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§1. Introduction.

Let 2 be a bounded domain in R™' with boundary I’ of class C*.
2=0Ur is a C*-manifold with boundary. For a function u# in C>*() and
se R, ||ull; denotes Sobolev norm of u of order s.

2 2
We consider Laplacian A:—a-z——i— R 9 ;- in £ together with the
ox, 0Xns1
homogeneous boundary condition
ou . )
Bu| =——+(@+ibu+t(a,+ib)u| =0,
r oy r

where v is the unit exterior normal to I, a and b are real C=-vector fields
on I" and a, and b, are real C~-functions on 7.

The following problem is still open: “ Characterize those couples (2, 8)
for which there exists a constant C such that the estimate

(1D —Re (4u, W+Clull*= 0

holds for any u in C*®) satisfying Bu|,=0.
A well-known necessary condition for the estimate to hold is that

1.2) lbn=1,

where |b(x)| is the length of the vector b(x), x= ' ([6]). On the other hand
if |b(x)|<1 at every point x< I, then there exist constants C,>0 and C,
such that the estimate

(1.3) —Re (du, W+ Cillulle® = Collul,*

holds for any u in C%@) satisfying Bu|,=0. (J.L. Lions [8] see also [1],
[61 (101>
In this note assuming [1.2), we are concerned with the following estimate :
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1.4 —Re (du, w)+Cllulll = Collull 1 2, Co>0, C,=Const.
2

for any u in C%) satisfying Bul|r=0.

In the previous paper [3] in more general situation one of us proved a
necessary and sufficient condition for the estimate to hold. Combining
this with the recent result of Anders Melin [9], we can write down a neces-
sary and . sufficient condition (Theorem 1I). Since this condition is rather
implicit, here we shall also give a necessary condition and a sufficient one
which are more explicit.

Our estimate can be localized. Lions’ result implies that difficulty
occurs at every point x, on I' where |b(x,)|=1. If we set [(x)=1—|b(x)|?,
the assumption means that [(x) =0 and /(x) vanishes at x,, We shall
consider the Hessian L(x,) of I(x) at x,. Identifying the tangent space T,,(")
Cof I’ at x, with its dual by natural metric, we consider L(x,) as a linear
transformation in T,,(I).

The vector field a(x) on [I' induces a linear map Vya; T,\(I")— Ty ()
defined by the covariant differentiation § —FVea (cf. [T]). w,, (&, 7)), & nE T (D),
will denote the second fundamental form at x, of the hypersurface I"C R™*.
M(x,) will denote the first mean curvature at x, of I'. Let X be a tangent
vector to T*(") at the point (x, b(x,)), where b(x,) is identified with a cotan-
- gent vector in T*,(["). X can be decomposed into the sum of its horizontal
component £ and vertical component 7. Since T(,b0,(T*([7)) has its natural
symplectic structure o, the vertical component 7 can be identified with a
cotangent vector to I', which will again be denoted as ». The horizontal
component & can be identified with a tangent vector = T7,,(/"). Under this
identification the following quadratic form has an intrinsic meaning;

X=(& M) — 5 (171 =Cb(, )I—CFeb, 7o+ C& LxE>+ 3 [Pebl?.

Let A be the matrix expression of this form with respect to the symplectic
structure o. Eigenvalues of iA are real and —p is an eigenvalue of iA if
¢ is. As is shown in §4, 1A has at most n—1 positive eigenvalues, which
we denote by p,(xo) -+ ptn-:(x,). Then Anders Melin’s result combined with
our previous result gives the following

THEOREM 1. The estimate [(1.4) holds for any function u in CQ) satisfying
Bu| =0 if and only if the following conditions hold:

(i) At every point x on I', [b(0)|=1.

(ii) At every point x, on I' where |b(x,)| =1, the following inequality holds ;

1.5 {11(x0)+ +ﬂn—1(xo)+wxo(b(x0)» b(xe)—nM(xg)+2a(x)—Tr Vya>0.

