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1. Concerning Stein spaces the following fundamental theorems of K.
Oka–H. Cartan–J. P. Serre are well-known: Theorem A. If $S^{i}$ is a coherent
analytic sheaf over a Stein space $X$ with the structure sheaf $\mathcal{O}(X)$ , then $\Gamma(X, S^{i})$

generates $gr_{x}$ for every $x\in X$. Theorem B. In the same case. $H^{q}(X, S)=0$

for any $q\geqq 1$ .
It is known further that the validity of the latter is sufficient for $X$ to

be a Stein space. Namely, a reduced complex space $X$ is a Stein space if
$H^{1}(X, \mathcal{J})=0$ for any coherent sheaf of ideals 9 in $O(X)$ determined by a zero-
dimensional analytic set in $X$ .

In the present note we shall consider the problem if the former is sufficient
for $X$ to be a Stein space. Concerning a domain $X$ in $C^{n}$ , Cartan ([1] p. 57)

made a remark that, if a certain condition similar to theorem A is satisfied,

then $X$ would perhaps be a domain of holomorphy.
Our result is the following:
THEOREM. Let (X, $\mathcal{O}(X)$) be an n-dimensional reduced connected normal

complex space. Suppose it satisfies the $J^{-}ollowing$ condition (A): For any co-
herent sheaf of ideals $/j$ in $0(X)$ determined by a zero-dimensional analytic set
in $X,$ $\Gamma(X, l)$ generates $J_{x}$ as an $\mathcal{O}(X)_{x}$-module at each point $\chi\in X.$ Then $X$

is K-complete and identical with its Kerner’s K-hull [4]. If, in addition,
$\Gamma(X, o(X))$ is isomorphic as a C-algebra to $\Gamma(X^{\prime}, \mathcal{O}(X_{\grave{J}}^{\prime})$ of an n-dimensional
reduced Stein space (X’, $\mathcal{O}(X^{\prime})$), then $X$ is a Stein space.

For example, if an unramified covering manifold over a Stein manifold
satisfies the condition (A), then it is a Stein manifold. (In general a K-hull of
a normal complex space is not necessarily a Stein space [2].)

2. In the following a complex space should be understood to be reduced.
A complex space (X, $O(X)$) is said to be K-complete if, for each point $x\in X$ ,

thcre exists a holomorphic mapping $\tau$ from $X$ to a complex affine space $C^{7\prime\iota_{x}}$

which is non-degenerate at $x,$
$i$ . $e.,$ $x$ is an $iso\iota_{a\}}\vee ed$ point of $\tau^{-J}(\tau(x))$ . We call

a complex space (X, $\mathcal{O}(X)$) a Stein space if it is K-complete and holomorphic-
ally convex.

Let $\theta^{n}$ be a category whose objects are n-dimensional K-complete connected
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normal complex spaces and whose morphisms are non-degenerate holomorphic
mappings. Kerner [4] showed, for any object (X, $O(X)$) of $ff^{n}$ , the existence
and $uniquenes_{\backslash }\backslash $ of its holomorphy hull $(H(X), \mathcal{O}(H(X))$ with the following cor-
ditions (we shall refer to it as Kerner’s K-hull):

(i) $(H(X), o(H(X)))$ is an object of St $n$ and there exists a morphism $\alpha$ :
$X\rightarrow H(X)$ which induces the canonical isomorphism $\alpha^{*}:$ $\Gamma(H(X), \mathcal{O}(H(X)))$

$\rightarrow\Gamma(X, O(X))$ .
(ii) For any object $(Y, o(Y))$ ot $ff^{n}$ which has a morphism $\beta:X\rightarrow Y$ such

that $\beta^{*}:$ $\Gamma(Y, o(Y))\rightarrow\Gamma(X, \mathcal{O}(X))$ is an isomorphism, there exists a morphism
$\gamma:Y\rightarrow H(X)$ satisfying $\alpha=\gamma\circ\beta$ .

3. Proof of the theorem.

Suppose (X, $o(X)$) is an n-dimentional connccted normal complex space and
satisfies the condition (A). In the following we shall denote by $J(V)$ the co-
herent sheaf of ideals in $\mathcal{O}(X)$ determined by an anaytic set $V$ in $X$ .

