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\S 0. Introduction.

It might be interesting to ask to what extent the topological and algebraic
structures of the group $H(M)$ of the homeomorphisms of a manifold $M$ reflect
the topological structure of $M$. In spite of its importance, unfortunately,
little has been known about it. Though it seems very difficult to determine
the structures of $H(M)$ , many conjectures or problems have been set up by
several authors.

Among them, our main concern in this paper is a problem raised by
A. M. Gleason and R. S. Palais [2], which is given as follows:

” Is the closure of a homomorphic image of a connected Lie group $G$ into
$H(M)$ locally compact? “

In this connection, the author in a previous paper [4] has shown the
following:

i) If $G$ is a connected Lie group with compact center and if the image
of the adjoint representation $Ad(G)$ of $G$ is closed in the general linear group
$GL(\mathfrak{g})$ of the Lie algebra $\mathfrak{g}$ of $G$ , then any monomorphic image of $G$ into $H(M)$

is closed and locally compact.
ii) Let $\varphi$ be a monomorphism from $G$ into $H(M)$ . If $\varphi(V)$ has the locally

compact closure for any closed vector subgroup $V$ of $G$ , then so does $\varphi(G)$ .
iii) If $M$ is connected and one dimensional, then any monomorphic image

of any vector group has the locally compact closure.
The manifolds treated in $i$) $-iii$) are all assumed to satisfy the second

countability axiom and the topology for $H(M)$ is of course the compact open
topology. Under the same assumptions, the present author has also shown
in [6] the following:

iv) Let $\varphi$ be a homomorphism from a vector group $V$ into $H(M)$ of a
connected manifold $M$. If every orbit $\varphi(V)(x),$ $x\in M$, is homeomorphic to a
circle or a point, then $\varphi(V)$ is closed in $H(M)$ and locally compact.

The object of this paper is to obtain the following theorem and example.
THEOREM A. Let $M$ be a two-dimensional, metric and connected manifold
*The author would like to acknowledge a financial support given by the Sakko-kai

Foundation during the preperation of this paper.
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which is not homeomorphic to a torus. Then any monomorphic image of any
vector group into $H(M)$ is closed and $ locall\gamma$ compact.

EXAMRLE. Let $M$ be a two-dimensional torus. There is a monomorphism
/) of one-dimensional vector group $R$ into $H(M)$ such that the closure of $\psi(R)$

in $H(M)$ is not locally compact.
Throughout this paper, the manifolds $M$ are always assumed to be con-

nected and to satisfy the 2nd countability axiom and the topology for $H(M)$

is the compact open topology.
The above example shows that the conjecture of Gleason and Palais does

not hold in general. Moreover, by the construction of the monomorphism $\psi$ ,
$\psi(R)(x)$ is dense in $M$ for any $x\in M$ and $\psi(t)$ is a diffeomorphism of $M$ (class
$C^{1})$ . Since $\psi(R)$ is not closed in $H(M)$ , this example seems far from our
intuition.

\S 1. One-parameter transformation groups on two-dimensional manifolds.

Let $M$ be a connected and two-dimensional manifold with metric $\rho$ . Let
$\varphi$ be a continuous monomorphism from $R$ into $H(M)$ with compact open
topology. In this section, we shall give some propositions which will be used
in the next section.

PROPOSITION 1. Notations being as above, if for any $N>0,$ $\epsilon>0$ and
$x\in M$, there is a positive number $t=t(x)>N$ such that $\rho(\varphi(\pm t)(x), x)<\epsilon$ , then
the subset $M^{\prime\prime}$ consisting of the points $x$ such that the orbit $\varphi(R)(x)$ is homeo-
morphic to a circle is an open subset.

PROOF. Assume $ M^{\prime/}\neq\emptyset$ . Put $M^{\prime}=\{x\in M;\varphi(R)(x)\neq\{x\}\}$ . Then we see
that $M^{\prime}$ is an open subset. Let $x_{0}$ be an arbitrary point in $M^{\prime}$ . Considering
the family of curves $\{\varphi(R)(x)\}$ in $M^{\prime}$ , there is a subset $C$ containing $x_{0}$ which
is a local cross-section [8]. That is, on defining the mapping $\psi^{\prime}$ from $R\times C$

into $M^{\prime}$ by $\psi^{\prime}(t, x)=\varphi(t)(x)$ , the restriction $\psi^{\prime}|(-\delta, \delta)\times C$ is a homeomorphism
from $(-\delta, \delta)\times C$ onto $\psi^{\prime}((-\delta, \delta),$ $C$) for some $\delta$ . Since $M$ is two dimensional
and metric manifold, $C$ contains a relatively open subset $C^{\prime}$ containing $x_{0}$

which is homeomorphic to $R[9]$ . The homeomorphism from $R$ onto $C^{\prime}$ is
denoted by $\xi$ . Assume $\xi(0)=x_{0}$ .

Now, assume that $\xi(0)\in M^{\prime\prime}$ . Since the interval $(-1,1)$ is homeomorphic to
$R$ and there is $K>0$ such that $\psi^{\prime}|(-K, K)\times\xi((-1,1))$ is a homeomorphism from
$(-K, K)\chi\xi((-1,1))$ onto $\psi^{\prime}((-K, K),$ $\xi((-1,1)))$ which is an open subset of $M^{\prime}$ ,
we can assume without loss of generality that $\varphi(t)(\xi(R))\cap\xi(R)=\emptyset$ for any $t$

such that $0<|t|<K$. Now, under this assumption, since $\varphi(R)(x_{0})$ is homeo-
morphic to a circle, there is $\kappa>0$ such that $\xi([-\kappa, \kappa])\cap\varphi(t)(\xi(0))=\emptyset$ for
$0<t<t_{0}$ , where $t_{0}=\min\{t>0;\varphi(t)(\xi(O))=\xi(0)\}$ .
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On putting $\eta(u)=\min\{i>0;\varphi(t)(\xi(u))\in\xi([-\kappa, \kappa])\}$ , we have $\eta(0)=t_{0}$ .
$\eta$ is continuous at $0$ . In fact, let $\{u_{n}\}$ be a sequence converging to $0$ . Since
$[0, t_{0}]$ is compact and $\varphi$ is continuous, we have $\eta(u_{n})\leqq t_{0}+-t2^{0}$-for large $n$ .
There is a subsequence $\{u_{n^{\prime}}\}$ such that $\eta(u_{n},)$ converges to some $\eta^{\prime}$ . Since
$\varphi(\eta(u_{n},))(\xi(u_{n},))\in\xi([-\kappa, \kappa]),$ $\varphi(\eta^{\prime})(\xi(0))\in\xi([-\kappa, \kappa])$ . It follows that $t_{0}\leqq\eta^{\prime}$

