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\S 1. Introduction.

In the paper, we study $PL$ manifolds which are related by h-cobordisms.
Suppose that we are given a $PL$ manifold $M$ of dimension $n\geqq 5$ with $\pi_{1}(M)$

$=G$ . An element $\tau$ of $\%^{1}h(G)$ operates cn $M$ in such a way that the result
$ M\cdot\tau$ of the operation is the right end of an h-cobordism $U$ from the left end
$M$ with $\tau(U, M)=\tau$ . This operation is called an interior operation. A result
of Milnor ([15], Theorem 11.5) was concerned with the inertia group of this
interior operation. If $M$ is located on the boundary of a $PL$ manifold $W$ of
dimension $n+1$ , then we obtain a new $PL$ manifold pair $(WUU, Mc\tau)$ , of
which we may think as to be obtained from $(W, M)$ by an operation of $\tau$ .
This operation is called a boundary operation. A study of the boundary
operation gives us a rough information about $PL$ homeomorphism $clas^{Q}.es$ of
compact $PL$ manifolds whose interiors are $PL$ homeomorphic.

In order to make rigorous definitions of these operations (especially the
boundary operation) we need Corollary 2.3 which is deduced from the existence
and uniqueness Theorem of embedded h-cobordisms (Theorems 2.1 and 2.2).
These are slight modifications of results for abstract h-cobordisms due to
Stallings ([18], p. 250) and Milnor ([15], Theorem 11.3) and may be well-known.

In \S 3, we give the precise definition of the interior and boundary opera-
tions and obtain an extension of Milnor’s result for boundary operations, see
Theorem 3.4. In particular, for a compact $PL$ manifold $W$ of dimension
$n=odd\geqq 7$ , it is proved that there are finitely many distinct $PL$ homeomor-
phism classes (respectively h-cobordism classes) of compact $PL$ manifolds
whose interiors are $PL$ homeomorphic to Int $W$, provided that $\pi_{J}(bW)$ is finite
and that $\pi_{1}(W)=1$ (resp. $\pi_{1}(bW)\cong\pi_{1}(W)$), see Corollary 3.5.

Suppose that we are given an abstract regular neighborhood $N$ of a poly-
hedron $P$. For each element $\tau$ of $qj\nearrow h(\pi_{1}(bN))$ , we have a new neighborhood
$NUU$ of $P$ as the result of a boundary operation of $\tau$ on $(N, bN)$ , where $U$
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is an h-cobordism from $bN$ with $\tau(U, bN)=\tau$ . This neighborhood may not
be, in general, a regular neighborhood of $P$. Thus we extend the notion of
regular neighborhoods to the notion of homotopy neighborhoods (h-neighbor-

hoods) in \S 4. In virtue of Theorems 2.1 and 2.2, we can establish a theory
of h-neighborhoods, which may be regarded as extension and improvement of
Mazur’s simple neighborhood theory [13]. A characterization of regular
neighborhoods is obtained from the viewpoint of simple homotopy theory.

In \S 5, we investigate operations of Whitehead torsions on higher dimen-
sional knots and their cone ball pairs. A striking consequence is that given
a higher dimensional knot such that the Whitehead group of the knot group
is non-trivial, then we can produce a counter example of either of collapsing
and singularity, see Corollary 5.4.

It follows from results by Siebenmann and Sondow ([16] and [17]) that
there are counter examples for both topological invariance problems, see also
[8].

Finally, suppose that we are given a homotopy equivalence $f:Q\rightarrow P$.
Roughly speaking, we may consider the simple homotopy type of $P$ as to be
obtained from an operation of $\tau(f)$ on the simple homotopy type of $Q$ . Further,
if $N$ is a regular neighborhood of $P$ in $R^{n}$ and if $n\geqq 2\cdot\dim Q+2$ , then $N$

turns out to be a homotopy neighborhood of $Q$ in $R^{n}$ such that $(N, \partial N)=$

\langle $N^{\prime},$ $\partial N^{\prime}$ ) $\circ\tau(f)$ for a regular neighborhood $N^{\prime}$ of $Q$ in $R^{n}$ , see Lemma 6.1.
Thus the operation of a Whitehead torsion on a polyhedron can be covered
by the boundary operation of its regular neighborhood. From this viewpoint,
we prove two consequences in \S 6. One is that two polyhedra are homotopy
equivalent (resp. simple homotopy equivalent) if and only if their Thom com-
plexes are homeomorphic (resp. $PL$ homeomorphic), see Theorem 6.2. The
other is a reduction of topological invariance of simple homotopy types to $\epsilon-$

push invariance of regular neighborhoods of polyhedra in sufficiently high
dimensional euclidean space, which should be compared with our preceding
result [8].

Added in proof. Waldhausen has recently announced that the Whitehead
torsion is topologically invariant. Thus abstract regular neighborhoods of a
polyhedron with codimension $\geqq 3$ is topologically invariant, provided their
dimension $\geqq 6$ , see Corollary 4.4 and [8].

The author would like to thank Professor Tokushi Nakamura for suggest-
ing to him the notion of G-manifolds and the Sakkokai Foundation for sup-
porting the topology symposium of young fellows at Shinshu, where the
fundamental idea in \S 6 has been obtained from a discussion with Shigeo
Ichiraku.



Geometrical operations of Whitehead groups 525

\S 2. Embedded $h$-cobordisms.

$CoNVENTIONS$ . All polyhedra are to be compact, manifolds are to be
(orientable and) oriented and homeomorphisms of manifolds are to be orienta-
tion preserving. For the notion of Whitehead torsion ([19] and [15]), we shall
follow mainly Milnor [15]. However, for our purpose, the Whitehead torsion
$\tau(f)$ of a homotopy equivalence $f:P\rightarrow Q$ between polyhedra $P$ and $Q$ is de-
fined to be an element

$(\tau(f|P_{1}), \cdots , \tau(f|P_{q}))$ in $\subset Wh(\pi_{1}(P_{1}))\times\cdots\times wh(\pi_{1}(P_{q}))$ ,

if $P$ has the connected components $P_{1},$ $\cdots$ , $P_{q}$ . We extend naturally the nota-
tions for Whitehead torsions to those for sequences of Whitehead torsions.
For example, if $\tau=$ $(\tau_{1}, \cdots , \tau_{q})$ , then $\overline{\tau}=(\overline{\tau}_{1}, \cdots , \overline{\tau}_{q})$ . Further, for notational
convenience, by $Wh(\pi_{1}(P))$ we denote the group $Wh(\pi_{1}(P_{1}))X\ldots\times Wh(\pi_{1}(P_{q}))$ .

DEFINITIONS. Let $W$ be a manifold of dimension $n$ . By $bW$ and Int $W_{r}$

we denote the boundary and the interior of $W$, respectively. Let $M$ be a
submanifold of dimension $(n-1)$ in $bW$. We call the pair $(W, M)$ a manifold
couple of dimension $n$ . By a manifold triad of dimension $n$ we mean a triple
$(U;M, L)$ consisting from a manifold $U$ of dimension $n$ , submanifolds $M$ and
$L$ of $\partial U$ such that $bU=MUL$ and $M\cap L=bM=bL$ (possibly $ bM=\emptyset$). A
manifold triad $(U;M, L)$ is an h-cobordism, if both $M$ and $L$ are deformation
retracts of $U$ . For a manifold couple $(W, M)$ an h-cobordism $(U;M, L)$ is
called an embedded h-cobordism from $M$ in $W$, if $U$ is a submanifold of $W$

such that $bW\cap U=M$. Two manifold couples $(W_{1}, M_{1})$ and $(W_{2}, M_{2})$ are
boundary h-cobordant, if there is an h-cobordism $(U;M_{2}, L_{2})$ such that $(W_{1}, M_{1})$

is homeomorphic to $(W_{2}UU;L_{2})$ . These definitions are valid for the piecewise
linear $(PL)$ or smooth categories. In particular, in the smooth case, $U$ should
be required to be a smooth manifold with corner, if $ bM\neq\emptyset$ .

In the following we restrict ourselves in the $PL$ category. The desired
results for the smooth case are also obtained by Hirsch’s method ([5] and
[4]).

First of all we state the uniqueness and existence Theorems for $PL$ em-
bedded h-cobordisms.

THEOREM 2.1 (Existence Theorem). Let $(W, M)$ be a $PL$ manifold couple
of dimension $n\geqq 6$ . Then for any element $\tau$ of $wh(\pi_{1}(M))$ and for any regular
neighborhood $N$ mod $(\overline{bW-M})$ of $M$ in $W$, there exists a $PL$ embedded h-cobor-
dism $(U;M, L)$ such that $\tau(U, M)=\tau$ . (Refer ([18], p. 250) and for relative
regular neighborhoods, see [6] and [7]).

