_{j}^{2}\rho_{1}^{-1})(2x_{n+1}\rho_{1}^{-2}+2\rho_{1}^{-3}+O(|x'|))e^{-x_{n+1}\rho_{1}}\\+i\Big((\sum_{j}\omega_{j}\xi_{j}^{2})\Big(\frac{x_{n+1}^{2}}{\rho_{1}}-\frac{1}{2\rho_{1}^{3}}\Big)+i(\sum_{i}\omega_{i})(x_{n+1}-(2\rho_{1})^{-1})\Big)e^{-\rho_{1}x_{n+1}}$$

where $\rho_1 = \sqrt{|\xi'|^2 + \sigma^2}$.

This implies that the mapping $K: \varphi \to \mathcal{Q}\varphi|_{\Gamma \times S}$ is an elliptic pseudo-differential operator of order 0. Its symbol is

$$i\left(1-\frac{1}{2}(\sum_{j}\omega_{j}\xi_{j}^{2})\rho_{1}^{-3}-\frac{1}{2}(\sum_{j}\omega_{j})\rho_{1}^{-1}+\cdots\right).$$

Let $K^{(-1)}$ be its parametrix. Then as is proved in [3], [5] and [10], the operator

$$QK^{(-1)}\varphi = \mathcal{F}\left(i\frac{\partial \delta(\Gamma \times S)}{\partial \nu} \otimes K^{(-1)}\varphi - \delta(\Gamma \times S) \otimes T^+K^{(-1)}\varphi\right)$$

coincides with the operator $\mathcal P$ modulo smooth operators. The symbol of the operator $\mathcal P$ is

(3.12)
$$e^{-x_{n+1}(\rho_{1}-2\rho_{1}^{-1}(\sum_{j}\omega_{j}x_{j}\xi_{j})^{2}+O(|x'|^{2}))} - x_{n+1}((\sum_{j}\omega_{j}\xi_{j}^{2})\rho_{1}^{-2}+O(|x'|))e^{-x_{n+1}\rho_{1}} + x_{n+1}(\sum_{j}\omega_{j}+O(|x'|))e^{-x_{n+1}\rho_{1}}+O((x_{n+1}\rho_{1}^{-1})^{2}).$$

So the mapping $\varphi \to \frac{\partial \mathcal{Q} \varphi}{\partial \nu}\Big|_{\Gamma \times s}$ is a pseudo-differential operator with its principal symbol

(3.13)
$$\rho_1 - 2\rho_1^{-1} (\sum_i \omega_i x_i \xi_i)^2 + O(|x'|^2).$$

And its second symbol is

(3.14)
$$(\sum_{j} \omega_{j} \xi_{j}^{2}) \rho_{1}^{-2} - \sum_{j} \omega_{j} + O(|x'|).$$

Now we assume that the real vector fields a and b are expressed as follows:

(3.15)
$$a(x) = \sum_{j} (\alpha_{j} + \sum_{k} \alpha_{jk} x_{k} + O(|x'|^{2})) \frac{\partial}{\partial x_{j}},$$

(3.16)
$$b(x) = \sum_{j} (\beta_{j} + \sum_{k} \beta_{jk} x_{k} + \sum_{kl} \beta_{jkl} x_{k} x_{l} + O(|x'|^{3})) \frac{\partial}{\partial x_{j}}.$$

Using these, we can write down the Taylor expansion of the symbol of the operator Re T. Its principal symbol $t_1(x, s, \xi, \sigma)$ is

(3.17)
$$t_{1}(x, s, \xi, \sigma) = \rho_{1} - 2\rho_{1}^{-1} \left(\sum_{j} \omega_{j} x_{j} \xi_{j}\right)^{2} - \sum_{j} \left(\beta_{j} + \sum_{k} \beta_{jk} x_{k} + \sum_{kl} \beta_{jkl} x_{k} x_{l}\right) \xi_{j} + O(|x'|^{3}) \rho_{1}.$$

And the second symbol $t_0(x, s, \xi, \sigma)$ is

$$t_0(x, s, \xi, \sigma) = \sum_j \omega_j \xi_j^2 \rho_1^{-2} - \sum_j \omega_j + a_0(x_0) - \frac{1}{2} \sum_j \alpha_{jj} + O(|x'|).$$

We have the following coordinate free expression:

(3.18)
$$t_0(x, s, \xi, \sigma) = \frac{1}{2} \rho_1^{-2} \omega_{x_0}(\xi, \xi) - \frac{n}{2} M(x_0) + a_0(x_0) - \frac{1}{2} \operatorname{Tr} V_* a.$$

§ 4. Proof of Theorems.

