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In his famous work Godel constructed the model 4 on the basis called
2, consisting of the axiom groups A, B, C and D. The first axiom of the
group C, i.e., Cl, is the axiom of infinity and the fourth, C4, is the axiom of
replacement. Now we take as our basis the axiom system, named S,, obtained
from X by the following replacements: Cl by @a)0 € a-(x)(x€ a- D -x+1€ a))
and C4 by both the Aussonderungsaxiom and the axiom (a, A)Un(A)-28(A)
€ On:D -MA“P(a))) where 0, x+1, and B(a) denote the empty class, the sum
of x and {x}, and the power set of « respectively and a ranges over the
ordinal numbers. S; is a subsystem of 2.

In this paper we prove that if S, is consistent, then Y is also consistent.
For this purpose we follow Godel except that constructible sets are ordinal
numbers. Such a method to construct the model 4 in the ordinal numbers
appears in Takeuti [2], [3], [4] and where the different bases of both
axiom system and logic are taken.

The theory of Godel is assumed to be known and the symbols which
are not defined in this paper have the same meaning as in [1]

§1. Sets and classes in S.

First we introduce the following axioms:

C1. Go0ea-(N)(xca-D-x+1a)).
C4’a. (x, A)ACS x- D -M(A)).
C4'b. (x, A(Un(A)-W(A) £ On-x=0n:
D-@wuey =G e x-<{uv) € 4))).
C4”. (x, AIn (4A)-W(A) £ On-x=On:

D-@Nwuey =G s x-(uv) € 4)) .

The system obtained from X by replacing Cl by Cl’ and again C4 by
both C4’a and C4’b is called S. Let S; be the system obtained from S by ad-
ding C47. In S,, C4’b is superfluous because C4” implies C4’b.

In the course of arguments we take S as the basis except only for the
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relativised axiom of power set.
The theorems which may be proved by 5.12 instead of 5.1 in are, of
course, provable in S.

1.1. MD(x)) .
Dx) € S(G&(x)) and M(S(&(x))). Hence, by C4d’a, MD(x)).
1.2. MEAB(x)) .

1.3. Mn(A) - W(A) £ On+0n2+0n?- xS On: D: M(A“X)-MA | x).

We define A,, A, and A, as follows: (wW(ue A;-=:us A-@Qv, Bu=<{wE) -ve On?)
for 1=1,2,3. Let y be an arbitrary element of A“x. There exists a fex
such that {(yf) € A. By the premise, we obtain y = On+On?+On®. If y =On,
then (yB8)< A, and hence y= A,“x. If y<=O0n? then {(yB8) < A, and hence
ye Py A)“xxX (P, | A)“x, using y = P,'yP,'y). If y =On? then {yB) € A, and
hence y € (P, | A “xX(((P1] P2) | As)*“x X ((P2| Po) | As)“x), using y =< Py'y(Py| P,)'y
(P, | P)y>. Since x&O0On, there exists an « such that xS «. Hence A“x
€ A a+(Pr| A *aX(Py | A “a+(P1| Ap)“axX (P, | Py) | Ap“ax((Py] Py) | A)“a).
Let X denote one of A, P;| A, P,| A,, P, | A;, (P, | Py | A;, (P,| P,)| A;. Then
Wn(X)-W(X) S On. Hence, in virtue of C4’b, M(X“a) and, by C4’a, M(A“x).
It is easy to prove that (A | x).

1.4. AT x-BW(A) S POn2)-x S O0n: D :MA“x)-M(A | x).

suppA is defined as follows: (u)(u € supzA-=-Fa, fus{afd-AS R“{{aB)}
(7, Oy >RLaf) - D-~(AS R“{{y0>})). For any A, it holds that A< On?
SM(A) : D-Fa, B)Kaf)=supgA). Let B be a class such that («, f){Ba) € B-
=-acx-f=suppA‘a)-BSOn% Then B Fnx-W(B) S On2%. Hence M(B“x) and
there are a and 8 such that {(aB)=supgB“x. Take a y in A“x arbitrarily.
Then for any <{(&7) in y, (én)R<{af) and hence &, p<Max {af}+1. There-
fore y € Max {aB}+1)* and hence A“x S P(Maz {aB}+1)?). Then we obtain
M(A“x). It is easy to prove that (A | x).
Next we treat the problem of existence in S of recursive functions.