For a pair of distinct points $x_{1},$ $x_{2}\in X$, the relation $l(\{x_{1}\})_{x},$ $=o(X)_{x_{2}}$ holds.
From the condition (A), there exists an element $f\in\Gamma(X, o(X))$ with $f(x_{2})\neq 0$,
$f(x_{1})=0$ . Hence $\Gamma(X, \mathcal{O}(X))$ separates points of $X$ and, therefore, $X$ is K-com-
plete.

As $\Gamma(X, \mathcal{O}(X))$ separates points of $X$ , we may consider $X$ to be a subdomain
of $H(X)$ (Kerner [4]). Now, assume $X\subsetneqq H(X)$ , then there exist a point $x_{0}$ in
$\partial X$ and a sequence of points $\{x_{\nu}\}_{\nu=1}^{\infty}$ in $X$ which converges to $X_{0}$ . This sequence
is a zero-dimensional analytic set in $X$ . For any $f\in\Gamma(X, d(\{x_{\nu}\}_{\nu=1}^{\infty}))$ , there
exists a holomorphic function $f$ on $H(X)$ such that $f=\tilde{f}$ on $X$ by the definition
of $H(X)$ . As $f$ vanishes on $\{x_{\nu}\}_{\nu\approx 1}^{\infty}$ , so does $f$ on $x_{0}$ . The set $V_{f}=\{f=0\}$ is
an analytic set containing $\{x_{\nu}\}_{\nu=1}^{\infty}\cup\{x_{0}\}$ in $H(X)$ , and so is $V=\bigcap_{f\in I}V_{f}(I=$

$\Gamma(X, \mathcal{J}(\{x_{\nu}\}_{\nu\Leftarrow 1}^{\infty})))$ . In a sufficiently small neighborhood of $x_{0}$ in $H(X)$ , the num-
ber of irreducible components of $V$ is finite. Hence $V\cap X$ contains a point
$x\not\in\{x_{\nu}\}_{\nu=1}^{\infty}$ . By the condition (A), $\Gamma(X, J(\{x_{\nu}\}_{\nu=1}^{\infty}))$ generates $J(\{x_{\nu}\}_{\nu=1}^{\infty})_{x}$ as an
$O(X)_{x}$-module. On the other hand, every element of $\Gamma(X, l(\{x_{\nu}\}_{\nu=1}^{\infty}))$ vanishes
at $x$ as $x$ is contained in $V$ , and $3(\{x_{\nu}\}_{\nu=1}^{\infty})_{x}=\mathcal{O}(X)_{x}$ holds as $\chi$ is not contained
in $\{x_{\nu}\}_{\nu=1}^{\infty}$ , a contradiction. Therefore $X=H(X)$ . The proof of the first half
of the theorem is hereby complete,

4. Proof of the theorem (continued).

Now we prove the second half under the assumption that $\Gamma(X, o(X))$ is
isomorphic as a C-algebra to $\Gamma(X‘, O(X^{\prime}))$ of an n-dimensional Stein space
(X’, $O(X^{\prime})$). Denote the isomorphism by $\tau;\Gamma(X^{\prime}. o(X^{\prime}))\rightarrow\Gamma(X, o(X))$ . The
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proof will be divided into five steps.
(i) Construction of $\psi:X\rightarrow X^{\prime}$ :
Since $X^{\prime}$ is a Stein space, by a theorem of Iwahashi [3], there exists a

mapping $\psi$ : $X\rightarrow X^{\prime}$ with
$\tau(f^{\prime})(x)=f^{\prime}(\psi(x))\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots(*)$

for every $f^{\prime}\in\Gamma(X^{\prime}, o(X^{\prime}))$ . It is injective because $\Gamma(X, G(X))$ separates points
of $X$ and $\tau$ is an isomorphism.

(ii) $\psi$ is continuous:
To show $\psi(x_{\nu})\rightarrow\psi(x_{0})$ for a sequence of points $x_{\nu}\in X$ with $x_{\nu}\rightarrow x_{0}\in X$ , it

suffices to verify $f^{\prime}\circ\psi(x_{\nu})\rightarrow f^{\prime}\circ\psi(x_{0})$ for every $f^{\prime}\in\Gamma(X^{\prime}, O(X‘))$ , since $X^{\prime}$ is a
Stein space ([3]). This is obtained from $(*)$ .