PROOF. From the existence of a collar neighborhood of $bW$ in $W$ and
the uniqueness of relative regular neighborhoods $mod (\overline{bW-M})$ of $M$ in $W$,
we can take a $PL$ homeomorphism $h:(M\times I, M\times O)\rightarrow(N, M)$ such that $h(x,$ $ 0\rangle$
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$=x$ for all $x\in M$. On the other hand, according to Stallings ([18], p. 250),
there is a $PL$ h-cobordism $(U;M, L)$ such that $\tau(U, M)=\tau$ . In order to com-
plete the proof, it suffices to embed $U$ into $M\times I$ so that $U\cap b(M\times I)=$

$M(\equiv(M\times O))$ . For this, again form a $PL$ h-cobordism (V; $L,$ $K$) such that
$\tau(V, L)=-j_{*}\tau$ , where $j_{*};$ $\mathscr{U}h(\pi_{1}(M))\rightarrow^{C}tVh(\pi_{1}(L))$ denotes the isomorphism in-
duced from a composition $j:M\rightarrow L$ of the inclusion map $M\subset U$ and a homo-
topy inverse of the inclusion map $L\subset U$ . Then a triad $(UUV;M, K)$ is a
$PL$ h-cobordism with $\tau(UUV, M)=0$ . Since $n\geqq 6$ , it follows from the $PL$ s-
cobordism Theorem that there is a $PL$ homeomorphism $g:UUV\rightarrow M\times I$ so
that $g(x)=(x, 0)$ for all $x\in M$, (for the $PL$ s-cobordism Theorem, refer to
Kervaire [10] and Zeeman [20]). Now $g|U:U\rightarrow M\times I$ is the required em-
bedding, completing the proof.

THEOREM 2.2 (Uniqueness Theorem). Let $(W, M)$ be a $PL$ manifold couple
of dimension $n\geqq 6$ . Let $(U_{i} ; M, L_{i}),$ $i=1,2$ , be two $PL$ embedded h-cobordisms
from $M$ in $W$ such that $\tau(U_{1}, M)=\tau(U_{2}, M)(=\tau)$ . Then for any regular
neighborhood $N$ mod $(\overline{bW-M})$ of $U_{1}UU_{2}$ in $W$, there exists a $PL$ ambient
isotopy $h_{t}$ : $W\rightarrow W,$ $t\in I=[0,1]$ , such that $h_{0}=id.$ , $h_{t}|W-IntN=id$ . for all
$t\in I$ and $h_{1}(U_{1})=U_{2}$ . (Refer to [15], Theorem 11.3.)

PROOF. Let $N_{0}$ be a regular neighborhood $mod (\overline{bW-M})$ of $M$ in $W$ such
that $N_{0}\subset(IntU_{1}\cap IntU_{2})UM$. By Theorem 2.1, there is a $PL$ embedded h-
cobordism $(U;M, L)$ from $M$ in $N_{0}$ such that $\tau(U, M)=\tau$ . Putting $N_{i}=\overline{U_{i}-U}$,
$i=1,2$ , we observe that $(N_{i} ; L, L_{i})$ are $PL$ embedded h-cobordisms from $L$ in
$\overline{W-U}$. Since $n\geqq 6$ and $\tau(N_{i}, L)=0$ for each $i=1,2$ , it follows from the $PL$

s-cobordism Theorem that $(U_{i}, L)$ are $PL$ homeomorphic to $(L\times I, L\times O)$ , and

hence $U_{1}$ and $U_{2}$ are regular neighborhoods $mod (\overline{bW-M})$ of $L$ in $\overline{W-U}$ .
Therefore, by the uniqueness of relative regular neighborhoods, we have a
$PL$ ambient isotopy $h_{t}$ : $W\rightarrow W,$ $t\in I$, such that $h_{0}=id.,$ $h_{t}|UU\overline{W-N}=id$ . for
all $t\in I$, and $h_{1}(U_{1})=U_{2}$ , completing the proof.

Theorems 2.1 and 2.2 imply the following extension Theorem on which
the definition of operations of Whitehead groups on manifolds will be based.

COROLLARY 2.3 (Extension Theorem). Let $(U_{i} ; M_{l}, L_{i}),$ $i=1,2$ , be $PL$ h-
cobordisms of dimension $n\geqq 6$ . Then a $PL$ homeomorphism $f:M_{1}\rightarrow M_{2}$ extends
to a $PL$ homeomorphism $F:U_{1}\rightarrow U_{2}$ if and only if $f_{*T}(U_{1}, M_{1})=\tau(U_{2}, M_{2})$ .

PROOF. The necessity follows from the combinatorial invariance of White-
head torsions, (see [19] or [15]). To prove the sufficiency, we may assume
by Theorem 2.1 that $(U_{i} ; M_{i}, L_{i}),$ $i=1,2$ , are $PL$ embedded h-cobordisms from
$M_{i}\times 0(\equiv M_{i})$ in $M_{i}\times I$. Define a $PL$ homeomorphism $g:M_{1}\times I\rightarrow M_{2}\times I$ by
$g(x, t)=(f(x), t)$ for all $(x, t)\in M_{1}\times I$. Then $g(U_{1})$ is a $PL$ embedded h-cobor-
dism from $M_{2}$ in $M_{2}\times I$. Since from the assumption $\tau(U_{2}, M_{2})=f_{*}\tau(U_{1}, M_{1})$

and from the combinatorial invariance of Whitehead torsions $f_{*}\tau(U_{1}, M_{2})=$
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$\tau(g(U_{1}), M_{2})$ , it follows that by Theorem 2.2 there is a $PL$ homeomorphism
$h:M_{2}\times I\rightarrow M_{2}\times I$ such that $h|M_{2}\times 0=id$ . and $h\circ g(U_{1})=U_{2}$ . Thus the com-
position $F=h\circ g|U_{1}$ : $U_{1}\rightarrow U_{2}$ is the required extension of $f$, completing the
proof.

The following may be well-known, (for example, see [2]). However, the
author does not know the complete proof published and the argument of the
proof will be used later.

THEOREM 2.4. Let $(W_{i}, M_{t}),$ $i=1,2$ , be $PL$ manifold couples. Then $W_{1}-M_{1}$

and $W_{2}-M_{2}$ are $PL$ homeomorphic if and only if $(W_{1}, M_{1})$ and $(W_{2}, M_{2})$ are
boundary h-cobordant by an invertible $PL$ h-cobordism. (For invertible h-cobor-
disms, see [18], p. 249.)

PROOF. To see the necessity, suppose that there is an invertible $PL$ h-
cobordism $(U;M_{2}, L_{2})$ from $M_{2}$ such that $(W_{2}UU, L_{2})$ and $(W_{1}, M_{1})$ are $PL$

homeomorphic. By Stallings ([18], Theorem 2), $U-L_{2}$ is $PL$ homeomorphic
to $ M_{2}\times[0, \infty$) and hence $(W_{2}UU)-L_{2}$ is $PL$ homeomorphic to $W_{2}$– $L_{2}$ . It
follows from the assumption that $W_{2}$ – $L_{2}$ and $W_{1}$ – $L_{1}$ are $PL$ homeomorphic.

It remains to prove the sufficiency. For this, form an open $PL$ manifold
$W_{i}UM_{i}\times[0, \infty)$ and a compact polyhedron $ W_{i}UM_{i}*\infty$ from $W_{i}$ by attaching
an open collar $ M_{i}\times[0, \infty$) and a cone $ M_{i}*\infty$ naturally. Now we may assume
by the assumption that there is a $PL$ homeomorphism $ h:W_{1}UM_{1}\times[0, \infty$) $\rightarrow$

$W_{2}\cup M_{2}\times[0, \infty)$ . Since $ M_{i}*\infty$ is homeomorphic to a single point compacti-
fication of $ M_{i}\times[0, \infty$), the $PL$ homeomorphism $h$ extends to a (topological)
homeomorphism $ H:W_{1}UM_{1}*\infty\rightarrow W_{2}UM_{2}*\infty$ . If we put $C_{i}(m)=M_{i}\times[m, \infty)$

and $B_{i}(m)=bM_{i}\times[m, \infty)$ for each integer $m\geqq 0$ , then we have sequences
$\{C_{i}(m)U\{\infty\}\}_{m=0,1,2},\ldots$ and $\{B_{i}(m)U\{\infty\}\}_{m=0,1,2},\cdots$ of neighborhoods of $\infty$ in
$ M_{i}*\infty$ and $ bM_{i}*\infty$ , respectively. By choosing a suitable parameter $ t\in[0, \infty$),
if necessary, we may assume that

Int $C_{1}(0)U$ Int $B_{1}(0)\supset h^{-1}(C_{2}(1))$ ,

Int $C_{2}(1)U$ Int $B_{2}(1)\supset h(C_{1}(1))$ and

Int $C_{1}(1)U$ Int $B_{1}(1)\supset h^{-1}(C_{2}(2))$ .
Putting $U=\overline{h^{-1}(C_{2}(1))}-C_{1}(1),$ $M=h^{-1}(M_{2}\times 1)$ and $L=M_{1}\times 1$ , we will show that
both $M$ and $L$ are deformation retracts of $U$ . Since $M_{i}\times 1$ is a deformation
retract of $C_{i}(1)$ for each $i=1,2$ , both $M$ and $U$ are deformation retracts of
$h^{- 1}(C_{2}(1))=UUC_{1}(1)$ . Hence $M$ is a deformation retract of $U$ . In order to
show that $L$ is a deformation retract of $U$ , we prove that $C_{1}(1)$ is a defor-
mation retract of $h^{-1}(C_{2}(1))$ . To do this, we observe the following sequence
of homotopy groups:

$\pi_{p}(h^{- 1}(C_{2}(2)), x_{0})\rightarrow^{i}\pi_{p}(C_{1}(1), x_{0})\rightarrow^{j}\pi_{p}(h^{- 1}(C_{2}(1)), x_{0})\rightarrow^{k}\pi_{p}(C_{1}(0), x_{0})$

,
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where $x_{0}$ is a base point of $h^{-1}(C_{2}(2))$ , and $i,$ $j,$ $k$ stand for the homomorphisms
induced from the inclusion maps. Since compositions $j\circ i$ and $k\circ j$ are iso-
morphisms, so is the homomorphism $j$ for each $p\geqq 0$ . Hence, by the White-
head Theorem, $C_{1}(1)$ is a deformation retract of $h^{-1}(C_{2}(1))$ . Since $L$ and $U$ are
deformation retracts of $C_{1}(1)$ and $h^{-1}(C_{2}(1))$ , respectively, it follows that $L$ is
a deformation retract of $U$ . In the same way, we may prove that both $bM_{1}\times 1$

and $h^{-1}(bM_{2}\times 1)$ are deformation retracts of $h^{-1}(B_{2}(1)-B_{1}(1))$ . Therefore, a $PL$

manifold triad $(U;M,\overline{bU-M})$ is a $PL$ h-cobordism. The invertibility follows
from the construction of the h-cobordism. Consequently, putting $h(U)=U_{2}$

and $h(\overline{bU-M})=L_{2}$ , we have obtained an invertible $PL$ h-cobordism ( $U_{2}$ ; $M_{2}$

$\times 1,$ $L_{2}$) such that $h(W_{1}UM_{1}\times[0,1])=W_{2}UM_{2}\times[0,1]\cup U_{2}$ and $h(M\times 1)=L_{2}$ .
Therefore, $(W_{1}, M_{1})$ and $(W_{2}, M_{2})$ are boundary h-cobordant, completing the
proof.

\S 3. Operations of Whitehead groups on manifolds.

In the section, we define operations of Whitehead groups on manifolds
and manifold couples, called interior and boundary operations, respectively.
The precise definition is rather dull. However, we will give it as a pattern of
geometrical operations of Whitehead groups involved in the paper.

Before giving the definition of those operations, we define some notations.
All manifolds considered here are to be connected.

Let $M$ be a $PL$ manifold of dimension $n$ and let $\varphi:G\rightarrow\pi_{1}(M)$ be a homo-
morphism from a group $G$ to the fundamental group of $M$. Then the pair
$(M, \varphi)$ is called a G-manifold of dimension $n$ . A second G-manifold $(L, \psi)$ is
isomorphic to $(M, \varphi)$ , if there is a $PL$ homeomorphism $h:M\rightarrow L$ , called an
isomorphism, making a commutative diagram:

$wh(\pi_{1}(M))\rightarrow^{h_{*}}Wh(\pi_{1}(L))$

$\varphi_{*}\backslash $
$\nearrow\psi_{*}$

$7Vh(G)$

The isomorphism between G-manifolds is clearly an equivalence relation,
and the isomorphism class of $(M, \varphi)$ is again denoted by $(M, \varphi)$ . By a G-
manifold couple of dimension $n$ we mean a triple $(W, M, \varphi)$ obtained from a
$PL$ manifold couple $(W, M)$ of dimension $n$ and a G-manifold $(M, \varphi)$ . A second
G-manifold couple (V, $L,$ $\psi$) is isomorphic to $(W, M, \varphi)$ , if there is a $PL$ homeo-
morphism $h:(W, M)\rightarrow(V, L)$ , called an isomorphism, such that $h|M:(M, \varphi)$

$\rightarrow(L, \psi)$ is an isomorphism. The isomorphism between G-manifold couples is
clearly an equivalence relation, and the isomorphism class of $(W, M, \varphi)$ is
again denoted by $(W, M, \varphi)$ .
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Suppose that we are given a G-manifold couple of $(W, M, \varphi)$ of dimension
$n+1$ (respectively a G-manifold $(M,$ $\varphi)$ of dimension $n$), and that $n\geqq 5$ . Then
for each element $\tau$ of $\mathscr{U}h(G)$ , by taking a $PL$ h-cobordism $(U;M, M^{\prime})$ such
that $\tau(U, M)=\varphi_{*T}$ , we obtain a new G-manifold couple $(WUU, M^{\prime}, j\circ\varphi)$ (resp.
$(M^{\prime}, j\circ\varphi))$ , written $(W, M, \varphi)\circ\tau$ (resp. $(M,$ $\varphi)\circ\tau$), where $j;\pi_{1}(M)\rightarrow\pi_{1}(M^{\prime})$ is the
natural isomorphism $\pi_{1}(M)\cong\pi_{1}(U)\cong\pi_{1}(M^{\prime})$ . Corollary 2.3 guarantees us that
the isomorphism class of $(W, M, \varphi)\circ\tau$ (resp. $(M,$ $\varphi)\circ\tau$) depends only upon the
class of $(W, M, \varphi)$ (resp. $(M,$ $\varphi)$) and $\tau$ . A G-manifold couple $(W, M, \varphi)$ (resp.

G-manifold $(M, \varphi))$ is boundary h-cobordant (resp. interior h-cobordant) to
(V, $L,$ $\psi$) (resp. $(L,$ $\psi)$), if (V, $L,$ $\psi$) (resp. $(L,$ $\psi)$) is isomorphic to $(W, M, \varphi)\circ\tau$

(resp. $(L,$ $\psi)\circ\tau$) for some element $\tau$ of $\varphi h(G)$ . By $[W, M, \varphi]$ (resp. $[M,$ $\varphi]$)

we denote the set of all isomorphism classes of G-manifold couples (resp. G-
manifolds) which are boundary h-cobordant to $(W, M, \varphi)$ (resp. interior h-
cobordant to $(M, \varphi))$ . We define the boundary operation (resp. interior opera-
tion) of $7i^{1}h(G)$ on $[W, M, \varphi]$ (resp. $[M,$ $\varphi]$)

$[W, M, \varphi]\chi\varphi h(G)\rightarrow[W, M, \varphi]$

(resp. $[M,$ $\varphi]\times wh(G)\rightarrow[M,$ $\varphi]$) by

$((V, L, \psi), \tau)-(V, L, \psi)\circ\tau$

(resp. $((L,$ $\psi),$ $\tau)-(L,$ $\psi)\circ\tau$)

for all (V, $L,$ $\psi$) in $[W, M, \varphi]$ (resp. $(L,$ $\psi)$ in $[M,$ $\varphi]$) and for all $\tau$ in $\wp h(G)$ .
It is not hard to see that these maps are actually transitive operations.
The inertia groups $I[W, M, \varphi]$ and $I[M, \varphi]$ of these operations are sub-

groups of $Wh(G)$ consisting of elements $\tau$ of $Wh(G)$ such that

$(W, M, \varphi)\circ\tau=(W, M, \varphi)$ and

$(M, \varphi)\circ\tau=(M, \varphi)$ , respectively.

Since $Wh(G)$ is abelian and operates on $[W, M, \varphi]$ (resp. $[M,$ $\varphi]$) transitively,
if $\tau$ belongs to $I[W, M, \varphi]$ (resp. $I[M,$ $\varphi]$), then (V, $L,$ $\psi$) $\circ\tau=(V, L, \psi)$ (resp.
$(L, \psi)\circ\tau=(L, \psi))$ for any (V, $L,$ $\psi$) in $[W, M, \varphi]$ (resp. $(L,$ $\psi)$ in $[M,$ $\varphi]$). Thus
those operations make the sets $[W, M, \varphi]$ and $[M, \varphi]$ into abelian groups
which are isomorphic to $\wp A(G)/I[W, M, \varphi]$ and $\wp h(G)/I[M, \varphi]$ , respectively.
By $[W, M]$ and $[M]$ we denote the sets of $PL$ homeomorphism classes of $PL$

manifold couples which are boundary h-cobordant to $(W, M)$ and $PL$ manifolds
which are $PL$ h-cobordant to $M$. Then we have a natural map $[W, M, \varphi]\rightarrow$

$[W, M]$ and $[M, \varphi]\rightarrow[M]$ , which are clearly surjections, if $G=\pi_{1}(M)$ and $\varphi=id.$ .
Thus by investigating the groups $[W, M, \varphi]$ and $[M, \varphi]$ we can obtain rough
information about the sets $[W, M]$ and $[M]$ .

We turn to investigate those groups. First of all, we define an endomor-
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phism $d_{n}$ ; $q\nu h(G)\rightarrow\wp h(G)$ by $d_{n}(\tau)=\tau+(-1)^{n- 1}\overline{\tau}$ for all $\tau$ in $9Vh(G)$ . We list
here several remarkable properties of the subgroup $d_{n}\psi h(G)$ for a finite
group $G$ .