1.5. B(G,) S PON?)-W(G,) S POn?): DA Fy, F)(F,gnOn- F,gn On
((Ffa=G<F | aF, | ay-Ffa=G,{F; | aFy | aj)).

Let K be defined as follows : (f}, /5)({f1/z) € K-=-@B)(f1 Tn B-f. Tn B-(a)a<sB-
Dffa=G filafila)-fifa=GXfilaf:l ad)))-KS V2 We set F;=&(W(K))
and F,=&(D(K)). The proof is carried out successively as follows. We omit
the proofs of (I)-(iv).

® fife, {8180 EK-a e D(f))-Dg): D: fila=g'a-fla=g'a.

(ii) Bne (F)-Fne (F) .
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(iii) NS> eKyeD():Difilr=Rlrfilr=FKIr.
av) acs®DF)- D - Fa=G{F |aF,|a):

a=sD,) D Fa=G{XF, |aF,|a).
) D(F)=0n-D(F,)=O0n.

It holds that D(F,)=D(ESABK))) = S(Do “R(K)) and Do “W(K) < On. Hence
Ord (D(FY)). Similarly for Ord (®(Fy). Therefore ®(F) =0n-D(F,) =<On. As-
sume that DF)<On or D(F,)<On Without loss of generality, we may
assume D(F) < D(F,). Set y=D(F,). We define two classes H, and H, such
that Hfa=G,{(F, | aF, | a) and Hya=G,'{F, | aF, | a) for any « in y-+1.
Then H, ny+1-H,Fny+1. By (iv) and the definition of y, we obtain F; | «
=H la-F,|a=H,| a for « in y+1. Now it holds that I8(H,) & W(G,)+ {0}
S POn?) and W(H,) S P(On?). Hence M(H)) -M(H,). If we set h,=H, and
hy=H,, then(a)a € y+1-D:hfa=G/ <{h Jah, | a) -h,' | a=G,'(h, | ah, | a)).
Hence {(h,h,> = K. Then it follows that y € ®(k,), which is contradictory to
7 =®(hy). Therefore D(F,)=On-D(F;)=O0n.

1.6. W(G) S On+0n%4-0n®-D-@A! FYFFn On-(a)(Fa=G(F| a))).
The proof is carried in the similar way as in 1.5.
1.7. 3! F)Y(F J2omgg(9x On?, On)) .

Let G be a class such that (y, ){yx> € G-= 1y € (OX0n2—LB(x))- (9 X On2IB(x))
Sy} =0)-G < V2. Since W(G) S On+0On%+0n?, there is, by 1.6, an F such
that FEnOn-(a)(F‘a=G(F | a)). Then W(F)<S W(G)S On-+On?+40n® and
Fl a@na. Hence M(F1 «). Then, in virtue of {(G‘xx>= G, we obtain { F‘'aF | a)
e G. Hence Fra € 9XOn?—F“a-(9X0n2—F“a)-S“{F‘a} =0. Therefore F is a
one-to-one correspondence and F“On S 9x0On% Now assume that 9xOn?—F*“On
# 0. Then there is the least element, {iaB), of 9xOn?*—F“On with respect
to S. Let x be an arbitrary predecessor of {iaf8) with respect to S. Then
F-*x<0On. Set y=F‘(F*x)+1) and then xSy and yS{iaf). Hence there is
no immediate predecessor of {(iaf) with respect to S. Therefore i=0 and
there are the following four cases: (i) a € K;;-8=0 or (ii) a>p: B Ky or (iii)
a=0-BK;; or (iv) a < B-a < K;;. Let (i) be the case. We define A by that
E NEPEYEA-= 1 E € a-p=F-0£0))-ASOn®. Clearly A Jna-BW(A)< On.
Hence M(A“a) and so there is a p such that A“a S p. It holds that (§)(¢é<a-
D-C0E0YS(F ). Let Fu=<j0¢). Then {jO¢)<=F“On and hence {j0Z)S<0a0).
So we obtain @, {<a. Since a < K;;, there is a p such that 4,{<p<a.
Hence (F“u)S<0p0), which is a contradiction. Let (ii) be the case. B is defined
by that (¢, )(Kné)e B-=:£€ B-p=F*{0at))-B=On% In the same way
as before, there is a g such that B“8 < ¢ and hence (6)(€ < B-D-{0aé&)>S(F‘p)).
Let F‘u=<kor). Since fe K;,0< B and hence {0a0)>S<{kor). Therefore
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a =<Mag {o7}. On the other hand, {koz)>S{0aB) and a > . Hence we obtain
a=Mag {07} and furthermore 0 = a-v < B, since {or) Le{aB). Since & Ky,
there is a x such that ¢ <# < . Hence (F‘¢)S{0ax ), which is a contradiction.
Similarly for cases (iii) and (iv). Therefore we obtain 9xOn*—F“On=0 and
F Jeomgg(On, 9xOn?). Uniqueness is easily proved and hence (3! F)(F Jzompg
(On, 9%xOn?). Hence we may obtain the theorem.