Estimating the sum pg,(x))+ -+ +p.-,(x,), we have the following theorems.
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THEOREM 2. If the estimate (1.4) holds, then the following two conditions
hold : : : |
(i) [b6(x)|=1 at every point x on I'.
(i) At every point x, on I" where |b(x,)|=1 the following inequality holds;

(1.6) V=T (5 Tr (L) +Tr b} xb)—Tr (755

— 5 b, L) > — P aagb]7) 3
@ (b(ts), b)) —nM(xo)+2ao(x)—Tr Fya > 0.

THEOREM 3. The estimate (1.4) holds for any u in C¥Q) with Bulp=0 1if
the following conditions (a) and (b) hold:

(a) |b(x|=1 at every point x on I'. v

(b) At every point x, where |b(x,)|=1 the following inequality holds;

a.n (,% Tr L(x)+Tr' (W b)Y «b)—Tr (F «b)*

— 5 <), LD () — | Pocanh|7) *
g (B(xe), b(x))—nM(x)+2a5(x)—Tr Fra > 0.

COROLLARY 4. In the case n=2, the estimate (1.4) holds if and only if the
conditions (i) and (ii) of Theorem 2 hold.

§ 2. Greeh’s formula.

Let S be the unit circle, whose generic point will be denoted by s. For
any C=(2xS)-function u(x, s), its restriction ¢(x, s) to I'xS is a C=(I"xS)-
function. We can uniquely solve the Dirichlet problem:

. 82 . .
.1 <A+ 8?12 —)w(x, s)=0 in 2xS

w(x, s)| rxs = @(x, s) on I'xS.

We shall denote by 2 the Poisson operator ¢ —w. Setting v=u—w, we have
decomposition of any C=(xS) function u:

2.2) u=v+w.
If » satisfies the boundary condition
Bu(x, s)|rxs=0, xel', se8,

then Green’s formula implies that
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2.3) —Re [[(4 +~aa£2—)u #dxds

2x8
2

= —Re J:f (A—l— aasz )vﬁdxds+Re jf To(x, s)p(x, s)dy ds,

2x8 I'xs

where dy is the hypersurface element of /. The operator T is a pseudo-
differential operator of order 1 on /XS defined by

@4 To=29%

+(a+ib)p+(ao+ibop .

I'xs

In [4] it is proved that the estimate holds if and only if the following
estimate

(2.5) Re (T§D, SD)+C1||§0||__;2 = Co”§9”o2 ’ Co>0, C,=Const.

holds for any ¢ in C>(I'XS).

In the next section we shall calculate the symbol of Re T near an arbitrary
point x, on I'.

§ 3. Symbol of T.

Poisson operators can be described, modulo C~-operators, by their symbols
(cf. [2], [3] [6] [10]. First we shall calculate the symbol of P in our case
and next that of the operator 7. We will take the following coordinate
system: We fix an arbitrary point x, on I'. We make J¥,.,-axis coincide
with the direction of the interior normal and the hyperplane y,.,=0 coincide
with the tangent hyperplane of I at x,.

Then £ is given by

3.1 Ynr—e(¥) >0,

where ¢(y’) is a C*=-function of variables y’ =(y, ---,¥,). We may assume
that the Taylor expansion of ¢(3’) is given by

(3.2) <p(y’)=?w,-yj2+”2kw,-,-kyiy,-yk+0(lyI“)

where w;, w;;, are constants satisfying

3.3) Wpij = Wijp = Ojig .