$\leqq t_{0}+\frac{t_{0}}{2}$ . Thus, $\varphi(\eta^{\prime}-t_{0})\varphi(t_{0})(\xi(0))=\varphi(\eta^{\prime})(\xi(0))\in\xi([-\kappa, \kappa])$ . On the other

hand, $\varphi(\eta^{\prime}-t_{0})\varphi(t_{0})(\xi(0))=\varphi(\eta^{\prime}-t_{0})(\xi(0))$ and $0\leqq\eta^{\prime}-t_{0}\leqq\frac{t_{0}}{2}$ . This gives $\eta^{\prime}=t_{0}$ .
Thus, $0$ is a point of continuity. Therefore for any $\epsilon>0$, there is $\delta^{\prime}>0$ such

that $|\eta(u)-t_{0}|<\epsilon$ if $-\delta^{\prime}<u<\delta^{\prime}$ . Assume $\epsilon<\frac{K}{4}$ . We show that $\eta$ is con-
tinuous on $(-\delta^{\gamma}, \delta^{\prime})$ . For a sequence $\{u_{n}\}\subset(-\delta^{\prime}, \delta^{\prime})$ converging to $u\in(-\delta^{\prime}, \delta^{J})$ ,

we have $|\eta(u_{n})-\eta(u)|<2\epsilon<\frac{K}{2}$ . Thus, there is a subsequence $\{u_{n},\}$ such that
$\eta(u_{n},)$ converges to some $\eta^{\prime}$ . It follows that $\varphi(\eta^{\prime})(\xi(u))\in\xi([-\kappa, \kappa])$ . Since
$\varphi(\eta(u))(\xi(u))\in\xi([-\kappa, \kappa])$ , we see that $\varphi(\eta^{\prime}-\eta(u))(\xi[-\kappa, \kappa]))\cap\xi([-\kappa, \kappa])\neq\emptyset$ .
Since $|\eta^{\prime}-\eta(u)|\leqq\frac{K}{2}$ , we have $\eta^{\prime}=\eta(u)$ . Thus, $\eta$ is continuous on $(-\delta^{\prime}, \delta^{\prime})$ .
By the same argument as above, we see that $\hat{\psi}:\xi(u)\rightarrow\varphi(\eta(u))(\xi(u))$ is a one-
to-one correspondence on $\xi(-\delta^{\gamma}, \delta^{\prime})$ . Thus, by defining $\hat{\eta}=\xi^{-1}\hat{\psi}\xi,\hat{\eta}$ is a
homeomorphism from $(-\delta^{\prime}, \delta^{\prime})$ onto $\hat{\eta}((-\delta^{\prime}, \delta^{\prime}))$ . Clearly, the origin $0\in(-\delta^{\prime}, \delta^{\prime})$

is a fixed point of $\hat{\eta}$ If $\hat{\eta}([0, \delta^{\prime}))\subsetneqq[0, \delta^{\prime})$ , then $\hat{\eta}^{n}([0, \delta^{\prime}))$ converges to some
$[0, \lambda],$ $0\leqq\lambda<\delta^{\prime}$ for $ n\rightarrow\infty$ . This means that $\varphi(t)(\xi(u)),$ $\lambda<u<\delta$ , converges
to a limit cycle $\varphi(R)(\xi(\lambda))$ for $ t\rightarrow\infty$ . This contradicts the assumption. Thus,
$\hat{\eta}([0, \delta^{\prime}))=[0, \delta^{\prime})$ and $\hat{\eta}(u)=u$ for any $u\in[0, \delta^{\prime}$). If $\hat{\eta}([0, \delta^{\prime}))\neq\supset[0, \delta^{\prime})$ , then
taking $\hat{\eta}^{-1}$ instead of $\eta$ , we have the same conclusion. If $\hat{\eta}([0, \delta^{\prime}))\leqq 0$ , then
$\hat{\eta}\cdot\hat{\eta}([0, \delta^{\prime}))\geqq 0$ . From the same argument as above, we obtain the same result.
Thus we conclude that $\hat{\eta}(u)=u$ for any $u\in(-\delta^{\gamma}, \delta^{\prime})$ . It follows that every
orbit $\varphi(R)(\xi(u))$ is homeomorphic to a circle if $u\in(-\delta^{\gamma}, \delta^{\prime})$ . Thus, $M^{\prime\prime}$ is an
open subset. $q$ . $e$ . $d$ .

Let $x_{0}$ be an arbitrarily fixed point in $M^{\prime}$ . Consider the family of curves
$\{\varphi(R)(x);x\in M^{\prime}\}$ . There is a continuous injection $\xi$ from $R$ into $M^{\prime}$ such
that $\xi(0)=x_{0}$ and $\xi(R)$ is a local cross-section of the family. That is, the
mapping $\psi|(-K, K)\times R$ is a homeomorphism from $(-K, K)\times R$ onto $\varphi((-K, K))$

$(\xi(R))$ which is an open subset of $M^{\prime}$ , where $\psi$ is defined by $\psi(t, u)=\varphi(t)(\xi(u))$ .
Now, assume, in addition to the assumption in Proposition 1, that there

is a positive continuous function $t_{0}(u)$ on $[-L, L]$ such that (i) $t_{0}(u)>K$, (ii)
putting $\tilde{\eta}(u)=\psi(t_{0}(u), u)$ , $\tilde{\eta}$ is a continuous injection from $[-L, L]$ into
$\psi((-K/2, K/2),$ $R$) and (iii) $\eta([-L, L])\cap\psi((-K/2, K/2),$ $[-L, L]$) $\neq\emptyset$ .

PROPOSITION 2. Notations and assumptions being as above, if, moreover,
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$M$ is not a two-dimensional torus, then there is a point $x\in\xi([-L, L])$ such
that the orbit $\varphi(R)(x)$ is homeomorphic to a circle.

PROOF. Let $\alpha(u)$ denote $t\in(t_{0}(u)-K/2, t_{0}(u)+K/2)$ such that $\psi(t, u)\in\xi(R)$ ,

where $u\in[-L, L]$ . Since the curve $\psi((t_{0}(u)-K/2, t_{0}(u)+K/2),$ $u$) intersects the
curve $\xi(R)$ at one point, $\alpha(u)$ is well-defined and continuous on $[-L, L]$ . Let
$\beta(u)=\xi^{-1}\psi(\alpha(u), u)$ . From the property (iii) above, $[-L, L]\cap\beta([-L, L])\neq\emptyset$ .
Since $\tilde{\eta}$ and $\psi|(-K, K)\times R$ are injective, $\beta$ is a homeomorphism from $[-L, L]$

onto $\beta([-L, L])$ . Since $[-L, L]\cap\beta([-L, L])\neq\emptyset$ , if $\beta$ is orientation reversing,
then there is a point $u\in[-L, L]$ such that $\beta(u)=u$ . This means that
$\varphi(R)(\xi(u))$ is homeomorphic to a circle.

Assume that $\beta$ is orientation preserving and there is no fixed point of $\beta$ .
Since $u\rightarrow-u$ is a homeomorphism from $R$ onto $R$ , we can assume without
loss of generality that $\beta(u)>u$ .