By 1.7, we may give the following definition.

Dfn J Jeomgg (9 < On?, On).
The part relating to the axiom of infinity is slightly changed.
1.8. M(w) .

By C1/ there exists a set ¢ such that 0 a-(X)(x€a-D-x+1<a). Hence, by
the principle of induction, @ S a. Then we obtain T(w).

§2. Preparation of model construction.
Dfn Cprd e Ky=-@a, B =T<paf)): K, S On.
Din S {fr}*-=-@n¢ ey -(=Tin{/\<Br /'y B} - (B> #<10> - {fr>=+<01))
V (7 =/,"10>-Br> =<01> Vv (B> =<100)) : {Br}* < On.
2.1. ~(Br> € {K01<10> 1) - D { By} * = Min {J, B>/ <y B} -
{Br> € KOI10)} - D {Br}* =1,<10) .
Dfn Br>* = {{BY*{Br}*}*.
Dfn (Brod* =< Brod*y*.
Dfn (yx) € G =-KTP)=0-G, PG ey = 19 =2T(P,y'n) 7 <TP'%)))
VEEEPD)=1-G, g €y-= 1 =FPy'x) 7= K'SP'D)V y = KT(P,'n)
V (KRB 0)=2:(, PG ey-= =Py 7y € WP, ) KST(P,'%)) .
(g, DL pdy*) € GL(P,'x))- AH(pé) e €W (P,'x) -y € WP, ) K TP X))
V ES P ) =3, ey -=-=T(P,'x)- 7 € WP, K,y DP,'x))-
~@Or& € SW(P,x)-§ & V(P x) KDL, 1))
VEDP ) =4, D €9 = =D(Py'x) -7 € BIP2)'KST(Py'x))
Qe v, Hr{d™) € BB(P,' 1)) - (v€) € BW(P,'x))-§ &€ V(P %) Ky D(PL0)))))
V ESDP ) =5-(r, MKy € y-= 19 =D(P, %)y € VAP0 K, D(P, %)) .
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e, v, OKré> € SW(P, 1))+ (uwEH™) € S(W(P,'x)) - pr& WP %) Ky DL, 1))
V(K DP0)=6-(r, Py €y-= 1 =B(P'%)- 7 = WP, ') K, D(P,'x)) .
At v, O {w)*> € BB(P,'X)) - vy ™€) € GW(P,'x))- £ € WPy %) Ky D(P ‘%))
VKSDPR) =T, > €y-= 19 =D(P,'%) -y € WP,'2) K,'DP'x)) .
Qe £, K ay*HeS(W(P, 1)) - L) *E) e BS(W(Py'x)) - £ WP, %) K" D(P, X))
V (KSDP ) =8-(r, Ny €y-= 1 =BD(Py'x)- y € WP 2 K D(Px)) .
@, v, £, Hyprv)™) € GWP,'0)) - K pve)™5)
€ BW(Py'x))- & & WP, %) Ky'D(P 1)) : G, S POnH)X V.
Dfn  (yx) € Gy =-Wuey-=-3B, Nu={Bfr) - Mag {fr} =D(Py'x) .
(O WGP | P T B2)-D-(Fn)y
€ WGP T r(Px) 1 72) <&y € SWP, 1)) -
()€ e WGP 1 1P T 12)- 2@ € WG AP0) T SP%) 1 B))
&> € SBP 0NN : G, & PO X V.
By 1.5, we may give the next definition.
Dfn HnOn-(o)(H'a=G,<Hlal | a))- IFnOn-(a)I‘a=G,H| al | a)).
xc A if A0n and ~(A<0On),
Dfn xe*A-=. { xeWHA if A€On,
a false statement otherwise.
2.2, NretaDr<a).
For Kfa=0, (p)(ys*a:

Il

r<a).
For Kja=1, (Nge*a-=r=K'aVr=K'a).
For Kfa=2, (N(re*a-=:re*K'a -Gy, v) i)™ € 61 a)-
ED(Ee> e B @)-E *v)).
For Kya=3, (p(refa-=:re*K‘'a-~BHrs el a)-t e* K'a)).
For Kfa=4, ((e*a-=:7y*K'a-y, v, Hr{w)*) € 8(I“a)-
é e8I a)-£ e*K,a)) .
For Kfa=5, (Nre*a-=re*K'a-Ap, v, ) ré) =S a)-
véH*) e &(I"a)- p e* Ky')) .
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For Kfa=6, (Ne*a =:ye*K a-Gp, v, O {my*e &l )
Kuw*e) e &(I"a)-§ e* Ky'a)) .