Whenever we take summations with respect to indices 1, j, &, ---, these indices

range from 1 to n independently. Einstein’s convention will not be used.
For any two real vectors & =(§,, -+, &,), n=(n,, ---, 7,) tangent to I at x,,
the bilinear form ,(§, 7)) =222 w;§;7; is the second fundamental form.
i
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2/n ¥ w; is the mean curvature M(x,) of I" at x, (cf. [7].
J

Now we choose a new -coordinate system x=(x’, Xpsy), X' =(Xy, -+, Xn)
given by

0p_
Xnar ax )
(3.4) V== Xy~ — 1=12,3,- ,
\ 1+Z‘( ov.
Vs = @A)+ ——mn EmEL
NI
. (yv A 7yn+l) s
In fact, the Jacobian >+ equals one at the origin and
D( Xy xn+1)
(x4, =+, Xn+) can be a coordinate system in some neighbourhood of the origin.
We have the Taylor expansion
3.5 X =Y;+F20; Y Vpa1+40.°Y, Vo' —20; yz(:z w;¥;%)

+3Vns1 Z;: ;1Y YO Y] 9,
J

Xnyy = VYna 1‘; ®;Y;"—2 (;‘ wizyiz)yn—kl—ijzk Wil yjyk+0( [y .
The metric is ‘
ds®= dy12+ +dyn+12
=2] (l_zwixn+1)2dxi2’+4(z w;x;dx)?
—12xp44 ch wijkxkdxidxj+dxn+12+0(| x|®|dx|?).
1j

The symbol of the Laplacian —(A+~aa;f) on 2xS is given by
(3.6) EJI A+40 ;204 + 1202 5,0+ O x| DE P+ Epai®+ 07
+ %) (12xn+1(§ %) — 4w ,w ;x40 x| PDEE;
—2i 3 (~ 2D 0.0,5)+ 35ns( T wii)+0( 2 DE,
+2i(§)w,~+2xn+1 ?wﬁ—kBTijmxﬁrO(lxtz))Em .

2
Let A,(x, &, £,44, 0) denote the principal symbol of —-(A—I-a—asz')- This is a

polynomial of &,., of degree 2. 7% () denotes the root of A,(x/, 0, &, &,41, )

with positive (negative, respectively) imaginary part. 7* has the Taylor
expansion

3.7 ¢ =+i(p,—2p,7" Z‘,wlw ----- ;10 x|®)
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where
1
101:(|5/|2+02)2 y 5/':‘(517 ""757!.):"' A "
Let f(x, & 0)=f_,(x, & o)+ f_s(x, & o)+ --- be the symbol of the fundamental

2
solution & of —4— 3%7- and its asymptotic expansion. Then the principal

symbol is v
3.8 foalx, &, 0)= P'2_4P_4xn+1(24’1512
+1607 s (@56, — 1207 xn;ﬂ(zwﬁm
—9'42(12xn+1(2wmxk) 40,0;x; ,)E 5;
Cotodset, |
where p= \/Iélz—}—a The second symbol is | L | L
(3.9 F-s(x, &, 0) = —21&,4,(4p0” 6Zw1512+p'42w;)+0(lxl)p'3

Now we shall denote by T+ a pseudo-differential operator on I'XS with the
symbol z+. We consider the mapping Q: CP(I" X S)—»ngeC“’(Q_XS) defined

(3.10) Qo = 97(

where 6(I'XS)RQ ¢ is the distribution defined by

UXS). @ p—a(Ix )@ T*0),

DR XS)> ¢ —> J'rxs¢|rxsgod;' ds.

Since the mapping Q is defined by 3.10), © is a pseudo-Poisson operator in
the sense of Boutet de Monvel (cf. [2], [3], [6], [10]). Its symbol has an
asymptotic expansion with respect to homogeneous degree of (x,.,7% &)
Following Theorem A.8 in appendix of [3], we shall calculate a few terms
of it. The symbol of Q is given by the formula:

lelzn+lr++(27r) j‘ xn+1 a a f—2(x O 5 En'!-l’ a)(En+1_T )elxn+15n+1d$n+1
—@nf ?‘a‘é,f foax’, 0, &, Ensas o)(”’”'ax‘,.‘f') eiTneifniidg,,,

+(27t>_1j._°°f—3(x’, 07 E/, En+1’ 0')(51;4-1—T_)eixn+1$n+1d5n+1

+O0((*n410.7)