PROPOSITION 3.1. Suppose that $G$ is a finite group (resp. finite abelian group).
(1) In case $n=odd,$ $d_{n}\psi h(G)$ is isomorphic to $q\psi h(G)$ modulo finite groups

(resp. 2-torsions).
(2) In case $n=even,$ $d_{n}\varphi\nearrow h(G)$ is finite (resp. trivial).
(3) Given a G-manifold $(M, \varphi)$ of dimension $n\geqq 5$ , then $d_{n+1}\%^{\prime}h(G)$ is a

subgroup of $I[M, \varphi]$ . More precisely, if $(U;M, L)$ is a $PL$ h-cobordism such
that $\tau(U, M)=d_{n+1}(\tau)$ for some element $\tau$ in $wh(\pi_{1}(M))$ , then there is a $PL$

homeomorphism $h:M\rightarrow L$ such that $h|bM=id.$ .
PROOF. By ([15], Corollary 6.10 (resp. Lemma 6.7)), $\tau\equiv\overline{\tau}$ (modulo elements

of finite order) (resp. $\tau=\overline{\tau}$) for all $\tau$ in $wh(G)$ . Since $G$ is finite and hence
$c_{Wh(G)}$ is finitely generated, the statements (1) and (2) follow immediately. To
show (3), taking a $PL$ h-cobordism $V$ from $M$ with $\tau(V, M)=\tau$ , we put
$(U^{\prime} ; M, M^{\prime})=(\overline{b(V\times I)-M\times I};M\times O, bM\times IUM\times 1)$ . Then it is easily seen
that this is a $PL$ h-cobordism with $\tau(U^{\prime}, M)=d_{n+1}(\tau)$ and that there is a $PL$

homeomorphism $g:M\rightarrow M^{\prime}$ such that $g|bM=id.$ . Since $(U^{\prime}, M)$ and $(U, M)$

are $PL$ homeomorphic, we can pull back $g$ to the required one, completing
the proof.

The following is an immediate consequence of (3) and (1) in Proposition 3.1.
COROLLARY 3.2 (Milnor). Let $(M, \varphi)$ be a G-manifold of dimension $n=even$

$\geqq 6$ . Suppose that $G$ is finite (resp. finite abelian).

Then the group $[M, \varphi]=\psi h(G)/I[M, \varphi]$ is finite (resp. consists of elements
of order 2). In particular, there are only finitely many distinct $PL$ homeomor-
phism classes of $PL$ manifolds which are h-cobordant to $M$.

Further, we can get some informations about the group $[W, M, \varphi]=$

$\varphi h(G)/I[W, M, \varphi]$ as follows.
Let $(W, M, \varphi)$ be a G-manifold couple of dimension $n\geqq 6$ . In the rest of

the section, we fix the symbol $i;\pi_{1}(M)\rightarrow\pi_{1}(W)$ to denote a homomorphism
induced from the inclusion map $M\subset W$. Then we have a G-manifold $(W, i\circ\varphi)$ ,

which is called an associated G-manifold to $(W, M, \varphi)$ and written $|W,$ $M,$ $\varphi|$ .
The isomorphism class of $|W,$ $M,$ $\varphi|$ clearly depends only on the class of

$\backslash \langle W,$ $M,$ $\varphi$).

Now the endomorphism $d_{n}$ ; $\wp h(G)\rightarrow\varphi\nearrow h(G)$ plays a role to connect the
boundary operation on $[W, M, \varphi]$ and the interior operation of $[|W, M, \varphi|]$ .

LEMMA 3.3. Let $(W, M, \varphi)$ be a G-manifold couple of dimension $n\geqq 6$ .
Then we have an identity: $|(W, M, \varphi)\circ d_{n}(\tau)|=(W, i\circ\varphi)\circ\tau$ for all $\tau$ in $\wp h(G)$ .

In particular, the following holds.
(1) In case that $i_{*}\circ\varphi_{*}wh(G)$ is contained in $d_{n+1}9Vh(\pi_{1}(W)),$ $d_{n^{C}}Wh(G)$ is a
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subgroup of $I[W, M, \varphi]$ .
(2) In case $bW=M$ and $keri_{*}=0$ ,

$d_{n}I[W, i\circ\varphi]=I[W, M, \varphi]\cap d_{n^{C}}Wh(G)$ .
PROOF. By taking a $PL$ h-cobordism $(U;M, L)$ such that $\tau(U, M)=\varphi_{*}\tau$ ,

we put $V=(WUU)\times I$ and $\overline{bV-W}=W^{\prime}$ . Since a triad (V; $W,$ $W^{\prime}$ ) is a $PL$

h-cobordism such that $\tau(V, W)=i_{*}\circ\varphi_{*T}$ , we have $(W^{\prime}, i^{\prime}\circ\varphi)=(W, i\circ\varphi)\circ\tau$ ,

where $i^{\prime}$ : $\pi_{1}(M)\rightarrow\pi_{1}(W^{\prime})$ is a homomorphism induced from the inclusion map
$M\equiv M\times O\subset W^{\prime}$ . On the other hand, since $W^{\prime}=(\overline{bW-M})\times IUW\times 1UU\times O$

$UL\times IUU\times 1$ , it follows from Duality Theorem ([15], p. 394) that $(W^{\prime}, M, \varphi)$

$=(W\times 1, M\times 1, \varphi\times 1)\circ d_{n}(\tau)=(W, i\circ\varphi)\circ\tau$ . In particular, if $i_{*}\circ\varphi_{*}\varphi h(G)$ is con-
tained in $d_{n\$\cdot 1}(\varphi h(\pi_{1}(W)))$ , then for each element $\tau$ in $\wp h(G)$ there is an ele-
ment $\tau^{\prime}$ in $\zeta lVh(\pi_{1}(W))$ such that $i_{*}\circ\varphi_{*}\tau=d_{n+1}(\tau^{\prime})$ . From Proposition 3.1, (3),
we can take a $PL$ homeomorphism $h:W\rightarrow W^{\prime}$ such that $h|bW=id.$ , which
turns out to be an isomorphism between $(W^{\prime}, M, \varphi)=(W, M, \varphi)\circ d_{n}(\tau)$ and
$(W, M, \varphi)$ . This implies that $d_{n^{C}}Wh(G)$ is a subgroup of $I[W, M, \varphi]$ , proving (1).

In case $bW=M$ and $Keri_{*}=0$ , an isomorphism $h:(W, i\circ\varphi)\rightarrow(W^{\prime}, i^{\prime}\circ\varphi^{\prime})$

turns out always to be an isomorphism $(W, M, \varphi)\rightarrow(W^{\prime}, M, \varphi)$ , since $h(bW)$

$=bW^{\prime}$ and $h_{*}\circ i_{*}\circ\varphi_{*}=i_{*}^{\prime}\circ\varphi_{*}$ implies $(h|M)_{*}\circ\varphi_{*}=\varphi_{*}$ . Therefore $d_{n}I[W, i\circ\varphi]$

is a subgroup of $I[W, M, \varphi]$ . It follows that $d_{n}I[W, i\circ\varphi]=I[W, M, \varphi]$

$\cap d_{n^{C}}Wh(G)$ , completing the proof.
Consequently, we have the following.
THEOREM 3.4. Let $(W, M, \varphi)$ be a G-manifold couple of dimension $n\geqq 6$ .
(1) In case that $i_{*}\circ\varphi_{*}\psi h(G)$ is contained in $d_{n+1}\varphi h(\pi_{1}(W))$ , there is a

natural epimorphism

$c_{Wh(G)}/d_{n^{C}}Wh(G)\rightarrow[W, M, \varphi]\rightarrow 0$ .
(2) In case that $bW=M$ and $Keri_{*}=0$ , the endomorphism $d_{n}$ : $\psi h(G)\rightarrow$

$\varphi h(G)$ induces a monomorphism $\overline{d}_{n}$ : $[W, i\circ\varphi]\rightarrow[W, M, \varphi]$ which gives rise to
an exact sequence:

$\overline{d}_{n}$

$0\rightarrow[W, i\circ\varphi]\rightarrow[W, M, \varphi]\rightarrow\varphi h(G)/I[W, M, \varphi]+d_{n^{c}}Wh(G)\rightarrow 0$ ,

where $I[W, M, \varphi]+d_{n^{c}}WA(G)$ is the smallest subgroup of $\varphi\nearrow h(G)$ containing
$J[W, M, \varphi]$ and $d_{n^{C}}Wh(G)$ .

(3) In case that $G$ is finite abelian and $n$ is even, then the operation of
$\wp h(G)$ on $[W, i\circ\varphi]$ is trivial

$I[W, i\circ\varphi]=\wp h(G)$ .
PROOF. The statements (1) and (2) are immediate consequences of Lemma

3.3. Since if $G$ is finite abelian, then each element of $\wp h(G)$ is self conjugate,
it follows that if $n=even$ , then $d_{n}(\tau)=\tau+(-1)^{n- 1}\overline{\tau}=0$ . Hence (3) also follows
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from Lemma 3.3, completing the proof.
In case that $G$ is finite, we have the following consequence.
COROLLARY 3.5. [I] Let $(W, M)$ be a $PL$ manifold couple of dimension

$n=odd\geqq 7$ . Suppose that $\pi_{1}(M)$ is finite.
(1) In case $\psi h(\pi_{1}(W))=0$ , there are finitely many distinct $PL$ homeomor-

phism classes of $PL$ manifolds whose interiors are $PL$ homeomorphic to Int $W$.
(2) In case $bW=M$ and $i_{*}:$ $Wh(\pi_{1}(M))\cong Wh(\pi_{1}(W))$ , there are finitely many

distinct $PL$ h-cobordism classes of $PL$ manifolds whose interiors are $PL$ homeo-
morphic to Int $W$.