Let $\overline{t}_{0}=\min\{t>0;\psi(t, [-L, L])\cap\xi([-L, L])\neq\emptyset\}$ and let $x_{1}\in\xi([-L, L])$

$\cap\psi(\overline{t}_{0}, [-L, L])$ and $x_{1}=\xi(\overline{u}_{0})=\varphi(\overline{t}_{0})(\xi(u_{0}))$ . Obviously, $u_{0},\overline{u}_{0}\in[-L, L]$ .
There is a positive number $\delta_{0}$ such that $\psi(\overline{t}_{0}, [u_{0}-\delta_{0}, u_{0}+\delta_{0}])$ is contained in
$\psi((-K/2, K/2),$ $R$). Thus, the function $\alpha_{0}$ defined by $\alpha_{0}(u)=\{t;t>0,$ $|t-\overline{t}_{0}|$

$<K/2,$ $\psi(t, u)\in\xi(R)$ } is continuous on $[-L, L]\cap[u_{0}-\delta_{0}, u_{0}+\delta_{0}]$ and $\alpha_{0}(u_{0})=\overline{t}_{0}$ .
Put $\beta_{0}(u)=\xi^{-1}(\psi(u), u)$ and we see $\beta_{0}$ is a homeomorphism from $[-L, L]$

$\cap[u_{0}-\delta_{0}, u_{0}+\delta_{0}]$ into $R$ .
Put $[u_{0},\overline{u}_{0}]\cap[u_{0}-\delta_{0}, u_{0}+\delta_{0}]=I$. There are following two cases; (i) $\beta_{0}$ is

orientation preserving, (ii) $\beta_{0}$ is orientation reversing.

Fig. 1. Fig. 2.

Case $i$ . Let $h(u)=\frac{\alpha_{0}(u_{0})}{u_{0}-\overline{u}_{0}}(u-\overline{u}_{0})$ and $\hat{\gamma}(u)=\psi(h(u), u)$ for $u\in[u_{0},\overline{u}_{0}]$ .

Then, $\hat{\gamma}(u_{0})=\xi(\overline{u}_{0})=\hat{\gamma}(\overline{u}_{0})$ . It follows that $\hat{\gamma}([u_{0},\overline{u}_{0}])$ is a closed curve. It will
be shown below that $\hat{\gamma}([u_{0},\overline{u}_{0}])$ is a simple closed curve and is a $1oca1_{-\sim}cross-$

section.
Let $\hat{\gamma}(u)=\hat{\gamma}(u^{\prime})$ . Then $\psi(|h(u)-h(u^{\prime})|, [u_{0},\overline{u}_{0}])\cap\xi([u_{0},\overline{u}_{0}])\neq\emptyset$ . Since

$|h(u)-h(u^{\prime})|\leqq\overline{r}_{0},$ $|h(u)-h(u^{\prime})|=0$ or $\overline{l}_{0}$ . If $h(u)=h(u^{\prime})$ , then $u=u^{\prime}$ . $If_{\iota}^{\vee}h(uJ$

$-h(u^{\prime})=\overline{t}_{0}$ , then $h(u)=\overline{t}_{0}$ and $h(u^{\prime})=0$, then $\hat{\gamma}(u)=\hat{\gamma}(u^{\prime})=\xi(\overline{u}_{0})$ . Thus $\hat{\gamma}([u_{0}$ ,
$\overline{u}_{0}])$ is a simple closed curve. There is no difficulty to verify that $\hat{\gamma}([u_{0},\overline{u}_{0}]\lambda$
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is a local cross-section, since for any $x\in\hat{\gamma}([u_{0},\overline{u}_{0}])$ there is a neighborhood $V$

of $x$ such that $V\cap\hat{\gamma}([u_{0},\overline{u}_{0}])$ is a local cross-section.
Let $\hat{\alpha}(x)=\min\{t>0;\varphi(t)(x)\in\hat{\gamma}([u_{0},\overline{u}_{0}])\},$ $x\in\hat{\gamma}([u_{0},\overline{u}_{0}])$ . From the as-

sumption imposed in Proposition 1, $\hat{\alpha}(x)$ is a well-defined and continuous
function. Let $\hat{\beta}(x)=\varphi(\hat{\alpha}(x))(x),$ $x\in\hat{\gamma}([u_{0},\overline{u}_{0}])$ . Then $\hat{\beta}$ is continuous injection
from $\hat{\gamma}([u_{0},\overline{u}_{0}])$ into itself. Since $\hat{\gamma}([u_{0},\overline{u}_{0}])$ is homeomorphic to a circle, we
see that $\hat{\gamma}$ is a homeomorphism. It follows that $M$ is a two dimensional
torus.

Fig. 3.

Case ii. To simplify the argument below, assume $\overline{u}_{0}<u_{0}$ . If $u_{0}<\overline{u}_{0}$ , the
parallel argument leads to the same conclusion. Under this assumption,
$I=[u_{0}-\delta_{0}, u_{0}]$ and $\beta_{0}(I)\geqq\overline{u}_{0}$ . Assume, furthermore, that $\beta_{0}(u_{0}-\delta_{0})<u_{0}$ , since
if not, there is a point $u\in I$ such that $\varphi(R)(\xi(u))$ is homeomorphic to a circle.

Now, it will be defined $\delta_{n},$
$\alpha_{n}$ , inductively from $\delta_{0},$

$\alpha_{0}$ . There is a positive
number $\delta_{n}$ such that $\delta_{n}>\delta_{n-1}$ and $\psi(\alpha_{n-1}(u_{0}-\delta_{n-1}), [u_{0}-\delta_{n}, u_{0}-\delta_{n-1}])\subset\varphi((-K/2$ ,

$K/2))(\xi(R))$ . Then there is a function $\alpha_{n}$ on $[u_{0}-\delta_{n}, u_{0}-\delta_{n-1}]$ defined by

$\alpha_{n}(u)=\{t;i>0, |t-\alpha_{n-1}(u_{0}-\delta_{n-1})|<K/2, \psi(t, u)\in\xi(R)\}$ .
Since $\alpha_{n}(u_{0}-\delta_{n-1})=\alpha_{n-1}(u_{0}-\delta_{n-1})$ , there is a continuous function $\alpha_{\infty}$ on
$(u_{0}-\delta_{\infty}, u_{0}]$ , where $\delta_{\infty}=\sup\delta_{n}$ .

On putting $\beta_{\infty}(u)=\xi^{-1}(\psi(\alpha_{\infty}(u), u))$ , if $u_{0}-\delta_{\infty}<\sup\beta_{\infty}((u_{0}-\delta_{\infty}, u_{0}$]), then
there is $\theta\in(u_{0}-\delta_{\infty}, u_{0}$] such that $\beta_{\infty}(\theta)=a$ . It follows that $\varphi(R)(\xi(\theta))$ is
homeomorphic to a circle. Assume $u_{0}-\delta_{\infty}\geqq\sup\beta_{\infty}((u_{0}-\delta_{\infty}, u_{0}$ ]). If $\alpha_{\infty}$ is
bounded on $(u_{0}-\delta_{\infty}, u_{0}$], then there is $t_{\infty}$ such that $[\overline{u}_{0}, u_{0}]\ni\psi(t_{\infty}, u_{0}-\delta_{\infty})$ and
there is a sequence $\{v_{n}\}\subset(u_{0}-\delta_{\infty}, u_{0}$] converging to $u_{0}-\delta_{\infty}$ and satisfying
$\lim\alpha_{\infty}(v_{n})=t_{\infty}$ . Since there is a positive number 6 such that $\psi(t,$ $[u_{0}-\delta_{\infty}-\overline{\delta}$,
$u_{0}-\delta_{\infty}+\overline{\delta}])\subset\psi((-K/2, K/2),$ $R$), there is a function $\overline{\alpha}$ on $[u_{0}-\delta_{\infty}-\overline{\delta}, u_{0}-\delta_{\infty}+\overline{\delta}]$

defined by $\overline{\alpha}(u)=\{t;t>0, |t-t_{\infty}|<K/2, \psi(t, u)\in\xi(R)\}$ . It is easy to see
that $\overline{\alpha}(v_{n})=\alpha_{\infty}(v_{n})$ for sufficiently large $n$ . It follows $\overline{\alpha}(u)=\alpha_{\infty}(u)$ for
$u\in[u_{0}-\delta_{\infty}-\overline{\delta}, u_{0}-\delta_{\infty}+\overline{\delta}]\cap(u_{0}-\delta_{\infty}, u_{0}]$ . Thus, $\alpha_{\infty}$ can be extended. Thus,
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Fig. 4.