. -1
—_ -z C 2 Twiw;iTix ;E48 §+0C 12" 18))
1e n+1{01 Pli'lJlJlJ

—ixn+1(2‘ a)jsz+3q2kwijkxk$i51+0(l X' 5) @xpsy0," 0y De " Fn+1P1
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'T'(]zk @ ;018 X620, N2 X 410172 20,740 x7 |))e Fnt11

. . Xn 2 1: . . i a -‘L"n,
Hi((S o AT =y ) H(E 0) =)™ ) erieen
where o, =+/[&"F0o*. ‘ | -
This implies that the mapping K:¢—Q¢|pr.s is an elliptic pseudo-dif-.
ferential operator of order 0. Its symbol is
: 1 N | -
1(1_*2*(;0)1512)01 3—*2*(; ;)P + > :

Let K“® be its parametrix. Then as is proved in [3], [5] and [10],. the
operator

o Pp=a(i XX g kovp s x QT+ >p)

coincides with the operator @ modulo smooth operators. The symbol of the
operator £ is

3.12) e~ Fn41lp1=2017 B0z € PRROCI'I2)
'~xn+1(<§ @,€,2)py 20| x/ e Fn101
+xn+1(]2 @;+0( x| Ne 1214+ 0((xp 410, D) -

So the mapping ¢— Q;Z:;g - is a pseudo-differential operator with its prin-
X8
cipal symbol ‘

(3.13) p1—2pl‘1<j2 w;x;E) 0 x5 .
And its second symbol is
(3.14) (‘12 wjsz)fh_z_;wj““o“ x').
Now we assume that the real vector fields a and b are expressed as follows:
(3.15) a() = S (e, + Dm0 x| 5
j k J
0

(3.16) b(x) =2 (B +2Biuxe+ 2 Biuxexi+0( x7|%) ox.

. . i 3 Kl . 7

Using these, we can write down the Taylor expansion of the symbol of the
operator Re 7. Its principal symbol ¢,(x, s, &, o) is

3.17) tix, s, & o) = p1—2p1"1(§j]a)jxj{:j)?
—%)(ﬁj'f‘;ﬁjkxk“{‘%) ﬁjktxkxt)fj
+0(x"Dp,.
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And the second symbol ¢4(x, s, &, o) is
t(x, s, &, 0) = ijjéﬁpf"’—gwﬂ-ao(xo)—%;ajj%—o(lx’l)-

‘We have the following coordinate free expression:

B1® (x5, & = 5 prtwus, H— h-Mx)+ar)— 5 TrFxa.

§4. Proof of Theorems.
Assume that [(x;))=0 at x, on I'. This means that

(4.1) =8 =1

if we make use of the coordinate expression. The condition [(x) =0 implies
that

“.2) zj:.Bj‘Bjk =0

and that its Hessian L(x,) at x, is a non-negative symmetric matrix. Using
coordinates expressions (3.15) and (3.16), we obtain

(4.3 ‘ é‘ <xy Lixgxy= —4(; wjxjﬁj)z-%: (Zk: ﬁjkxk)z_zj% BiBjxiXiXy ,

where {, ) is the inner product in the tangent space T,,(I"). Since |Fyb|*=
Zj}(zk) Bixnu)? for any p= (%, -+, 9,) in Ty(I"), we have

@4 ~A(S 07,80 25 Bibowirine =5 <7, L+ IVabI*.

The principal symbol #, vanishes at the point where x=0, £=8, 6=0. We
can calculate its Hessian H(x, there. We have

1
@5 % <X, HX>= 27(2 7" +o%)— %(2 Bin)*— 2 BorXklp
J J Dk
—2(= wjﬁjxj)z_’z;ejﬁjklxkxz ’
J ki
where X is a column vector (xi, -, Xu %1, =+, Ony S, 0) of (2n+2) components.