For Kfa=7, (n(re*a-=y*K'a-Gp, v, £, O ylep)*> € &(1“a)-
Kpved*s) € (I“a)-§ €* Ky'a)) .

For Kfa=8, (nNGge*a-=:y*K'a-(Qy, v, £, Oy{urv)*) € S(I“a)-
Lpey*e) e €(I"a)-§ ¥ Ky'a)) .

B, KB ela-=:Mag {Br} =a-(E)E>*B-D-
@ e*r <&y e &I a))-(O)E e*r-D-
@nn e* By e &I “a)))-I'a = On?.

We assume that the theorem holds for any ordinal less than «. By the
definition of G, (x)(A!»)(xy)> € G,) and hence (G, xx> € G,. Since {(H| al | a)
is a set, we obtain (H'a{H | al | a)) = G, and similarly {{‘a{H | al | a)) € G.,.
Since W(G,) S P(On?), it holds that H'a = P(On?) for any « and hence W(H)
c PB(On?), using HFn On. Therefore, by 1.4, MH | «) and similarly M | a).

y€*a-D-y<a holds by inductive hypothesis, provided that each formula
for Kfa=1 (1=0,---,8) is proved. Let K a=0. Then we obtain that
My eHa-=:p=a-y<a). Hence ye*a-=-r<a. Let Kfa=1. It holds
that () eHa = p=a-y=K,'aVyr=K'a) and hence yc*a-=:y=K,‘aVy
=K,a. Let K/a=2. It holds that (DY eHa-=:n=a-y eW(H'K,'a) -
Ap, VI {*> € BI"a)-AOpE) e I a)-E e W((H [ a)v)).  If ({d*)e
©(I“a), then, by inductive hypothesis, Mar{y{uv)*} <v and hence y<a. Hence
WH | «)v)=W(Hv). Therefore y e*a-=:y*K‘a -Gy, v)r{p)*) e &I“a)-
@OKpé) e &(I“a)-£ =*y)). Let K, a=3. It holds that )y e Ha-=:7y
=a- -y WHK/'a)- ~3E)(rE) € ©(I“a)- & € W(H'K,'«))). Hence we obtain that
re*a-=re*Kla ~3ré) e 6l “a)-E e* Kya). Let Kyfa=4. It holds
that (P e H'a-=1p=a-y € WH'K,'a)-3p, v, )™ € ©(I“a) - {v&)
ee(“a)- (eW(H K, a)). Hence yet*a-=:ye*Kfa-@y, v, ) r{w)*)> e a)-
W el"a)-E ¥ Kia). Let Kfa=>5. It holds that )y € Ha-=:p=a-
rEWH K 'a)-Ap, v, E)K7é) € ©(I“a) - {pupé&H*>eS(“a) - p € W(H K,'a))). Hence
refa-=1re*Ka@p v, ) (78 € CI“a) - { ulvéX*y e S([“a) - p=* K)'a). Let
K,a=6. It holds that ))yn) € Ha-=:np=a - yeWH'K,'a)- Ay, v, E)(r{uw)*>
eG(“a) Lyu)*6)e Gl “a)- § € WHK,'a))). Hence ye*a-=:ye*K'a-
G, v, Ky > e&“a) - Kypu)*ed> e &(“a) - E e* Ky)a). Let Kfa=7. It
holds that My eH'a-= 1 p=a-yeBH 'K'a)-Ay, v, £, ) rlep)*) eS([“a)-
LY E) e ©(I“a) - £ e WHK,'a))). Hence ye*a-=:ye*K‘a-3y, v, £, &)
Kypepyy*) e S(I“a) - Kpve)*E) e €(I“a)- £ €* K,')). Similarly for K,‘a=8.