assume $\alpha_{\infty}$ is not bounded. There is a point $\Omega\in(u_{0}-\delta_{\infty}, u_{0}$] such that $a_{\infty}(it)$

$=t_{0}(a)$ , since $t_{0}(u)$ is bounded and continuous. Since $\tilde{\eta}(u)=\psi(t_{0}(u), u)\in$

$\psi((-K/2, K/2),$ $R$)
$,$

$\alpha_{\infty}(u)<t_{0}(u)+K/2$ , if $u\leqq a$ . This is contradiction. It
follows that there is $u\in[-L, L]$ such that $\varphi(R)(\xi(u))$ is homeomorphic to a
circle.

\S 2. Proof of Theorem A.

Let $M$ be a two-dimensional manifold with metric $\rho$ . Since $MsatisfieS^{\backslash }$.
the second countability axiom, so does $H(M)$ . Let $\varphi$ be a monomorphism
from a vector group $V$ into $H(M)$ . The relative topology for $\varphi(V)$ induces a
topology $g$ for $V$ such that (i) (V, $X$) is a topological additive group, (ii) (V, 9)

satisfies Hausdorff’s separation axiom and the first countability axiom, (iii) $g$

is weaker than the underlying topology of $V$.
For a fixed underlying group $V$, by $T(V, q_{0})$ is meant the collection of

all the pairs of the fixed abstract group $V$ and a topology $ct$ for $V$ satistying
$(i)-(iii)$ above, where $9_{0}$ is the ordinary topology for $V$. Under these notations,
an element (V, $Z$) of $T(V, g_{0})$ is called irreducible, if $g\neq g_{0}$ and (V’, $\Psi$)
$=(V^{\prime}, f_{0})$ holds for any proper vector subgroup $V^{\prime}$ of $V$, where the topology
of $(V^{\prime}, f)$ is the relative topology in $(V, f)$ . It is easy to see that if (V, g)
$\in T(V, q_{0})$ and $q\neq q_{0}$ then there is a vector subgroup $V^{\prime}$ of $V$ such that
(V’, $Z$) is irreducible.

LEMMA 1. Let (V, $9^{\prime}$) $\in T(V, f_{0})$ be irreducible and $\varphi$ be a continuous
homomorphism from (V, $q$) into $H(M)$ . If $M$ is a two-dimensional manifold
with metric $\rho$ and if $M$ is not a torus, then every orbit is one-dimensional or
a point.

PROOF. Let $\langle, \rangle$ be an ordinary inner product and let $|v|=\sqrt{\langle v,v\rangle}$ . If
there is a point $x\in M$ such that $\varphi(V)(x)$ is two-dimensional, then $\varphi(V)(x)$ is
an open subset of $M$. Thus, $\varphi(V)(x)$ contains a neighborhood $U$ of $\chi$ which
is homeomorphic to $R^{2}$ . Since $g$ is weaker than $9_{0},$ $\varphi$ can be considered as
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a continuous homomorphism from $(V, q_{0})$ into $H(M)$ . Since $(V, f_{0})$ and $U$

are sets of second category, there is $\epsilon/2$-neighborhood $W$ of $0$ in $(V, q_{0})$ such
that $\varphi(W)(x)$ contains an open subset $U^{\prime}$ of $M$. Thus, denoting by $W^{\prime}$ the

$\epsilon$ -neighborhood of $0,$ $\varphi(W^{\prime})(x)$ contains an open subset $U^{\prime\prime}$ of $M$ which contains
$x$ . Since (V, $9^{\vee}$) is irreducible, there are points $v_{1},$ $v_{2}$ , $\cdot$ .. , $v_{r},$ $r=\dim V$ such
that $v_{1},$ $v_{2}$ , $\cdot$ .. , $v_{r}$ are linearly independent, $|v_{i}-v_{j}|>2\epsilon$ if $i\neq j,$ $|v_{i}|>2\epsilon$ and
$\varphi(v_{i})(x)\in U^{\prime\prime}$ ([6], Lemma 3). It follows that there is $v_{i}^{\prime}$ for every $i$ such that
$v_{1}^{\prime}\in v_{i}+W^{\prime}$ and $\varphi(v_{i}^{\prime})(x)=x$ . Thus, $\varphi(V)(x)$ is homeomorphic to a torus. This
means that $M$ is a torus.

Now, assumptions being as in Lemma 1 above, assume furthermore that
$\varphi$ is a monomorphism. Let $V_{x}$ be the isotropy subgroup at $x$ and $V_{x}^{0}$ be its
connected component containing $0$ under the topology $q_{0}$ .

Assume there is a point $x$ such that $V_{x}\neq V_{x^{0}}$ . Let $V_{1}$ be a one-dimensional
vector subgroup such that $V_{1}\not\subset V_{x^{0}}$ . Since $\varphi(V_{1})(x)$ is homeomorphic to $S^{l}$ ,

from Lemma 3 in [6] and Proposition 1 above, we see that the subset $M(V_{1})$

consisting of the points $y$ such that $\varphi(V_{1})(y)$ is homeomorphic to a circle is
open and not vacuous. Since it is clear that if $\varphi(V_{1})(y)\neq\{y\}$ , then $\varphi(V)(y\rangle$

$=\varphi(V_{1})(y)$ , we obtain that the subset $M^{\prime/}$ consisiting of the points $y$ such that
$\varphi(V)(y)$ is homeomorphic to $S^{1}$ is an open subset of $M$. From Theorem $B$ in
[6], we see that $V$ operates as a circle group on every connected component
of $M^{\prime\gamma}$ . That is $V_{x}$ is constant on every connected component of $M^{\prime\gamma}$ . It
follows that for every boundary point $x$ of $M^{\prime\prime},$ $\varphi(V)(x)$ is homeomorphic to
a circle or a point. Thus, by Theorem $B,$ $C$ in [6], $\varphi(V)=S^{1}$ , contradicting
the assumption that $\varphi$ is monomorphic. It follows that $V_{x}=V_{x^{0}}$ for any point.