Assume that $l(x_0) = 0$ at x_0 on Γ . This means that

if we make use of the coordinate expression. The condition $l(x) \ge 0$ implies that

and that its Hessian $L(x_0)$ at x_0 is a non-negative symmetric matrix. Using coordinates expressions (3.15) and (3.16), we obtain

(4.3)
$$\frac{1}{2} \langle x, L(x_0)x \rangle = -4(\sum_{i} \omega_i x_i \beta_i)^2 - \sum_{i} (\sum_{k} \beta_{jk} x_k)^2 - 2\sum_{ikl} \beta_i \beta_{jkl} x_k x_l,$$

where \langle , \rangle is the inner product in the tangent space $T_{x_0}(\Gamma)$. Since $|\nabla_{\eta} b|^2 = \sum_{i} (\sum_{k} \beta_{jk} \eta_k)^2$ for any $\eta = (\eta_1, \dots, \eta_n)$ in $T_{x_0}(\Gamma)$, we have

$$(4.4) -4(\sum_{j}\omega_{j}\eta_{j}\beta_{j})^{2}-2\sum_{jkl}\beta_{j}\beta_{jkl}\eta_{k}\eta_{l}=\frac{1}{2}\langle\eta,L(x_{0})\eta\rangle+|\nabla_{\eta}b|^{2}.$$

The principal symbol t_1 vanishes at the point where x=0, $\xi=\beta$, $\sigma=0$. We can calculate its Hessian $H(x_0)$ there. We have

where X is a column vector $(x_1, \dots, x_n, \eta_1, \dots, \eta_n, s, \sigma)$ of (2n+2) components. $\ll X$, $Y \gg$ is the inner product which is the polarization of the quadratic form $X \to \sum_i x_j^2 + \sum_i \eta_j^2 + s^2 + \sigma^2$. We introduce $n \times n$ matrices:

$$A = \begin{pmatrix} \omega_1^2 \beta_1^2, \omega_1 \omega_2 \beta_1 \beta_2 \cdots \omega_1 \omega_n \beta_1 \beta_n \\ \omega_2 \omega_1 \beta_1 \beta_2 \cdots \omega_1 \omega_n \beta_1 \beta_n \\ \vdots \\ \omega_n \omega_1 \beta_1 \beta_n \cdots \omega_n^2 \beta_n^2 \end{pmatrix} \qquad B = \begin{pmatrix} \sum_j \beta_j \beta_{j11} \cdots \sum_j \beta_j \beta_{j1n} \\ \sum_j \beta_j \beta_{j21} \cdots \\ \sum_j \beta_j \beta_{jn1} \cdots \sum_j \beta_j \beta_{jnn} \end{pmatrix}$$

We have

Finally we introduce 2n+2 square matrix $J=\begin{pmatrix} J_0,&0,&0\\0,&0,&-1\\0,&1,&0 \end{pmatrix}$ where J_0 is the

 $2n\times 2n$ matrix $J_0=\begin{pmatrix} 0,&-I\\I,&0\end{pmatrix}$. Since H is given as the Hessian of the principal symbol t_1 which is non-negative if we assume that $|b(x)|\leq 1$, H is a nonnegative matrix. This implies that eigenvalues of JH are pure imaginary. If λ is its eigenvalue, then its complex conjugate is also its eigenvalue. The matrix $\begin{pmatrix} 0,&-1\\1,&0\end{pmatrix}\begin{pmatrix} 0,&0\\0,&1\end{pmatrix}$ is nilpotent. The positive eigenvalues of iJH coincide with those of iJ_0H_0 , H_0 being the matrix $H_0=\begin{pmatrix} -4A-2B,&-^tC\\-C,&I-D\end{pmatrix}$. Since the principal symbol of the operator $Re\ T$ is homogeneous in (ξ,σ) , the rank of H_0 is at most 2n-1. This implies that the number of positive eigenvalues of iJ_0H_0 is at most n-1. Let $\mu_1(x_0),\cdots,\mu_{n-1}(x_0)$ denote non-negative eigenvalues of iJ_0H_0 . Anders Melin's theorem leads us to

THEOREM 1. The estimate (1.4) holds for any function u in $C^2(\bar{\Omega})$ satisfying $\mathfrak{B}u|_{\Gamma}=0$ if and only if the following conditions hold:

- 1) At every point x on Γ , $|b(x)| \leq 1$.
- 2) At every point x_0 on Γ where $|b(x_0)| = 1$, the following inequality holds:

(4.6)
$$\frac{1}{2}(\mu_1(x_0) + \cdots + \mu_{n-1}(x_0)) + \operatorname{Re} t_0 > 0,$$

where

Re
$$t_0 = \frac{1}{2} \omega_{x_0}(b(x_0), b(x_0)) - \frac{n}{2} M(x_0) + a_0(x_0) - \frac{1}{2} \operatorname{Tr} \nabla_* a$$
.