By the definition of G,, it holds that (u)(u € Fa-=: @B, P)u = {By> - Max {Br}
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=a-(EEEBWGHKH T BLT B -D-@p@eB(GH [ 71 [ 1))-LEp €U a))-(E)(E
eWGKHN T 1) D -@neBW(GKHT B ) - &) & “a))). Hence
B PUBryela-= M {fri=a-©EE*F-D-APEe*y- (&> cSU“a)-
)¢ e*r - D-Ane*p-&y)e&l“a))) - I'a = On?.  Therefore the theorem
holds for «. Hence we obtain the theorem, since the kernel of induction is
normal.

Dfn Be[Al-=-@NKPr>=&U“On) -y €* A):[A]SOn.
2.3. ac*A-D-ac[A].
24. [Bl=0r]l-=-{Pr>c&U“On): [l=[r]-=-{Br)> I'Max {Br} .

First we prove a lemma: (a, 8, NKaB), (Br>SI“On) -D-{ar) e SI“On)).
Let A be a class such that 2e A-=-(a, B, DA=Max {a By} -{aB>, {Br>
€&(“On): D-<ay)=&(“On)): ASOn. Assume that A& A. Let ==Mag{afr}
and {(af), {By>=SU“On). Take an arbitrary & such that £*a. Since
{aB) = &(I“On), there is an 7 such that n €* - {(&n) € &(I“On) and also there
is a  such that { e*7 - (p{) = SI*“On), since {PBr)> € SU“On). It holds that
Max {En} < A. Hence, by inductive hypothesis, <&{) € &(I*“ On). Hence <{&()
e I'Max {£¢} and so (&L) = &(I“ Max {ay}). Hence it holds that E)Ee*a-
D-EADE *r - LY e &I“ Max {y}))). Similarly we obtain that ()(§*y -
D-EDC e*a L) e U Max {ar})). Therefore {ay) e I' Max {ay} and so
(ay)e©[“On). Hence A= A and so OnE A.

Now let [f]l=[y]. Take a &*p arbitrarily. £<[f] and so &< [r]
Hence @n)(7 =*7-{&7> € &(I“On) and so @p)(ye*y - (&nd € &I Max {Br}).
It is proved similarly that if & e*y, then @Ay e*B-{&y) e SUT“ Max {B7}).
Hence (7)< &U“On). Conversely assume that {fy)<&(I“On). Take an
arbitrary § such that £ []. There is an 5 such that p * - (&) € &(“On).
Since {By)> = ©U“On), there is a { such that {e*y-{(pL> < SU“ Max {B7}).
Then we obtain (&{)=&(I“On) by the above lemma, since <{(&nd, (>
€ ©&(U“On). Hence £ €[y]. Consequently [f] < [7] holds. Similarly we obtain
that [y]S[B] and hence [f]=[7y]. The second part is clear from the first.

2.5. BElAl-=-@PCA=Lr]-Te*4).
It is clear from the definition of [A] and 2.4.
2.6. [A]=[B]-=:()¢c*A-D-@E]=[n]-n€*B))-
&Ee*B-O-@PEl=Dy]-n*A4).

Assume that [A]=[B]. Take an arbitrary & such that §*A. Then £ [A]
and hence £¢=[B]. By 25 @n{é&]=[»]-pe*B). Similar for (E)(E*B-
D-@AC&]=[»]-&<=*A)). Conversely assume that the right-hand side of 2.6
holds. Take a & e[ A] arbitrarily. By 2.5, there is an » such that [£]=[%]-

Ii
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pe*A. Then, by the assumption, there is a { such that [p]=[{]-{<*B.
Hence it holds that [§]=[{]-{<*B and so £ =[B]. Hence [A] < [B] holds.
Similar for [B] < [A] and so [A]=[Bl.

2.7. (a, B, ALal=[p] -D:acs[A]-=-B[A).

Assume that [a]=[f]. Let a=[A]. Then thereis a y such that [a]=1[y]-
ye*A. Hence [B]=[7y]-7<=*A and so 8=[A]. Similar for the converse.

2.8. §e{ap}*]-=-[fl=lalVEI=[F].

It holds that {af}*=Min{/;<aBd/'{Bad}V {af}*=7<10). Let {af}*
= Min {/,'CaB)/’{Ba)}. Take an arbitrary & in [{aB}*]. Then there is an
y such that [§]=[y]-pe*{af}* By 22, y=a V=4 and hence [£]=[a]
V [E]=[pB]. Conversely assume that [§]=[a]V [§]=[F]. Since a*{af}*
and B8 *{af}¥* we obtain & € [{af}*] by 25. Let {af}*=/,/(10). Assume
that £ [{af}*] and [£]=[n]-7€*/,/<10)>. Then p=0vy=1vVv[yp]=0.
Hence [7]=[0]V [»]=[1] and so [§1=[0]V[£]=[1]. Since {(af)=<01}
or {af)=<10), we obtain that [§]=[a]V [£]=[B]. Conversely assume that
[81=[lalVv[&]=[B]. Then [E]=[0]V[E]=[1]. Since 0&*J,<10)> and
1e*],(10), it holds that & = [J,'(10}], i.e., § = [{af}*].