Let $x_{0}$ be a point of $M$ such that $\varphi(V)(x_{0})\neq\{x_{0}\}$ . Since $(V_{x}, g_{0})$ is con-
nected and (V, $\mathcal{G}_{0}$) $/(V_{x}, \mathcal{G}_{0})$ is one-dimensional, $V_{x}$ is continuous on $M^{\prime}=$

$\{x\in M;\varphi(V)(x)\neq\{x\}\}$ . That is $\lim_{x_{n}\rightarrow x}V_{x_{n}}=\{\lim_{n\rightarrow\infty}v_{n} ; v_{n}\in V_{x_{n}}\}=V_{x}$ , where the

topology under which $\lim$ . is considered is the topology $g_{0}$ . Thus, there is a
(V, $f_{0}$)-valued continuous function $n(x)$ on some neighborhood $U$ of $x_{0}$ such
that $|n(x)|=1$ and $\langle n(x), v\rangle=0$ for any $v\in V_{x}$ . Let $V_{1}=\{\lambda n(x_{0});\lambda\in R\}$ and
we see that $\varphi(V_{1})(x_{0})\neq\{x_{0}\}$ . Assume $\varphi(V_{1})(x)\neq\{x\}$ for every $x\in U$. Clearly
$\varphi(V)(x)=\varphi(V_{1})(x)$ for every $x\in U$. There is an injection $\xi$ from $R$ into $M^{\gamma}$

such that $\xi(0)=x_{0}$ and $\xi(R)$ is a local cross-section of the family of curves
$\{\varphi(V_{1})(x);x\in M^{\prime}\}$ . That is, there is $K>0$ such that $\psi|(-K, K)\times R$ is homeo-
morphism from $(-K, K)\times R$ into $M^{\prime}$, where $\psi$ is defined by $\psi(t, u)=$

$\varphi(tn(x_{0}))(\xi(u))$ . Since $\varphi(V_{1})(x)\neq\{x\}$ for every $x\in U$, we see $V=V_{1}+V_{x}$

(direct sum). Thus, $v=P(v, x)n(x_{0})+v^{\prime},$ $v^{\prime}\in V_{x}$ . Since $P(v, x)$ is uniquely
determined with respect to $v,$ $x$ and $V_{x}$ is continuous on $U,$ $P(v, x)$ is continuous
on $V\times U$.

Let $L$ be a positive number such that $\xi^{-1}(U\cap\xi(R))\supset[-L, L]$ . Since
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(V, $9^{\prime}$) is irreducible, there is $v_{0}\in V$ such that $P(v_{0}, x_{0})>K,$ $\varphi(v_{0})(\xi([-L, L]))$

$\subset\psi((-K/2, K/2),$ $R$) and $\varphi(v_{0})(\xi([-L, L]))\cap\psi((-K/2, K/2),$ $[-L, L]$)) $\neq\emptyset$ . Put
$\eta(u)=P(v_{0}, \xi(u))$ . Then $\eta(u)$ is continuous on $[-L, L]$ . Thus, considering
Proposition 2 above, we have only to show that $\eta(u)>K$. Since $\eta(0)>K$, if
there is $u\in[-L, L]$ such that $\eta(u)\leqq K$, then there is $\hat{u}\in[-L, L]$ such that
$\eta(\Omega)=K$ . Since $\varphi(v_{0})(\xi(\hat{u}))=\varphi(P(v_{0}, \xi(\hat{u}))n(x_{0}))(\xi(\text{{\it \^{u}}}))$ , this is contradiction. It
follows $\eta(u)>K$ on $[-L, L]$ .

\S 3. Homeomorphisms on a circle.

Let $V$ be a one-dimensional vector group and $\varphi$ a continuous monomor-
phism from $V$ into $H(M)$ of a two-dimensional manifold $M$. From the proof
of Proposition 2, we see that if there is a local cross-section $C$ homeomorphic
to a circle of the family of the curves $\{\varphi(V)(x);x\in M^{\prime}\}$ , and if $\varphi(V)$ is not
closed in $H(M)$ , then $M$ is a two-dimensional torus. Letting $\hat{\alpha}(x)=\{t>0$ ,
$\varphi(t)(x)\cap C\neq\phi;x\in C\}$ and $\hat{\beta}(x)=\varphi(\alpha(x))(x)$ , we see that $\hat{\beta}$ is a homeomorphism
from $C$ onto $C$ . From the assumption that $\varphi(V)$ is not closed, we see easily
that the group $G$ generated by $\beta$ is not closed in $H(C)$ .

In this section, it will be proved that $\overline{G}$ is a compact group in $H(C)$ .
Let $Z$ be an additive group of the integers and $\varphi$ a monomorphism from

$Z$ into the set of all homeomorphisms $H(S^{l})$ on a circle $S^{1}$ . Assume that $\varphi(Z)$

is not closed in $H(S^{1})$ . Then there is a sequence $z_{n}$ , $z_{n}\in Z$, such that $\varphi(z_{n})$

converges to the identity in $H(S_{1})$ . The integers $z_{n}$ can be so selected that
$z_{n}>0$ for all $n$ . This means that for any $\epsilon>0$ , there is an integer $m>0$

such that $\rho(\varphi(m)(x), x)<\epsilon$ for every $x$ in $S^{1}$ , where $\rho$ is the usual metric on $S^{1}$ .
Suppose that $T=\varphi(1)$ is orientation preserving and has a fixed point $x$ .

$S^{1}-\{x\}$ can be identified with the interval $(0,1)$ . Then $T$ is a monotone in-
creasing function such that $T(O)=0$ and $T(1)=1$ . Let A be a connected
component of $\{x;T(x)\geqq x\}$ and $a_{0}=\sup\{x;X\in A\}$ . Then $a_{0}$ is a fixed point
of $T$ and $\lim T^{n}(x)=a_{0}$ for every $x\in A$ . It follows that $\varphi(Z)$ is closed in
$H(S^{1})$ .

LEMMA 2. Notations being as above, if $\varphi(Z)$ is not closed in $H(S^{1})$ , then
$\varphi(k)$ has no fixed point for every $k\in Z$.

PROOF. If $\varphi(k)$ has a fixed point, then $\varphi(2k)$ is orientation preserving and
has a fixed point. Thus, $\varphi(2kZ)$ is closed in $H(S^{1})$ . Since $H(S^{1})$ is a set of
second category, $\varphi(2kZ)$ is discrete subgroup of $H(S^{1})$ . Thus, the closure of
$\varphi(Z)$ is locally compact and not compact, because $Cl(\varphi(Z))/\varphi(2kZ)$ is compact
and $\varphi(2kZ)$ is discrete, where $Cl(A)$ is the closure of $A$ . It follows that $\varphi(Z)$

is discrete under the relative topology in $H(S^{1})$ from Lemma 2.3 in [5].

LEMMA 3. Notations being as above, if $\varphi(Z)$ is not closed in $H(S^{1})$
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and $\varphi(1)$ is orientation preserving, then there are a homeomorphism $h$ from
$S^{1}$ onto $\{\exp 2\pi\wedge-1\theta, \theta\in R\}$ and an irrational number $\alpha$ such that
$h\varphi(1)h^{-1}(\exp 2\pi’-1\theta)=\exp 2\pi\sqrt{-1}(\theta+\alpha)$ .