[II] Let $W$ be a $PL$ manifold of dimension $n=even\geqq 6$ . Suppose that
$i_{*};$ $\psi h(\pi_{1}(bW))\cong\eta\nearrow h(\pi_{1}(W))$ and $\pi_{1}(W)$ is finite abelian. Then a $PL$ manifold
which is h-cobordant to $W$ is $PL$ homeomorphic to $W$.

PROOF. Notice that if a $PL$ manifold couple $(V, L)$ (resp. $PL$ manifold $L$)

is boundary (resp. interior) h-cobordant to $(W, M)$ (resp. $M$ ), then we may
take an isomorphism $\varphi;\pi_{1}(M)\rightarrow\pi_{1}(L)$ so that $\pi_{1}(M)$-manifold couples $(W, M, id.)$

and (V, $L,$
$\varphi$) (resp. $\pi_{1}(M)$-manifolds $(M,$ $id.)$ and $(L,$ $\varphi)$) are isomorphic. By

Theorem 2.4, this reduces the proof of [I] and [II] to computing the orders
of groups $[W, M, id.],$ $[W, M, id.]/[W, i\circ id.]$ and $[W, id.]$ . Hence [II] follows
from Theorem 3.4, (3), since $i_{*}:$ $9Vh(\pi_{1}(bW))\cong\psi h(\pi_{1}(W))$ , and [I] follows from
Theorem 3.4, (1) and (2) together with Proposition 3.1, (1), completing the
proof.

\S 4. Homotopy neighborhoods.

Let $W$ be a $PL$ manifold of dimension $n$ and let $P$ be a subpolyhedron $of^{-}$

dimension $p$ in $W$.
A homotopy neighborhood (abbreviated by h-neighborhood) of $P$ in $W$ is.

defined to be a $PL$ submanifold $N$ of dimension $n$ in $W$ satisfying the follow-
ing conditions (1) and (2):

(1) $ P\subset$ Int $N$, (necessarily $ P\subset$ Int $W$), and
(2) for any derived neighborhood $D$ of $P$ in $N,$ $(\overline{N-D};bD, bN)$ is an h- $\cdot$

cobordism. (For derived neighborhoods, see [20].)

REMARK. In virtue of the uniqueness of derived neighborhoods, the con-
dition (2) may be replaced by a condition

(2) for some derived neighborhood $D$ of $P$ in $N,$ $(\overline{N-D};bD, bN)$ is an h-
cobordism.

For example, if $P\subset IntW$, then by the regular neighborhood annulus
Theorem, regular neighborhoods are h-neighborhoods, (see [6]).

By an abstract h-neighborhood (resp. abstract regular neighborhood) of
dimension $(n, p)$ , we mean a polyhedral pair $(N, P)$ such that $N$ is a $PL$ mani-
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fold of dimension $n$ which is an h-neighborhood (resp. regular neighborhood)
of a polyhedron $P$ of dimension $p$ in $N$. A characterization of an abstract
h-neighborhood is as follows:

THEOREM 4.1. Let $(N, P)$ be a pair consisting of a $PL$ manifold $N$ and a
subpolyhedron $P$ of $N$.

Then $(N, P)$ is an abstract h-neighborhood if and only if
(1) $P\subset IntN$,
(2.1) $P$ is a deformation retract of $N$ and
(2.2) for some derived neighborhood $D$ of $P$ in $N$, the inclusion maps $bN$

$\subset N-P$ and $bD\subset N-P$ induce isomorphisms $\pi_{1}(bN)\cong\pi_{1}(N-P)$ and
$\pi_{1}(bD)\cong\pi_{1}(N-P)$ .

PROOF. Under the common condition (1) $P\subset IntN$, we will show that the
condition (2) in the definition of the h-neighborhood is equivalent to the con-
ditions (2.1) and (2.2) in Theorem 4.1.

For this taking a derived neighborhood $D$ of $P$ in $N$, we put $A=\overline{N}\overline{-D}$.
Recall a well-known fact that $bD$ is a deformation retract of $D-P$. Hence $A$

is a deformation retract of $N-P$. Thus (2) implies (2.1) and (2.2). Conversely,
(2.2) implies that the inclusion map $bD\subset A$ and $bN\subset A$ induce isomorphisms
$\pi_{1}(bD)\cong\pi_{1}(A)\cong\pi_{1}(bN)$ . Following Milnor ([14], Lemma 2), we may deduce
that $(A;bD, bA)$ is an h-cobordism as follows:

Let $\hat{A}$ be the universal covering space of $A$ . Since $\pi_{1}(bN)\cong\pi_{1}(A)\cong\pi_{1}(bD)$ ,
the restrictions $ bN\wedge$ and $ bD\wedge$ over $bN$ and $bD$ of $\hat{A}$ are also universal covering
spaces of $bN$ and $bD$ , respectively. Notice that $ H_{k}(\hat{A}, bN)\wedge$ and $ H_{k}(\hat{A}, bD)\wedge$ can
be identified with $H_{k}(A, bN;\mathcal{G})$ and $H_{k}(A, bD;\mathcal{G})$ , where $\mathcal{G}$ is the integral
group ring over $\pi_{1}(A)$ . Then by the excision, we have

$H_{k}(\hat{A}, bD)\wedge\cong H_{k}(A, bD;\mathcal{G})\cong H_{k}(N, D;\mathcal{G})=0$

for all $k$ , since by (2.1) $D$ is a deformation retract of $N$. Therefore, by the
Whitehead Theorem $bD$ is a deformation retract of $A$ . By Poincar\’e duality,
we have

$H_{k}(\hat{A}, bN)\wedge\cong H_{k}(A, bN;\mathcal{G})\cong H^{n- k}(A, bD;\mathcal{G})=0$ ,

since $bD$ is a deformation retract of $A$ . Again by the Whitehead Theorem,
$bN$ is a deformation retract of $A$ . It follows that $(A_{j}bD, bN)$ is an h-cobor-
dism, completing the proof.

An implication of Theorem 4.1 is the topological invariance of the abstract
h-neighborhood;

COROLLARY 4.2. Let $(N, P)$ be a pair consisting from a $PL$ manifold and
ut subpolyhedron $P$ of $N$.

If $(N, P)$ is homeomorphic to an abstract h-neighborhood, then $(N, P)$ is
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itself an abstract h-neighborhood.
PROOF. Let $(N^{\prime}, P^{\prime})$ be an abstract h-neighborhood and let $ h:(N, P)\rightarrow$

$(N^{\prime}, P^{\prime})$ be a homeomorphism.
It is clear that $P$ is a deformation retract of $\Lambda^{\gamma}$ and $\pi_{1}(bN)\cong\pi_{1}(N-P)$ ,

since $h|N-P$ is also a homeomorphism. To complete the proof, it remains
to prove that $\pi_{1}(bD)\cong\pi_{1}(N-P)$ for some derived neighborhood $D$ of $P$ in $N$.
For this, by making use of the fact that $h$ is a homeomorphism, we take
derived neighborhoods $D$ and $D_{1}$ of $P$ in $N,$ $D^{\prime}$ and $D_{1}^{\prime}$ of $P^{\prime}$ in $N^{\prime}$ , respec-
tively so that $h(D)\subset IntD$ ‘, $D_{1}^{\prime}\subset Inth(D)$ and $ h(D_{1})\subset$ Int $D_{1}^{\prime}$ . By the regular

neighborhood annulus Theorem, $\overline{D-D_{1}}$ and $\overline{D^{\prime}-D}_{1}^{\prime}$ are $PL$ homeomorphic to
$bD\times I$ and $bD^{\prime}\times I$, respectively. Hence by the same argument as in the proof

of Theorem 2.4, we have $\pi_{1}(h(bD_{1}))\cong\pi_{1}(\overline{D^{\prime}-D}_{1}^{f})$ . Since $\overline{D^{\prime}-D}_{1}^{\prime}$ is a deforma-
tion retract of $N^{\prime}-P^{\prime}$ and $h|N-P$ is a homeomorphism, it follows that $\pi_{1}(bD)$

$\cong(\pi_{1}(N-P))$ . Now Theorem 4.1 completes the proof of Corollary 4.2.
We will establish the uniqueness and existence Theorem of h-neighbor-

hoods of $P$ in $W$. For this, we define the Whitehead group $c_{Wh(P}W$ ) of $P$

in $W$ as follows: Suppose that $P\subset IntW$. Let $D$ and $D^{\prime}$ be derived neigh-
borhoods of $P$ in $W$. By the uniqueness of regular neighborhoods, for any
derived neighborhood $D_{0}$ of $P$ in Int $D\cap IntD^{\prime}$ , there is a $PL$ homeomorphism
$h:W\rightarrow W$ so that $h(D)=D^{\prime}$ and $h|D_{0}=id.$ . This gives a canonical isomorphism

$(h|bD)_{*}:^{c}Wh(\pi_{1}(bD))\cong wh(\pi_{1}(bD^{\prime}))$ .