2.9. [Kap)*1=[rd>*]-=:lal=[r] - [f1=1[0].
We omit the proof, since it may be carried out as usual.
2.10. a<y-B=d:D {afy* = {yoy*-

a<y-B=0-aB)#yo>: D {af}* < {ro}*.

It is sufficient to prove the latter formula. Let {yd}*= Min {J,'<yo)/,’(oy>}.
By the premise, (aB) R{yd) and {Ba) R{oy). If {yé}*=/,"(ro>, then J,*<afB)>
<J,ydy. Since {af}* <J,'<aP), it holds that {aB}* < {yo}*. If {yo}*=7,<op>,
then J,¢{ Bay <J,*¢(dr> and so {af}* < {ro}*. Let {yd}*=/,'(10). Then <{yd)
=10 or {yo>=<01). Hence, by the premise, {a8)=<00) and so {apB}*
=7,<00). Consequently {ap}* <J,"(10) = {ro}*.

2.11. asy-B=0o:D-Lafd* = yoy*.
a=y-f=0-{afd#Lyd): D -af* <{yd)*.
It is sufficient to prove the latter formula. By the premise and 2.10, {a}*

< {r}* and {af}*<{rd}*. Hence <{a}*{af}*)={{r}*{yé}*> and again, by
2.10, <apy*= {{a}*{af}*} < {{y}*{yo}*}* = (yod*.

2.12. @, »)[al=Km)*D D G0, D([al=[{o)*] - {o)* = )

By the premise, there are a ¢ and a v such that [a]=[{uv)*]. It holds that
{¢}* e [{u)*]. Then there is an x such that [{g}*]=[x]-x=*a. The least
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among such x’s is named z. In the same way, there is the least, p, among
x's such that [{m}*]=[x]-x€*a, using that {mw}*e[{w)*]. For any x
such that x €*a, it holds that x « [{p)*] and so [x]=[{g}*]Vv[x]=[{w}*].
There also exists an x such that [g]=[x]-x*p, since [{uv}*I=[p]. Hence
there is an x such that [p¢]=[x] and x*x Vv x*p. The least among such
x’s is named ¢. There also exists the least, z, among x’s such that [v]=[x]
-xe*p.

Let Kya=0. Assume that 7 < p. Since [{p}*]=[r], there is an x such
that x*z and so x<=z. It holds that = < a, since 7 €*a. Hence x< a and
so x&*a, since K, a=0. Then we obtain an x such that x <=z, x < p, and
x =*a, which is contrary to the definitions of = and p. Similarly we obtain
a contradiction, assuming that p=<w. Hence K a0 holds. Let K,a=1.
Since 7, p =*a, it holds that 7, p € {K,‘aK,‘a} and so Max {zrp} =< Mag{K,'‘aK;'a}.
If Max {mp} < Max {K‘aK,‘a}, then <(mp)R{K‘'aK,a). Let MMax {zp}
=Max {K,'aK,'a}. Assume that 7 <p. If K/'a=K)'a, then p=K,'a and so
< Kya. Hence {pr)R{K/aK)ya). If Kya < Ka,then p=K‘a and == K,'a,
since t=K,'aVr=K'a. So {pr)=<K/'aK,a). Similarly we obtain that
(mpy R{K)'aKy'a) or {mp) =<K, 'aK,'a), assuming that p<z. Assume that =
=p. Then 7= Max {K,'aK,‘'a}. On the other hand, by the definitions of z and
p, it holds that 7 < K« and 7 < K,'a. Hence 7=p=K,'a = K,'a and so {(wp)
= (K 'aK,'a). In each case, it holds that J,{mp) < a or J,’{pz) < a. Hence
Min {/,Czpd>]'Con)} =a. Since w+0 and p+#0, {wp}* = Min {J,<zp)],' o)}
and so {mp}*<a. Let Kfa=1i({=2,--8). By22 (x)(xc*a-D-x&*K,'a) and
hence 7, pe*K,'a. Hence Mag {wp} < Max {K,‘aK,‘a} and so {wrp)R{K,'aK,'a).
Hence /,{mp) < a and so {mp}* < a. Consequently it holds that {zp}* < a.