PROOF. It suffices to prove that $Cl(\varphi(Z))$ is compact and simply transitive
1on $S^{1}$ . For an arbitrarily fixed $\epsilon,$ $-6^{-}>\epsilon>0$, there is $k\in Z$ such that $\rho(T^{k}(x)$ ,

$ x)<\epsilon$ for every $x\in S^{1}$ . Put $\delta=\min\rho(T^{k}(x), x)$ . Then, $\delta>0$ from Lemma 1.
1For two points $x,$ $y$ with $0<\rho(x, y)<-2^{-},$ $(x, y)$ denotes the connected

component of $S^{1}-\{x, y\}$ whose diameter is smaller than the other. We shall
show that $T^{j}(x, T^{k}(x))=(T^{j}(x), T^{j+k}(x))$ for every $j\in Z$. To do this, assume
that $T^{j}(x, T^{k}(x))=S^{1}-Cl((T^{j}(x), T^{j+k}(x))$ . Then, $(x, T^{k}(x))\cap(T^{j}(x), T^{j+k}(x))\neq\emptyset$ .
In fact, if $(x, T^{k}(x))\cap(T^{j}(x), T^{j+k}(x))=\emptyset$ then $(x, T^{k}(x))\subset S^{1}-Cl(T^{j}(x), T^{j+k}(x))$

$=T^{j}(x, T^{k}(x))$ . Thus, there is a fixed point of $T^{j}$ . Since $\rho(z, T^{k}(z))<\epsilon$ for

every $z\in S^{1}$ and $3\epsilon<\frac{1}{2}$ , there is $y\in(x, T^{k}(x))$ such that $\rho(y, T^{j}(y))=\frac{1}{2}$ .
Since $T^{k}$ preserves the orientation of $S^{1},$ $T^{k}(y)\in S^{1}-(x, T^{k}(x))$ . Thus, $T^{j+k}(y)$

$\in(T^{j}(x), T^{j+k}(x))$ and then $\rho(y, T^{j+k}(y))\leqq\rho(y, w)+\rho(w, T^{J+k}(y))<2\epsilon$ , where
$w\in(x, T^{k}(x))\cap(T^{j}(x), T^{j+k}(x))$ . It follows

$\epsilon>\rho(T^{j}(y), T^{j+k}(y))\geqq\rho(T^{j}(y), y)-\rho(y, T^{j+k}(y))\geqq\frac{1}{2}2_{S>-}^{1}6^{-}$

This is a contradiction. Thus, $T^{j}(x, T^{k}(x))=(T^{j}(x), T^{j+k}(x))$ for all $j\in Z$ .
Let $x,$ $y$ be points in $S^{1}$ such that $\rho(x, y)<\delta$ . Then, $(x, y)\subset(x, T^{k}(x))$ or

$(y, T^{k}(y))$ . Assume $(x, y)\subset(x, T^{k}(x))$ and we have $T^{j}(x, y)\subset T^{j}(x, T^{k}(x))=$

$(T^{j}(x), T^{j+k}(x))$ . It follows that $\rho(T^{j}(x), T^{j}(y))<\epsilon$ . Thus, $\{T^{j}\}$ is equi-continuous.
Since $S^{1}$ is a compact set, $Cl(\varphi(Z))$ is compact in $H(S^{1})$ .

If there is $T^{\prime}\in Cl(\varphi(Z))$ and $x\in S^{1}$ such that $T^{\prime}(x)=x$ , then from Lemma 2,
$\bigcup_{x=-\infty}^{\infty}T^{\prime k}$ is discrete in $H(S^{1})$ , contradicting the fact that $CL(\varphi(Z))$ is compact.

Thus, $T^{\prime}=identity$ . If $Cl(\varphi(Z))(x)\subsetneqq S^{1}$ for some $x\in S^{1}$ then the same argu-
ment of Lemma 2 leads to the conclusion that $\varphi(Z)$ is discrete in $H(S^{1})$ . Thus
$Cl(\varphi(Z))$ is simply transitive on $S^{1}$ and then $Cl(\varphi(Z))\cong S^{1}$ .

\S 4. One-parameter transformation groups on the torus.

In this section, one-parameter groups acting effectively on a two-dimen-
sional torus $T^{2}$ are mainly concerned. Considering the above one-dimensional
case, it seems to be natural to conjecture that any one-parameter transforma-
tion group on $T^{2}$ is closed in $H(T^{2})$ or on its closure is compact. However,

the fact is more complicated. Indeed, there is an example of one-parameter
group which acts effectively on $T^{2}$ and is not closed in $H(T^{2})$ and, futhermore,

its closure is not locally compact. This means that the conjecture of Gleason
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and Palais does not hold in general. In this section, an example of such a
one-parameter transformation group on $T^{2}$ will be constructed.

Consider the graph $\Gamma$ of a continuous, positive and periodic function
$y=f(x)$ of period 1 on a real line $R$ and take the relatively compact domain
$D$ whose boundary is $\Gamma\cup I_{0}\cup J_{0}\cup J_{1}$ , where $I_{0}=\{(x, 0);0\leqq x\leqq 1\},$ $J_{0}=\{(0, y)$ ;
$0\leqq y\leqq f(O)\}$ and $J_{1}=\{(1, y);0\leqq y\leqq f(1)\}$ .

Fig. 5.

Let $[z]$ be the number such that $0\leqq z<1$ and $z=[z]mod$ . $1$ . By identi-
fying $(0, y)$ with (1, y) and $(x, f(x))$ with $([x+\alpha], 0)$ for an arbitrarily fixed
irrational number such that $0<\alpha<1$ , the domain $D$ turns out into a two-
dimensional torus $T^{2}$ .

A one-parameter transformation group $G=\{g_{t}\}$ is defined as follows:
For every $(x, y)\in D$ and for every $t\in R$ , there are an integer $m$ and non-
negative number $\lambda$ such that

$r=\left\{\begin{array}{l}-y+\sum_{k=0}^{m-1}f(x+k\alpha)+\lambda\\-y-\sum_{k=1}^{m}f(x-k\alpha)+\lambda\end{array}\right.$ $ifif$ $t<0t\geqq 0$

and $0\leqq\lambda<f(x+sgn(t)m\alpha)$ . Such $m$ and $\lambda$ are determined uniquely with
respect to $(x, y)$ and $t$ . Define $g_{t}(x, y)=([x+sgn(t)m\alpha], \lambda)$ . There is no dif-
ficulty to verify the following Lemma.

LEMMA 4. Notations being as above, $G$ is a transformation group acting
effectively and continuously on $T^{2}$ . If $f(x)$ is differentiable, then $g_{t}$ is a dif-
feomorphism of $T^{2}$ for every $t\in R$ .