Thus the Whitehead group $c_{Wh(P}W$ ) is defined as the projective limit of
$\epsilon_{Wh(\pi_{1}(bD))}$ for any derived neighborhood $D$ of $P$ in $W$.

The torsion $\tau[N, P]$ of an h-neighborhood $N$ of $P$ in $W$ is defined as an
element of $cWh(P, W)$ corresponding to a Whitehead torsion $\tau(A, bD)$ for some
derived neighborhood $D$ of $P$ in $N$.

The uniqueness of regular neighborhoods and the combinatorial invariance
of Whitehead torsions guarantee us that the torsion $\tau[N, P]$ is well-defined in
$\mathscr{U}h(P, W)$ .

The uniqueness and existence Theorem of h-neighborhoods are stated as
follows:

THEOREM 4.3. Let $W$ be a $PL$ manifold of dimension $n\geqq 6$ and let $P$ be $\alpha$

subpolyhedron of Int $W$.
EXISTENCE THEOREM. For any element $\tau$ of $Wh(P, W)$ and for any open

neighborhood $U$ of $P$ in $W$, there exists an h-neighborhood $N$ of $P$ in $W$ such
that $\tau[N, P]=\tau$ and $N\subset U$ .

UNIQUENESS THEOREM. Let $N$ and $N^{\prime}$ be h-neighborhoods of $P$ in $W$ such
that $\tau[N, P]=\tau[N^{\prime}, P]$ . Then for any derived neighborhood $D$ of $P$ in Int $N$

$\cap IntN^{\prime}$ , there exists a $PL$ homeomorphism $h:N\rightarrow N^{\prime}$ such that $h|D=id.$ .
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Further, if $NUN^{\prime}\subset IntW$, then for any open neighborhood $U$ of $NUN^{\prime}$ in $W$,

we can take a $PL$ ambient isotopy $h_{t}$ : $W\rightarrow W^{\prime},$ $t\in I$, so that $h_{0}=id.,$ $h_{t}|DU$

$W-U=id$ . and $h_{1}(N)=N^{\prime}$ .
PROOF. This follows immediately from Theorems 2.2 and 2.3.
A characterization of the regular neighborhood is obtained from Theorem

4.3, (Uniqueness Theorem).

COROLLARY 4.4. Let $W$ be a $PL$ manifold of dimension $n\geqq 6$ and let $P$ be
a subpolyhedron of Int $W$ .

Then a $PL$ submanifold $N$ of dimension $n$ in $W$ is a regular neighborhood

of $P$ in $W$ if and only if $N$ is an h-neighborhood of $P$ in $W$ with $\tau[N, P]=0$ .
This together with Corollary 4.2 gives a topological invariance theorem

of abstract regular neighborhoods in a special case:
COROLLARY 4.5. Let $(N, P)$ be a pair consisting of a $PL$ manifold $N$ of

dimension $n\geqq 6$ and a subpolyhedron $P$ of Int N. Suppose that $cWh(P, N)=0$ .
If $(N, P)$ is homeomorphic to an abstract regular neighborhood, then $(N, P)$

is itself an abstract regular neighborhood.
We consider of the special case $\dim W-\dim P\geqq 3$ . Let $D$ be a derived

neighborhood of $P$ in $W$. Then by the general position argument, we have
$\pi_{1}(D-P)\cong\pi_{1}(D)$ , and hence $\pi_{1}(bD)\cong\pi_{1}(P)$ . Thus we have a canonical iso-
morphism $WA(\pi_{1}(P))\cong\subset wh(P, W)$ .

Suppose that $N$ is a $PL$ submanifold of $W$ such that $P\subset IntN$ and
$\dim N=\dim W$. Then again by the general position argument, we have
$\pi_{1}(N-P)\cong\pi_{1}(N)$ . Further, if $D\subset IntN$ and $P$ is a deformation retract of $N$,

then we have $\pi_{1}(bD)\cong\pi_{1}(N-P)$ . Therefore, in Theorem 4.1, the condition
(2.2) can be replaced by a single condition $(2.2^{\prime})\pi_{1}(bN)\cong\pi_{1}(N)$ . On the other
hand, $D$ collapses $P$ and hence $\tau(D, P)=0$ . It follows that the torsion $\tau[N, P]$

corresponds to the Whitehead torsion $\tau(N, P)$ by the isomorphism $\wp h(\pi_{1}(P))$

$\cong Wh(P, W)$ .
Consequently, we may conclude the following:
PROPOSITION 4.6. Let $(N, P)$ be a pair consisting of a $PL$ manifold and

a subpolyhedron $P$ of dimension $p$ in N. Suppose that $n-p\geqq 3$ . Then $(N, P)$

is an abstract h-neighborhood if and only if
(1) $P\subset IntN$

(2.1) $P$ is a deformation retract of $N$ and
(2.2) $\pi_{1}(bN)\cong\pi_{1}(N)$ .
Further, $\tau(N, P)$ corresponds to the torsion $\tau[N, P]$ by the isomorphism

$Wh(\pi_{1}(P))\cong^{c}Wh(P, W)$ .
The following examples show that the condition (2.2) can be weakened

no more in case $\dim N-\dim P\leqq 2$ .
EXAMPLE 4.7. For each integer $n\geqq 6$ , there exist a $PL$ embedded $(n-2)-$
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sphere $\Sigma$ in $S^{n}$ and a $PL$ submanifold $N$ of dimension $n$ in $S^{n}$ such that
(1) $\Sigma\subset IntN$,
(2.1) $\Sigma$ is a deformation retract of $N$ and
$(2.2^{\prime\prime})$ $bN$ is a deformation retract of $ N-\Sigma$ , but $N$ is not an h-neighborhood

of $\Sigma$ in $S^{n}$ .
PROOF. In [9], we have constructed a $PL$ embedded $(n-2)$-sphere $\Sigma$ in

$S^{n}$ such that the complement of an open derived neighborhood Int $D$ of $\Sigma$ in
$S^{n}$ is $PL$ homeomorphic to a product space $S$ $‘\times W$ of the circle $S$ ‘ and a con-
tractible $PL$ manifold $W$ such that $\pi_{1}(bW)$ is non-trivial.

Taking a $PL$ $(n-1)$ -ball $B$ in Int $W$, we put $N=\overline{S^{n}-S^{1}\times B}$ and
$A=\overline{N-D}(=S^{1}\times(W\overline{-B}))$ . Since $bB$ is a deformation retract of $\overline{W-B}$ and $A$ is
a deformation retract of $ N-\Sigma$ , it follows that $bN$ is a deformation retract of
$ N-\Sigma$ , and $\Sigma$ is a deformation retract of $N$. However, $\pi_{1}(bD)\cong\pi_{1}(S^{1}\times bW)$

$\cong Z\times\pi_{1}(bW)$ is not isomorphic to $\pi_{1}(bN)\cong\pi_{1}(S^{1}\times bB)\cong Z$. Therefore, $(A;bD$ ,

$bN)$ can not be an h-cobordism, completing the proof.
REMARK. By attaching a feeler to $\Sigma$ or by thickening $\Sigma$ in $S^{n}$ , we can

obtain such an example for each case of codimension $\leqq 1$ . These also give
counter exampleS Of UniqueneSS Theorem Of Simple neighborhoods in[13], (a1so

see [11] and [12]). As for this, we have already obtained the first counter
examples in [8], which are, however, h-neighborhoods.

\S 5. Operations of Whitehead torsions on higher dimensional knots.

In the preceding section, we have studied a h-neighborhood which is a
union of a derived neighborhood and a $PL$ h-cobordism from its boundary.
This notion may be relativilized. In the section, however, we involve only
higher dimensional knots and their cone ball pairs.

DEFINITION. By a knot of dimension $n$ , we mean a $PL(n+2, n)$-sphere
pair $\kappa_{n}=(S, \Sigma)$ such that $\Sigma$ has a product neighborhood $(\Sigma\times B^{2})$ in $S^{n+2}$ so
that $(\Sigma\times 0)=\Sigma$ , where $B^{2}$ stands for the standard 2-ball $[$ –1, $1]\times[-1,1]$ .
From a knot $\kappa_{n}$ we have a ball pair $a*\kappa_{n}=(a*S, a*\Sigma)$ , called a cone ball pair.
By a G-knot we mean a pair $(\kappa_{n}, \varphi)$ consisting of a knot $!i_{n}=(S, \Sigma)$ and a
homomorphism $\varphi:G\rightarrow\pi_{1}(S-\Sigma)$ inducing a monomorphism $\varphi_{*};\varphi h(G)\rightarrow$

$Wh(\pi_{1}(S-\Sigma))$ . A second G-knot $(\kappa_{n}^{\prime}, \varphi^{\prime})$ is isomorphic to $(\kappa_{n}, \varphi)$ , if there is a
$PL$ homeomorphism $h:\kappa_{n}\rightarrow\kappa_{n}^{\prime}$ such that $(h|S-\Sigma)_{*}\circ\varphi_{*}=\varphi_{*}^{\prime}$ . The isomor-
phism between G-knots is an equivalence relation and the isomorphism class
of a G-knot $(\kappa_{n}, \varphi)$ is called a G-knot type and written again $(rc_{n}, \varphi)$ .