Next we show that {¢}* <7 and {o7}*=<p. Let K, /7#=0. Since #+0, it
holds that /,’{10) <z and hence 0e*zn-1&*z where ~([0]=[1]). On the
other hand, (x)(x e*x - D-[x]=[e¢]), which is a contradiction. Hence it holds
that Kz +0. Let K, 7=1. By the definition, ¢ < Min {K,‘aK,'a} and so
Jioo) ST (K/'nK,’ry). Hence {o}*=<rn. Let Kfmr=i (1=2,---,8). Since
o< Kz, 0 <Mag {K,'7K,’x} holds and hence {¢}* <rm. Hence we obtain that
{o}*=m. Let KS0=0. Assume that p +#/,{10>. Since p # 0, /,'<10> < p holds
and so 0*p-1*p-J,'(10) €*p where ~([0]=[1]), ~(0]=[/,'<10>]), and
~([11=7,<101). On the other hand, (Nxe*p -D-[x]=[o]V [x]=[7]),
which is a contradiction. Hence it holds that p=/,<10)>. So, for any x such
that xe*p, it holds that x=0 or x=1 or [x]=0. Since z=*p, we obtain,
by the definition of p, that  <1. Let o, be the least x such that [x]=[o]-
xe*p. o, exists and 6 <0, -0,¥p. Hence ¢,=1 and so ¢ <1. By the de-
finition, ¢ =0V = =0 and hence <{o7) # {11). Hence {o7}* </,<10) and so {o7}*
<p. Let Kfp=1. It holds that May {o7} =< Max {K,'0K,'p}. In the same way
as before, we obtain that {or}*<p. Let Kp=1t (=2, --,8). It holds that
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Mag {or} <Max {K,'pK,'p} and similarly {o7}* < p. Consequently we obtain
that {o}*=7- {or}* = p.

Hence, by 2.10, {ot)*= {{o}*{oc}*}* < {mp}. On the other hand, {7p}*=a
and so we obtain that {(ov)* <a. By the definition, [p]l={[c¢] -[v]=[7] and
and hence, by 2.9, [a]=[<oz)>*]. Hence the theorem holds.

2.13. @2, ¢, »)Cal=[Aw>*]) - - @p, 0, D)l = [(pory*]-(pory* < a) .

Let [al=[<{Apv)*]. By 212, there are a p and a & such that [{Apw)*]
=[{p£>*] and {p£)* < a. Hence, by 2.9, [¢]=[<{uv)*] and so again there are
a o and a 7 such that [#]=[<or)*] and {or)* <. So, by 2.11, {por)* < {pr)*
and hence {por)*<a. It is clear that [a]=[{por)*]. So the theorem holds.

Dfn xe E-=-Qp v)([x]=[Kw)*] - pelv]).
Dfn B e Q.-=-Awrl=[{p*D):Q, S On*.
Din Gp e Qs =-@ICFI=[{r*]) : Qs S On? .

Din (B eQs =G Cr]l=[w*] - [f]=[{w>*]: QS On.
Din (B> < Q- =-Gu v, D11 = [emd*] - [F]=[{puwry*D: Q, S Ont.
Dfn B e Qs-=-@3p, v, e)[r]=[Kpxv)*] - [f]=[{uwr)*]: Qs S On? .
2.14. N erllapy =7 <[ ap)).

MG e*Xap) -=-r=aVyr=0p).

Ny e*aB) -=-ye*a-y€E).

NG e¥lKapy -=-ye*a-~F[BD).

PG e*apy -=-re*a- 71 QB for i=4,-,8.