The following properties of $G$ is clear.
a) Any orbit of $G$ is dense in $T^{2}$ .
b) $g_{t}$ has no fixed point for every $t\neq 0$ .
Now, assume that $G$ is not closed in $H(T^{2})$ . Then, there is a sequence

$\{t_{n}\}$ such that $ t_{n}\rightarrow\infty$ and $g_{\iota_{n}}\rightarrow id$ . in $H(T^{2})$ (Lemma 1.1, [4]). This means that
for any $\epsilon>0$ there is $n_{0}$ such that $\rho(g_{t_{n}}(p), p)<\epsilon$ for every $p\in T^{2}$ and $n\geqq n_{0}$ ,

wheie $\rho$ is the usual metric on $T^{2}$ . Assume furthermore that $\epsilon<\min f(x)$ .
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For every $x\in I_{0}$ , $m(x)$ is the number of intersection of $I_{0}$ with { $g_{t}(x)$ ;
$0\leqq t\leqq t_{n}+\epsilon\}$ . Since $f(x)$ is continuous and $[0, t_{n}+\epsilon]$ is compact, $m(x)$ is
constant on a neighborhood of $x$ . It follows that $m(x)$ is constant and equal
to $m$ on $I_{0}$ .

This means that $ 0<t_{n}+\epsilon-\sum_{k=0}^{m-1}f(x+k\alpha)<2\epsilon$ for every $x\in I_{0}$ . Thus, $|t_{n}-mE_{0}|$

$<\epsilon$ , where $E_{0}=\int_{0^{1}}f(x)dx$ .
LEMMA 5. Notations being as above, $G$ is not closed if and only if there

is a sequence of integers $\{m_{n}\},$ $ m_{n}\rightarrow\infty$ such that

$|\sum_{j=0}^{mn-1}f(x+j\alpha)-m_{n}E_{0}|\rightarrow 0$ and $\inf\{|m_{n}\alpha-m| ; m\in Z\}\rightarrow 0$ .

PROOF. Necessity is clear from the above argument. On putting $t_{n}=m_{n}E_{0}$ .
from the defintion of the operation of $\{g_{t}\}$ , we see that $g_{c_{n}}\rightarrow id$ . in $H(T^{2})$ .

LEMMA 6. Let $f_{0}(x)=f(x)-E_{0}$ . If $Cl(G)$ is compact in $H(T^{2})$ , then there
is a continuous periodic function $g(x)$ of period 1 such that $f_{0}(x)=-g(x+\alpha)$

$+g(x)$ .
PROOF. Since every orbit of $G$ is dense in $T^{2},$ $Cl(G)$ is simply transitive

on $T^{2}$ . Thus, $Cl(G)$ is homeomorphic to $T^{2}$ , and there is a homeomorphism
$h$ from $T^{2}$ onto $T=\{(e^{2\pi i\theta}, e^{2\pi i\eta});\theta, \eta\in R\}$

$\cong Cl(G)$ such that $hg_{t}h^{-1}(e^{2\pi i\theta}, e^{2\pi\eta}\dot{t})=$

$(e^{2\pi t(\theta+\iota\alpha_{1)}}, e^{2\pi i(\eta\succ t\alpha_{2)}})$ , where $\alpha_{1}\cdot\alpha_{2}\neq 0$ and
$(\alpha_{1}, \alpha_{2})$ is linearly independent with re-
spect to integral coefficient. Of course
the homeomorphism $h$ is defined by
$h^{-1}(g)=g(x_{0})$ for some point $x_{0}$ in $T^{2}$ ,

where $g\in T$. Since $I_{0}$ is considered as
a simple closed curve in $T^{2}$ , so also is
$h(I_{0})$ in $T$ . Without loss of generality,
assume that $h(I_{0})$ contains $\{0\}$ in T. $R^{2}$

is a universal covering group of $T$ and

the natural projection $\pi$ is defined by
$\pi(\theta, \eta)=(e^{2\pi t\theta}, e^{2\pi i\eta})$ . Thus the connected
component of $\pi^{-1}(h(I_{0}))$ containing $0$ is a
curve $C$ in $R^{2}$ . Let $(m_{0}, n_{0})$ and $(m_{1}, n_{1})$

be the boundary point of a connected
component $C$ of $C-Z^{2}$ . Without loss of
generality we assume that $(m_{0}, n_{0})=$

$(0,0)$ . Let $f^{\prime}(\theta, \eta)=\min\{t>0;(\theta+t\alpha_{1}$ ,
$\eta+t\alpha_{2})\in\pi^{-1}(h(I_{0}))\}$ . Then $f(x)=f^{\prime}(\xi(h(x)))$ ,
$x\in I_{0}$ , where $\xi(h(x))=C^{\prime}\cap\pi^{-1}(h(x))$ if
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$h(x)\neq 0$ and $=0$ if $h(x)=0$ . Let $L=\{(\theta, \eta)\in R^{2} ; n_{1}\theta=m_{1}\eta\}$ and define the
function $g^{\prime}(\theta, \eta)$ so that it may satisfy $(\theta+g^{\prime}(\theta, \eta)\alpha_{1},$ $\eta+g^{\prime}(\theta, \eta)\alpha_{2})\in L$ . On
putting $g(x)=g^{\prime}(\xi(h(x)))$ , it is easy to see that $f(x)-g(x)+g([x+\alpha])$ is constant
(cf. fig. 6). Since

$\int_{0^{1}}f(x)dx-\int_{0^{1}}g(x)dx+\int_{0^{1}}g([x+\alpha])dx=E_{0}$ ,

we see that $f_{0}(x)-g(x)+g([x+\alpha])=0$ . Since $\lim_{x\rightarrow 1}g(x)=g(O),$ $g(x)$ can be ex-
tended to the whole line $R$ as a periodical function of period 1. This function
is denoted by the same notation $g(x)$ . We see easily that $g(x)$ is continuous.
Thus $g(x)$ is a desired function.

From Lemmas 4-6, we see that if we can find a differentiable and periodic

function $f_{0}$ of period 1 and an irrational $\alpha$ such that (1) $\int_{0^{1}}f_{0}(x)dx=0,$ (2) for

any $\epsilon>0$ , there is an integer $m$ such that $|m\alpha-n|<\epsilon$ for some integer $n$ ,

$|\sum_{J=0}^{-1}^{n\iota}f_{0}(x+j\alpha)|<\epsilon,$ (3) there is no continuous and periodic solution of $f_{0}(x)=g(x)$

$-g(x+\alpha)$ , then there is a one-parameter transformation group with the
properties stated in the “ Example “ in the Introduction.

Now, let $\{a_{n}\}$ be a series of positive numbers defined by

$a_{n}=\sum_{\iota=0}^{n-1}$ a$i+(n-1)$ , $a_{0}=1$ .

Put $s_{n}=\sum_{i=0}^{n-1}a_{i}$ . For a positive integer $p$ (for instance $p=10$), take an irrational

number $\alpha=\sum_{n=1}^{\infty}p^{-\$ n}$ and put $f_{0}(x)=\sum_{n=1}^{\infty}p^{-a_{n}}\sin(2\pi p^{s_{n}}x)$ . Then $f_{0}(x)$ is a periodic

function of period 1, continuous and differentiable because $\sum_{n=1}p^{-a_{n}}p^{s_{n}}=$

$\sum_{n=1}^{\infty}p^{-(n-1)}$ is absolutely convergent. Moreover, we have $\int_{0^{1}}f_{0}(x)dx=0$ . It will

be shown below that $f_{0}$ satisfies the conditions (2) and (3) above.