For a proper manifold pair $(W, M)$ , by $E=E(W, M)$ we denote the closure
of the complement of a derived neighborhood of $M$ in $W$. We identify
$\pi_{1}(E(W, M))$ with $\pi_{1}(W-M)$ by the natural isomorphism induced from the
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inclusion map $E\subset W-M$ which is a homotopy equivalence.
Now suppose that we are given a higher dimensional G-knot $(\kappa_{n}, \varphi)$ of

dimension $n\geqq 3$ , where $\kappa_{n}=(S, \Sigma)$ . For each element $\tau$ of $\varphi\nearrow h(G)$ , by taking
a $PL$ h-cobordism $(U;E, E^{\prime})$ such that $\tau(U, E)=\varphi_{*}\tau$ and by applying $PL$

Smale Theorem, we have a new knot $((\Sigma\times B^{2})UE^{\prime}, \Sigma)$ , written $\kappa_{n}\circ\tau$ , and a
ball pair $((a*S)UU, a*\Sigma)$ , written $(a*\kappa_{n})\circ\tau$ , where $E=S-(\Sigma\times B^{2})$ . Then
the $PL$ homeomorphism classes of $\kappa_{n}\circ\tau$ and $(a*\kappa_{n})\circ\tau$ depend only on the
isomorphism class of $(\kappa_{n}, \varphi)$ , and we have the following:

LEMMA 5.1. If $(a*\kappa_{n})\circ\tau$ is $PL$ homeomorphic to $a*\kappa_{n}$ , then $\tau=0$ ; that is
to say, $\tau$ operates freely on $a*\kappa_{n}$ .

PROOF. Notice that there are $PL$ homeomorphisms $(E(a*\kappa_{n}), E(\kappa_{n}))\rightarrow$

$(E\times I, E\times O)$ and $(E((a*\kappa_{n})\circ\tau), E(\kappa_{n}\circ\tau))\rightarrow(U, E)$ .
If there is a $PL$ homeomorphism $ a*\kappa_{n}\rightarrow(a*\kappa_{n})\circ\tau$ , then by $PL$ invariance

of derived neighborhoods there is a $PL$ homeomorphism

$(E(a*\kappa_{n}), E(\kappa_{n}))\rightarrow(E((a*\kappa_{n})\circ\tau), E(\kappa_{n}\circ\tau))$ .

Hence $(U, E)$ and $(E\times I, E\times O)$ are $PL$ homeomorphic. Therefore, $\tau=\tau(U, E)$

$=0$, completing the proof.
COROLLARY 5.2. If $\tau\neq 0$ , then $(a*\kappa_{n})\circ\tau$ can not be an abstract regular

neighborhood; that is to say, if $(a*\kappa_{n})\circ\tau=((a*S)UU, a*\Sigma)$ , then $(a*S)UU$

never collapses $ a*\Sigma$ .
PROOF. By the local flatness of $\Sigma$ in $S$ , the ball pair $(a*\kappa_{n})\circ\tau$ satisfies

the condition for the uniqueness of relative regular neighborhoods ([6] and
[7]). Since $a*S$ is a relative regular neighborhood of $ a*\Sigma$ in $(a*S)UU$,

or $a*\kappa_{n}$ is an abstract relative regular neighborhood, it follows that if
$(a*\kappa_{n})\circ\tau$ is an abstract regular neighborhood, then, by the uniqueness,
$(a*\kappa_{n})\circ\tau$ and $a*\kappa_{n}$ are $PL$ homeomorphic, contradicting Lemma 5.1, and
completing the proof.

On the contrary, in the topological category, we have the following com-
mutativity.

LEMMA 5.3. For any element $\tau$ of $wh(G),$ $(a*\kappa_{n})\circ\tau$ and $a*(\kappa_{n}\circ\tau)$ are
homeomorphic.

PROOF. By the argument in the proof of ([16], Lemma 3.1) $(a*\kappa_{n})\circ\tau$

$-(a, a)$ and $(\kappa_{n}\circ\tau)\times[0,1)$ are $PL$ homeomorphic. Hence those single point
compactifications $(a*\kappa_{n})\circ\tau$ and $a*(\kappa_{n}\circ\tau)$ are homeomorphic, completing the
proof.

By the cone extension argument, we conclude as follows.
COROLLARY 5.4. Let $(\kappa_{n}, \varphi)$ be a G-knot of dimension $n\geqq 3$ such that $Wh(G)$

is non-trivial. Then for each non-zero element $\tau$ of $q\nu h(G)$ , either of the follow-
ing two statements holds.
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(1) If $\kappa_{n}$ and $\kappa_{n}\circ\tau$ are homeomorphic, then $a*\kappa_{n}$ and $(a*\kappa_{n})\circ\tau$ are homeo-
morphic. That is to say, if $\kappa_{n}=(S, \Sigma)$ , then the collapsing $ a*s\lambda a*\Sigma$ is not
topologically invariant.

(2) If $\kappa_{n}$ and $\kappa_{n}\circ\tau$ are not homeomorphic, then the point $a$ has two topolo-
gically distinct cone neighborhoods $a*\kappa_{n}$ and $a*(\kappa_{n}\circ\tau)$ in $(a*\kappa_{n})\circ\tau$ . That is
to say, there exist two distinct $PL$ structures $(a*\kappa_{n})-\kappa_{n}$ and $a*(\kappa_{n}\circ\tau)-(\kappa_{n}\circ\tau)$

on an open $(n+3, n+1)$ -ball pair $(a*\kappa_{n})\circ\tau-(\kappa_{n}\circ\tau)$ such that in these $PL$ struc-
tures the point $a$ has topologically distinct link pairs $\kappa_{n}$ and $\kappa_{n}\circ\tau$ .

In virtue of analysis of strong h-cobordisms of knots due to Siebenmann
and Sondow [16] and [17] for each $n=even\geqq 4$ , we have an example of the
knot in (1) and for each $n=odd\geqq 3$ , we have an example of the knot in (2).
In fact, for example, by [21] we can take a $PL$ knot $\kappa_{n}=(S, \Sigma)$ of dimension
$n\geqq 2$ such that $\pi_{1}(S-\Sigma)$ is a direct product $G\times J$ of the binary icosahedral
group $G$ of order 120 and infinite cyclic group $J$. Let $\varphi:Z_{5}\rightarrow G\times J(\equiv\pi_{1}(S-\Sigma))$

be an embedding of $Z_{6}$ to a 5-Sylow group of $G\subset G\times J$. Siebenmann and
Sondow have proved that $\varphi$ induces a monomorphism $\varphi_{*}:wh(Z_{5})(\cong Z)\rightarrow$

$wh(G\times J)$ into a direct summand $Wh(G)$ of $c_{Wh(G\times J)}[16]$ and also see ([15],
p. 421). Thus we have a $Z_{5}$ -knot $(\kappa_{n}, \varphi)$ such that $c_{Wh(Z_{5})}\cong Z$ .

If $n=even\geqq 4$ , then by applying Proposition 3.1, (3), we may conclude
that $\kappa_{n}$ and $\kappa_{n}\circ 2\tau$ are $PL$ homeomorphic for each $\tau$ of $Wh(Z_{5})\cong Z$. Thus we
have obtained an example of the knot in the statement (1) of Corollary 5.4.
As for (2), we have an example of the knot of dimension $n=odd\geqq 3$ from
([17], p. 741).

In the sequel, we have the following.
COROLLARY 5.5. Generally, the collapsing and the singularity are not topolo-

gically invariant.

\S 6. Simple homotopy types of polyhedra.

All polyhedra considered here are to be compact and connected, and
Whitehead torsions of homotopy equivalences are to be identified by appro-
priate isomorphisms between fundamental groups.

The following is a generalization of ([11], (11.5)).
LEMMA 6.1. Let $N$ be a regular neighborhood of a subpolyhedron $P$ of

dimension $p$ in $R^{n}$ and let $N^{\prime}$ be a $PL$ submanifold of dimension $n$ of $R^{n}$ .
Suppose that $n\geqq 6,$ $n\geqq 2p+2$ and $\pi_{1}(bN^{\prime})\cong\pi_{1}(N^{\prime})$ .
For any homotopy equivalence $f:N\rightarrow N^{\prime}$ , there exists a $PL$ h-cobordism $U$

from $bN$ such that $\tau(U, bN)=\tau(f)$ and a $PL$ homeomorphism $h:NUU\rightarrow N^{\prime}$

such that $h|N$ is homotopic to $f$

PROOF. If we put $f^{\prime}=f|P:P\rightarrow N^{\prime}$ , then $f^{\prime}$ is a homotopy equivalence
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with $\tau(f^{\prime})=\tau(f)$ , since $\tau(N, P)=0$ . By the general position argument, we
may approximate $f^{\prime}$ by a $PL$ embedding $g:P\rightarrow IntN^{\prime}$ . By Gugenheim’s
Theorem [3], there is a $PL$ homeomorphism $H:R^{n}\rightarrow R^{n}$ such that $H\circ g:P\rightarrow R^{n}$

is the inclusion map $P\subset R^{n}$ . Since $n\geqq 6,$ $n-p\geqq p+2,$ $\pi_{1}(bN^{\prime})\cong\pi_{1}(N^{\prime})$ and $P$

is a deformation retract of $H(N^{\prime})$ , it follows that $H(N^{\prime})$ is an h-neighborhood
of $P$ in $R^{n}$ with $\tau(H(N^{\prime}), P)=\tau(g)=\tau(f)$ . Taking a $PL$ h-cobordism $U$ from
$bN$ such that $\tau(f)=\tau(U, bN)$ , we may assume that $H(N^{\prime})=NUU$ . Then
$H^{-1}|N:N\rightarrow N^{\prime}$ is homotopic to $f$, since $P$ is a deformation retract of $N$. Thus
$H^{-1}|NUU$ is the required $PL$ homeomorphism, completing the proof.