Since

$$(\mu_1^2 + \cdots + \mu_{n-1}^2)^{\frac{1}{2}} \leq \mu_1 + \cdots + \mu_{n-1} \leq \sqrt{n-1} (\mu_1^2 + \cdots + \mu_{n-1}^2)^{\frac{1}{2}},$$

we have

(4.7)
$$\left(-\frac{1}{2} \operatorname{Tr} (J_0 H_0)^2\right)^{\frac{1}{2}} \leq \mu_1(x_0) + \cdots + \mu_{n-1}(x_0)$$

$$\leq \sqrt{n-1} \left(-\frac{1}{2} \operatorname{Tr} (J_0 H_0)^2\right)^{\frac{1}{2}}.$$

Using coordinate expression, we have

(4.8)
$$\operatorname{Tr} (J_{0}H_{0})^{2} = 2(\operatorname{Tr} C^{2} - \operatorname{Tr} (I - D)(-4A - 2B))$$

$$= 2(\sum_{pk} \beta_{pk}\beta_{kp} + 4\sum_{j} \omega_{j}^{2}\beta_{j}^{2} + 2\sum_{ij} \beta_{i}\beta_{ijj}$$

$$-4\sum_{ik} \omega_{j}\omega_{k}\beta_{j}^{2}\beta_{k}^{2} - 2\sum_{ijk} \beta_{i}\beta_{k}\beta_{j}\beta_{ijk}).$$

Using (4.4) we obtained that

(4.9)
$$\operatorname{Tr} (J_{0}H_{0})^{2} = 2\left(-\frac{1}{2}\operatorname{Tr} L(x_{0}) - \operatorname{Tr}^{t}(\nabla_{*}b)(\nabla_{*}b) + \operatorname{Tr}(\nabla_{*}b)^{2} + \frac{1}{2} - \langle b(x_{0}), L(x_{0})b(x_{0}) \rangle + |\nabla_{b(x_{0})}b|^{2}\right).$$

Combining these, we have proved

THEOREM 2. If the estimate (1.4) holds for any u in $C^2(\bar{\Omega})$ satisfying $\mathfrak{B}u|_{\Gamma}=0$, then the following conditions hold:

- i) At every point x on Γ , $|b(x)| \le 1$.
- ii) At every point x_0 on Γ where $|b(x_0)| = 1$ the following inequality holds:

(4.10)
$$\sqrt{n-1} \left(\frac{1}{2} \operatorname{Tr} L(x_0) + \operatorname{Tr}^{t} (\nabla_* b) (\nabla_* b) - \operatorname{Tr} (\nabla_* b)^{2} - \frac{1}{2} \left\langle b(x_0), L(x_0) b(x_0) \right\rangle - |\nabla_{b(x_0)} b|^{2} \right)^{\frac{1}{2}} + \omega_{x_0}(b(x_0), b(x_0)) - nM(x_0) + 2a_0(x_0) - \operatorname{Tr} \nabla_* a > 0.$$

And we also have

THEOREM 3. The estimate (1.4) holds for any u in $C^2(\bar{\Omega})$ satisfying $\mathfrak{B}u|_{\Gamma}=0$ if the following two conditions hold:

- (a) At every point $x \in \Gamma$, $|b(x)| \le 1$.
- (b) At every point x_0 where $|b(x_0)| = 1$, the inequality (4.11) holds;

(4.11)
$$\left(\frac{1}{2} \operatorname{Tr} L(x_0) + \operatorname{Tr}^{t} (\nabla_{*}b) (\nabla_{*}b) - \operatorname{Tr} (\nabla_{*}b)^{2} \right. \\ \left. - \frac{1}{2} \left\langle b(x_0), L(x_0)b(x_0) \right\rangle - |\nabla_{b(x_0)}b|^{2} \right)^{\frac{1}{2}} \\ \left. + \omega_{x_0}(b(x_0), b(x_0)) - nM(x_0) + 2a_0(x_0) - \operatorname{Tr} \nabla_{*}a > 0 \right.$$

Corollary 4 is a trivial consequence of these theorems.

References

- [1] S. Agmon, The coerciveness problem for integro-differential forms, J. Analyse Math., 6 (1958), 183-223.
- [2] L. Boutet de Monvel, Comportement d'un opérateur pseudo-différéntiel sur une variété à bord II, J. Analyse Math., 17 (1966, 255-304.
- [3] D. Fujiwara, On the asymptotic behaviour of the Green operators for elliptic boundary problems and the pure imaginary powers of some second order operators, J. Math. Soc. Japan, 21 (1969), 481-522.
- [4] D. Fujiwara, On some homogeneous boundary value problems bounded below, J. Fac. Sci. Univ. Tokyo, 17 (1970), 123-152.
- [5] P. Greiner, An asymptotic expansion for the heat equation, Preprint, University of Toronto.
- [6] G. Grubb, Les problèmes aux limites généraux d'un opérateur elliptique, provenant de la théorie variationnelle, Bull. Sci. Math., 94 (1970), 113-157.
- [7] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Interscience, New York, 1963.
- [8] J.L. Lions, Sur les problèmes aux limites du type dérivée oblique, Ann. of Math., 64 (1956), 207-239.
- [9] R. A. Melin, Lower bounds for pseudo-differential operators, Preprint of Institut Mittag-Leffler.
- [10] R. T. Seeley, The resolvent of an elliptic boundary problems, Amer. J. Math., 91 (1969), 889-920.
- [11] N. Shimakura, Problèmes aux limites variationnels du type elliptique, Ann. Sci. École Norm. Sup. Paris, (4 Série) 2 (1969), 255-310.