(iii) $\psi$ is holomorphic:
Let $g^{\prime}$ be any function holomorphic at $\psi(x)$ . Since $X^{\prime}$ is a Stein space,

there exists a sequence of holomorphic functions $f_{\nu}^{\prime}$ on $X^{\prime}$ which converges
uniformely to $g^{\prime}$ in a sufficiently small neighborhood of $\psi(x)$ . Then $\tau(f_{\nu^{\prime}})$ con-
verges uniformely to $ g^{\prime}\circ\psi$ in a neighborhood of $x$ . Hence $ g^{\prime}\circ\psi$ is holomor-
phic at $x$ , and so is $\psi$ .

(iv) $x/$ is irreducible:
$\psi(X)$ is contained completely in an irreducible component $X_{1}^{\prime}$ of $X^{\prime}$ , since

$X$ is a connected normal complex space. As $\psi$ : $X\rightarrow x/$ is holomorphic, so is
$\psi:X\rightarrow X_{1}^{\prime}$ . Hence, an arbitrary holomorphic function on $X_{1}^{\prime}$ can be under-
stood to be a holomorphic function on $X$ . By assumption, it is extended to a
unique holomorphic function on $x/$ . This yields that $\Gamma(X_{1}^{\prime}, o(X_{1}^{\prime}))$ is isomorphic
as a C-algebra to $\Gamma(X^{\prime}, \mathcal{O}(X^{\prime}))$ . As $X^{\prime}$ is a Stein space, $X^{\prime}=X_{1}^{\prime}$ holds by Iwa-
hashi’s $theo^{r}em$ mentioned above. Consequently $x/$ is irreducible.

(v) $X$ is a Stein space:
For this purpose, let us show that $X^{\prime}$ is a normal complex space. To this

end, assume the contrary. Let $(X^{\prime*}, \mathcal{O}(X^{\prime*}))$ be a normalization of $(X^{\prime}, \mathcal{O}(X^{\prime}))$ ,

and $\pi;X^{\prime*}\rightarrow X^{\prime}$ be an associated holomorphic mapping. By assumption,
(X’, $\mathcal{O}(X^{\prime})$) is not isomorphic to $(X^{\prime*}, O(X^{\prime*}))$ , and $(X^{\prime*}, \mathcal{O}(X^{\prime*}))$ is a Stein space
by a theorem of R. Narasimhan. Consequently, by Iwahashi’s theorem, there
exists an element $f^{*}$ of $\Gamma(X^{\prime*}, O(X^{\prime*}))$ such that, even though $f^{*}\circ\pi^{-1}$ is a
holomorphic function in the weak sense on $X^{\prime},$ $f^{*}\circ\pi^{-1}$ is not an element of
$\Gamma(X^{\prime}, \mathcal{O}(X^{\prime}))$ . The set of those points of $X^{\prime}$ where $f^{*}\circ\pi^{-1}$ is not holomorphic
is included in a thin analytic set $V^{\prime}$ in $X^{\prime}$ . Since $\dim X=\dim X^{\prime},$ $\psi^{-1}(V^{\prime})\cap X$

is also included in a thin analytic set in $X$ . On a normal complex space the
Riemann’s continuation theorem holds, hence $f^{*}\circ\pi^{-1}$ determines an element
$f\in\Gamma(X, O(X))$ , and $\tau^{-1}(f)$ coincides with $f^{*}\circ\pi^{-1}$ on $X^{\prime}$ except for a thin analytic
set in $X^{\prime}$ . Since $\tau^{-1}(f)$ and $f^{*}$ are continuous, $f^{*}\circ\pi^{-1}$ is a function on $X^{\prime}$

satisfying $\tau^{-1}(f)=f^{*}\circ\pi^{-1}$ . This is a contradiction to our assumption. Hence,
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$X^{\prime}$ is a K-complete normal complex space with an injective holomorphic map-
ping $\psi:X\rightarrow X^{\prime}$ with the property $\psi^{*}:$ $\Gamma(X^{\prime}, o(X^{\prime}))\rightarrow\Gamma(X, o(X))$ is an isomor-
phism. From the definition of Kerner’s K-hull and from the first half $X=H(X)$
of our theorem, (X, $O(X)$) is isomorphic to $(X^{\prime}, o(X^{\prime}))$ . Therefore (X, $O(X)$) is
a Stein space.
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