Let $P$ be a polyhedron of dimension $p$ . By a Thom complex $T^{n}(P)$ of $P$

of dimension $n(\geqq 2p+1)$ we mean a polyhedron $NU(bN*\infty)$ which is a union
of a regular neighborhood $N$ of $P$ in $R^{n}$ and a cone $(bN*\infty)$ for a point $\infty$ .

THEOREM 6.2. Let $P$ and $Q$ be polyhedra of dimensions $p$ and $q$ , respec-
tively. Assume $n\geqq\max(2p+2,2q+1,6)$ .

Then the following holds.
(1) $P$ and $Q$ are homotopy equivalent if and only if $T^{n}(P)$ and $T^{n}(Q)$ are

homeomorphic.
(2) $P$ and $Q$ are simple homotopy equivalent if and only if $T^{n}(P)$ and $T^{n}(Q)$

are $PL$ homeomorphic.
PROOF. Let $T^{n}(P)=MU(bM*\infty)$ and $T^{n}(Q)=NU(bN*\infty)$ . Suppose that

$P$ and $Q$ are homotopy equivalent. By Lemma 6.1 and Theorem 2.4, Int $M$

and Int $N$ are $PL$ homeomorphic, and hence their single point compactifications
$T^{n}(P)$ and $T^{n}(Q)$ are homeomorphic. Further, if $P$ and $Q$ are simple homo-
topy equivalent, then $N$ and $M$ are $PL$ homeomorphic. Hence by the cone
extension argument, $T^{n}(P)$ and $T^{n}(Q)$ are $PL$ homeomorphic.

Conversely, suppose that there is a homeomorphism $h:T^{n}(P)\rightarrow T^{n}(Q)$ . If
$bM$ is not a homotopy sphere, then by the same local argument as in the
proof of Theorem 2.4 we have $ h(\infty)=\infty$ , since only the link $bM$ of $\infty$ has
$\pi_{1}(bM)\neq 1$ or $H_{*}(bM)\cong_{--}H_{*}(S^{n-1})$ . If $bM$ is a homotopy sphere, then $bM$ is
actually a $PL(n-1)$-sphere and hence $T^{n}(P)$ is a $PL$ manifold. We may take
a $PL$ homeomorphism $g:T^{n}(P)\rightarrow T^{n}(P)$ such that $ g\circ h(\infty)=\infty$ . Therefore,
we may also assume that $ h(\infty)=\infty$ . Now a homeomorphism $ h|T^{n}(P)-\infty$ :
$ T^{n}(P)-\infty\rightarrow T^{n}(Q)-\infty$ gives rise to a homotopy equivalence between $P$ and
$Q$ . Further, if $T^{n}(P)$ and $T^{n}(Q)$ are $PL$ homeomorphic, then we may take a
$PL$ homeomorphism $h:T^{n}(P)\rightarrow T^{n}(Q)$ such that $ h(\infty)=\infty$ . By the $PL$ invari-
ance of cone neighborhoods guaranteed by pseudo radial projection argument

we may assume that $ h(bM*\infty)=bN*\infty$ . Therefore, $M$ and $N$ are $PL$ homeo-
morphic. Now a $PL$ homeomorphism between $M$ and $N$ gives rise to a simple
homotopy equivalence between $P$ and $Q$ , completing the proof.

An implication of Theorem 6.2 is the following.
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COROLLARY 6.3. Let $P$ and $Q$ be polyhedra of dimensions $p$ and $q$ , respec-
tively. Suppose that for each element $\tau$ of $wh(\pi_{1}(P))$ there is a homotopy equiva-
lence $\varphi$ : $P\rightarrow P$ such that $\tau(\varphi)=\tau$ and that $n\geqq\max(2p+2,2q+1,6)$ .

Then $T^{n}(P)$ and $T^{n}(Q)$ are homeomorphic if and only if they are $PL$ homeo-
morphic.

PROOF. To show this, in virtue of Theorem 6.2, it is sufficient to prove
that if $P$ is homotopically equivalent to $Q$ , then $P$ is simple homotopy equiva-
lent to $Q$ . For this, let $\varphi$ : $P\rightarrow Q$ be a homotopy equivalence. By the as-
sumption we have a homotopy equivalence $\psi:P\rightarrow P$ such that $\tau(\varphi)=-\tau(\psi)$ .
Then $\varphi\circ\psi$ : $P\rightarrow Q$ is a simple homotopy equivalence, completing the proof.

For example, let $P$ be a polyhedron of dimension 2 obtained by attaching
a 2-cell onto a circle by a map of degree 5. Then by ([18], p. 252); for a
generator $\tau$ of $c_{Wh(Z_{5})}=Z$ there is a homotopy equivalence $\psi$ : $P\rightarrow P$ such that
$\tau(\psi)=\tau$ . It follows that for $n\geqq\max(2q+1,6),$ $T^{n}(P)$ and $T^{n}(Q)$ are homeo-
morphic if and only if they are $PL$ homeomorphic.

Finally we consider the following two statements [I] and [II].
[I] (Topological invariance of Whitehead torsions).
Let $(Q, P)$ be a polyhedral pair such that $P$ is a deformation retract of $Q$ ,

and let $(Q^{\prime}, P^{\prime})$ be a polyhedral pair. Suppose that there is a homeomorphism
$h:(Q^{\prime}, P^{\prime})\rightarrow(Q, P)$ .

Then $h_{*}\tau(Q^{\prime}, P^{\prime})=\tau(Q, P)$ .
[II] (Topological invariance of regular neighborhoods by s-push).

Let $N$ be a regular neighborhood of a polyhedron $P$ of dimension $p$ in
$R^{n}(n\geqq 3p+1)$ .

Then there is a number $\delta>0$ such that for any number $\epsilon<\delta$ , if $h$ : $N\rightarrow N$

is an $\epsilon$ -push of $(N, P)$ such that $h(P)$ is a subpolyhedron of $N$, then $N$ is a
regular neighborhood of $h(P)$ in $R^{n}$ . (For $\epsilon$ -push, see [1].)

The statement [II] is a special case of the statement [I]. We prove the
following.

THEOREM 6.4. The statements [I] and [II] are equivalent.
PROOF. We will prove that [II] implies [I]. For this, we think of $Q$ as

a subpolyhedron of $R^{2q+1}$ , where $q=\dim Q$ , and define a topological embedding
$k:Q^{\prime}\rightarrow R^{n}$ as the composition

$Q^{\prime}Q\subset R^{2q-\vdash 1}\equiv R^{2q+1}\times 0\subset R^{2q+1}\times R^{r}=R^{n}\underline{h}$

where $r=n-2q-1$ . Let $N$ be a regular neighborhood of $Q$ in $R^{n}$ . Then $N$

is a h-neighborhood of $P$ in $R^{n}$ with $\tau(N, P)=\tau(Q, P)$ . We may take a regular
neighborhood $M$ of $P$ in Int $N$ so that $Q\subset IntM$ and $i_{*}\tau(Q, P)=\tau(N, M)$ , where
$i:Q\rightarrow N$ is the inclusion map. On the other hand, if $n\geqq 3q+1$ , then from ([1],

Theorem 1.1) and the statement [Il], for sufficiently small number $\epsilon$ , we have
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an s-push $g$ of $(M, Q)$ so that $g\circ k$ : $Q^{\prime}\rightarrow M$ is a $PL$ embedding and that $M$

and $N$ are regular neighborhoods of $g(Q)=g\circ k(Q^{\prime})$ and $g(P)=g\circ k(P^{\prime})$ in $R^{n}$ ,

respectively. Now we have, by the combinatorial invariance of Whitehead
torsions, $\tau(N, M)=j_{*}\tau(g\circ k(Q^{\prime}), g\circ k(P^{\prime}))=(j\circ g\circ k)_{*T}(Q^{\prime}, P^{\prime})$ , where $j:g(Q)$

$\rightarrow M$ is the inclusion map, and hence $i_{*}\tau(Q, P)=(j\circ gok)_{*}\tau(Q^{\prime}, P^{\prime})$ . Since
$(j\circ g\circ k)_{*}=(i\circ h)_{*}$ , it follows that $h_{*}\tau(Q^{\prime}, P^{\prime})=\tau(Q, P)$ , completing the proof.
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