&« X, Y>> is the inner product which is the polarization of the quadratic
form X— 3 x,2+37,°+s*+0%. We introduce nXn matrices:
7 7

(1)12.312: @0, 3,35+ wlwn,Bx.Bn ;ﬁjﬁju zj:ﬁjﬁjlﬂ
A= a)zwx:‘Blﬁ2 ............... . B= ;ﬁj:ﬂjzl s ::
wnw;ﬁlﬁn ............... 2B ;ﬁj-ﬁjnl ;ﬁjﬂjnn
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Buy ceeeeeees Bin B2 e 8.8,
Bay eeeeees Ban BaBy rreeeee B.2
1
: 0
I =
0 1
We have
—4A—2B, —C, 0, 0
—-C, I—D, 0, 0
H—=
0, 0, 0, 0
0, 0, 0, 1
]0! 0’ 0
Finally we introduce 2n-+2 square matrix ]:( 0, 0, —1 ) where J, is the
0, 1, 0

2n X 2ngmatrix J, =< 5.)’ _é) Since H is given as the Hessian of the principal

symbol #, which is non-negative if we assume that |[b(x)|<1, H is a non-
negative matrix. This implies that eigenvalues of JH are pure imaginary.
If 1 is its eigenvalue, then its complex conjugate is also its eigenvalue.

The matrix (% _(I)X 8: (1)> is nilpotent. The positive eigenvalues of iJH

o _ .t
coincide with those of i/,H, H, being the matrix H,=("*472% I—S .

Since the principal symbol of the operator Re T is homogeneous in (&, o), the
rank of H, is at most 2n—1. This implies that the number of positive eigen-
values of iJ,H, is at most n—1. Let p,(x,), -+, ttn-1(x,) denote non-negative
eigenvalues of i/,H,, Anders Melin’s theorem leads us to

THEOREM 1. The estimate (1.4) holds for any function u in C(9) satisfying
Bulp=0 if and only if the following conditions hold:

1) At every point x on I', |b(x)| < 1.

2) At every point x, on I" where |b(x,)| =1, the following inequality holds:

“.6) 5 (alx)t pas(i)+Re£4>0,
where
Re fo =5 wuy(b(x), b~ M(x)+a,(x)—-5- T Fsa.

Since
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1 1
(#12+ +#n-12)2 é/«‘l’*‘ +#n_1§ \/n__l(‘ulz_l_ +ﬂn—12)2 ,

we have

1

A (= 5 Tr(HY) < mE+ - + tamr(x)
[E— - 1
V=1 (=5 Tr(LH)?.
Using coordinate expression, we have
“4.8) Tr (JoH)?=2(Tr C*—Tr (I—D)(—4A—2B))
:2(,%2 ﬁpk,Bk,,—}—llz?wjzﬁjz—{—ZiZj BiBij;

—4 %ijkﬁj2‘3k2—2“Zk,@iﬁkﬂjﬁijk) .

Using (4.4) we obtained that

4.9 Tr(JoH)? = 2(—-f ; Tr L(x)—Tr ‘(V*b)(V*b)+Tr F «b)?

+ 5 <o, LEIDED >+ Pacanh ).

Combining these, we have proved

THEOREM 2. If the estimate (1.4) holds for any u in C¥Q) satisfying
Bu| =0, then the following conditions hold:

i) At every point x on I, |b(x)| < 1.

i) At every point x, on I' where |b(x,)|=1 the following inequality holds :

(4.10) V=T ( % Tr L(x)+Tr ‘(7 b7 sb)—Tr (7 4b)?

1 N\ L
— 5 <b(x), LxIb(xD)>— |V acob|?) ?

+@zo(b(x0), b(x0))—nM(x0)+2ax)—Tr Fxa>0.

And we also have

THEOREM 3. The estimate (1.4) holds for any u in C*Q) satisfying Bu|r=0
if the following two conditions hold:

(a) At every point xe I, |b(x)| 1.

(b) At every point x, where |b(xy)| =1, the inequality (4.11) holds;

@.11) (‘5 Tr LG)+Tr Tab)(Fsb)—Tr (7 4b)
— 5 b0, LOb() > W seab12)

F@50(b(x0), b(x6)) —nM(x0)+2a(x0)—Tr Fxa >0.
is a trivial consequence of these theorems.
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