Since $ 2\pi\theta\geqq|1-e^{2\pi i\theta}|>\pi\theta$ for all $0<\theta<\frac{1}{2}$ and $p^{s_{k}}\alpha\equiv\sum_{n=k+I}^{\infty}p^{-s_{n}+s_{k}}mod 1$ ,

we have $|1-e^{2\pi ip^{s_{k\alpha}}}|>\pi\sum_{n=k+1}^{\infty}p^{-s_{n}+s_{k}}>\pi p^{-a_{k}}$ . Thus,

$|\sum_{j=0}^{m-1}f_{0}(x+j\alpha)|=|\sum_{n=1}^{\infty}\sum_{J=0}^{m-1}p^{-a_{n}}\sin 2\pi p^{s_{n}}(x+j\alpha)|$

$\leqq\sum_{n=1}^{\infty}|\sum_{j=0}^{m-1}p^{-a_{n}}e^{2\pi ip^{s_{n}}(x+j\alpha)}|\leqq\sum_{n=1}^{\infty}p^{-a_{n}}|\frac{1-e^{2\pi tp^{s_{n}}m\alpha}}{1-e^{2\pi ip^{s_{n_{a}}}}}$ . $e^{2\pi ip^{s_{n}}x}|$

$\leqq\frac{1}{\pi}\sum_{n=1}^{\infty}|1-e^{2\pi ip^{s_{n}}m\alpha}|$ .

For the proof of the property (2), we have only to show that for any $\epsilon>0$ ,
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there is $M$ such that $\sum_{n=1}^{\infty}|1-e^{2nip^{s_{n}}M\alpha}|<\epsilon$ and there is $n$ such that $|M\alpha-n|<\epsilon$ .
Since there is an integer $m$ such that $ 8\pi\frac{p}{p-1}p^{-(m-1)}<\epsilon$ , on putting $M=p^{s_{m}}$,

we have $|p^{s_{m}}\alpha-n|<\epsilon$ for some $n$ and $p^{s_{n}+s_{m}}\alpha\equiv p^{s_{m}}(\sum_{k=n+1}^{\infty}p^{-s_{k}+s_{n}})\equiv\sum_{k=n+1}^{\infty}p^{-s_{k}+s_{n}+sm}$

$mod 1$ , if $n\geqq m$ , and $p^{s_{n}+s_{m}}\alpha\equiv p^{s_{n}}(\sum_{k=m+1}^{\infty}p^{-s_{k}+s_{m}})\equiv\sum_{k=m+1}^{\infty}p^{-s_{k}+s_{n+\$ m}}mod 1$ , if

$m>n$ . Since $k>\max\{n, m\}$ in these terms, we have $s_{k}-s_{n}-s_{m}>0$ . Thus,

$|1-e^{2\pi ip^{\$ n}}s_{m_{a}}|\leqq 2\pi\sum_{k=n+1}^{\infty}p^{-s_{k}+s_{n}+s_{m}}\leqq 4\pi p^{-a_{n}+s_{m}}$ if $n\geqq m$ , and $|1-e^{2\pi ip^{s_{n}\vdash s_{m_{a}}}}|\leqq$

$2\pi\sum_{k=m+1}^{\infty}p^{-s_{k}+sn+s_{m}}\leqq 4\pi p^{-a_{m}+s_{n}}$ if $m>n$ . Since $a_{n}-s_{m}\geqq n-1$ for $n\geqq m$ and

$a_{n}-s_{m}\neq a_{n},-s_{m}$ if $n\neq n^{\prime}$ , we see that

$4\pi\sum_{n=m}^{\infty}p^{-a_{n}+s_{m}}\leqq 4\pi p^{-(m-1)}\sum_{k=0}^{\infty}p^{-k}=4\pi p^{-(m-1)}\frac{p}{p-1}$ ,

and by the same reason we see that

$4\pi\sum_{n=1}^{m-1}p^{-am+s_{n}}\leqq 4\pi p^{-(m-1)}\sum_{k=0}^{\infty}p^{-k}=4\pi p^{-(m-1)}\frac{p}{p-1}$ .
It follows

$|1-e^{2\pi ip^{s_{n}\prec s_{m}}\alpha}|\leqq 4\pi\sum_{n=m}^{\infty}p^{-a_{n}+s_{m}}+4\pi\sum_{n=\iota}^{m-1}p^{-a_{m}+s_{n}}\leqq 8\pi\frac{p}{p-1}p^{-(m-1)}$ .

Now, assume that there is a solution $g(x)$ of $f_{0}(x)=g(x)-g(x+\alpha)$ which
is continuous and periodic. Without loss of generality, assume $\int_{0^{1}}g(x)dx=0$ .

Let $\sum_{k=1}^{\infty}(b_{k}\cos 2\pi kx+c_{k}\sin 2\pi kx)$ be the Fourier expansion of $g(x)$ . Then the

Fourier expansion of $g(x)-g(x+\alpha)$ is

$\sum_{k=1}^{\infty}\{(b_{k}(1-\cos 2\pi k\alpha)-c_{k}\sin 2\pi k\alpha)\cos 2\pi kx$

$+(b_{k}\sin 2\pi k\alpha-c_{k}(1-\cos 2\pi k\alpha))\sin 2\pi kx\}$ .
Thus, the non vanishing terms are given by

$b_{p^{s_{n}}}=\frac{1}{2}\frac{\sin 2\pi}{1-\cos}2\frac{p^{s_{n}}\alpha}{\pi p^{s_{n}}\alpha}p^{-an}=-2^{-p^{-a_{n}}\cot\pi p^{Sn}\alpha}1$ $C_{p^{S}}n=\frac{1}{2}p^{-an}$ .

Since $ 2\theta\geqq\tan\theta$ if $\frac{\pi}{4}\geqq\theta\geqq-\frac{\pi}{4}$ , and $p^{sn}\alpha\equiv\sum_{k=n+1}^{\infty}p^{-\$_{k+s_{n}}}mod 1$ , we have

that if $n\geqq 2$ , then

$p^{-an}\cot\pi p^{sn}\alpha\geqq\frac{p-a_{n}}{2\sum_{\perp k=n1}^{\infty}p^{-s_{k}+s_{n}}}\geqq\frac{p-a_{n}}{4p^{-an}}=_{4^{-}}^{1}-$
.

Thus,

$\int_{0^{1}}g(x)^{2}dx=2\sum_{n=1}^{\infty}(\frac{p^{-an}}{2})^{2}+\sum_{n=1}^{\infty}(p^{-a_{n}}\cot\pi p^{s_{n}}\alpha)^{2}\geqq\sum_{n=1}^{\infty}\frac{1}{16}=\infty$ .
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This contradicts the assumption that $g(x)$ is continuous on $[0,1]$ . It follows
that there is no continuous and periodic solution for $f_{0}(x)=g(x)-g(x+\alpha)$ .

Thus, putting $f(x)=f_{0}(x)+E,$ $E>\max f_{0}(x)$ , we have a one-parameter
transformation group $G=\{g_{t}\}$ whose closure in $H(T^{2})$ is not locally compact.

Tokyo Metropolitan University
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