The formula regarding /,'Ca ) and J,’aB) are clear from 2.2. Let y €*/,(af).
By 2.2 and 2.4, we obtain that y €*a-(3g, V)71 =[{)*1- @Ol =[£]-E&*)).
Hence 7y €*a - Qp, v)[y1=[{w)*]-p=[v]) and so y=*a-y< E. Conversely
assume that ye*a .-y E. For suitable g and v, it holds that [y]=[{uv>*]
p<[v] where we may assume by 2.12 that {u)*=<7y. Clearly y<a and so
May {y<pr*} <J,<aB). Hence, by 24, {r{uw)*) e &[T, aB)). Since pe[v],
there is a & such that [p]=[&]-&<*y. It holds that g, £ < a and so {u&>
e &I/, {aB)). Hence y €*J,<aBy. So it holds that ye*/,<ap) -=-y*a y
€E. Let ye*//<aB). Then ye*a-~@(rE € SUT(apy)-E*p). As-
sume that there is a & such that (y&)@&(U“On)-£&*B. Then y<a-£<f
and so {r&) eSU“Max {af}). Since Max {af} <JS<aBd, it holds that (y&>
e &(I“/,Xap)), which is a contradiction. Hence ~ (3&)(yré&) € &(UI“On)-§*p),
ie, ~@[r1=[£]1-£=*p). Hence ~(r=[p]. Conversely assume that
re¥*a~(elf]). Then ~@HrE) =SUI“On)-&<*P) and a fortiori ~ (IE)
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K& es‘TX<apy) - E€*B). So ye*/,afy. Let ye*/<aB). It is easy to
see that ye*a - Ay, V(y1=[{)*] - @E)((v1=[£]-&=*pP)) and hence y *a -
re @, “[B]. Conversely assume that ye*a-yeQ,“[f]. There is a v such
that {(yv) = Q,-v<[B]. Hence there also exists a g such that [y]=[{uw)*].
In virtue of 2.12 we assume that (uv)* <7y. 7 < a and so Mag {y<{>*} <J,<ap).
Hence {y{)>*) e &“/,{aB)). Since v e[f], there is a § such that [y]=[£&]-
Ee* B Max {v&} < J KaBf) and so W&y e &(UI“J,{afB)). Hence y*/,af). Let
re*/<af). It is easy to see that ye*a -7y Q;“[Bf]. Assume that ye*a-
7€ Q:“[B]. There are a ¢ and a v such that [p]=[{vy>*]-p*p. In virtue
of 2.12, it holds that for suitable ¢ and z, [p¢]=[{ot)*]: {or)* < p. Clearly
[y]J=[7z] and z<fB. So Mar {yz} <J;’CaBf> and hence {(yz)eSU/<ap)).
Similarly {u(ot)*) € ©(“J,/Caf)) holds. Hence y «*/,CaB). Let y=*/Kapf).
Easily we obtain that ye*a-ye Q,“[f]. Assume that ye*a-y<Q“[B].
There is a 0 such that (y0) € Q,-d=[B]. Hence there is a & such that [d]
=[§]-&=*B. There also exist a ¢ and a v such that [y]=[{u)>*]-[£]
=[{py¥]. By 2.12, it holds that for suitable o,, 7, 0,, 75, [y]1=<0,TD*]"
(ot )* Sy - [E]=[Kro00*] - (rot)* = €. Set o =Min {0,0,} and ==NMin {r,7,}.
Then [o,]=[p¢]=[0o.] and [z,]=[v]=[7.]. So[y]l=[{er)*] and [{]=[(za)*].
By 2.11, {ot)* < (o,7,)* - {to)* =<{7,0,0*% and hence {(o7)* <a and {zo)* < B.
So {{ot)*) eS¢ {aB)) and {ro)*E) =S/ {aB)). Consequently y=*/(aB).
Similar for the cases of /;*¢aB) and J,'aB), using 2.13 instead of 2.12.

2.15. (a, P JKapyl="La] - E).
(a, B[/ afr]l=Lal—[FD.
(a, P appl=[al- QLB for i=4,..-,8.

Let £ [/,XaB)]. There is a y such that [§]1=[y]-re*/,<aB). So, by 2.14,
re*a -y E. Hence £=[a]-§=E. Conversely assume that £e[a]-E.
Then there is a y such that [§]=[r]-y€*a. Since £ € E, it holds that ye E.
So ye*/,XaB) and hence &< [/,XaB>]. Similarly [/, <af)l=[al—[f] is
proved, using that (3, P(0]1=[r]l-y[pfl:D-0[BD. Also [JiXaB)]=[a]-
Q:“[B] is proved, using that (9, y)[01=[7] -7y € Q“[B]: D- 0 Q. [SD.

2.16. (a, PANCr1="Lal - [BD.
By 2.15, it is clear, since [a] - [f]1=[a]l—(al—[AD).
Dfn @B (A)-=-@B)XA=[B]-BSOn-(0)@R(CLI=[al: B).
Dfn MA) = Fa)(A=[a]).
Dfn A€EB-=-Aa)A=[al-ac*B).

Dfn %, 7, z, -~ will be used as variables for X’s such that M(X) and
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A, B,C, --- as variables for A’s such that €13 (A).

2.17. (@, ENCal=[r1-B< D).

For arbitrary a and B, it holds that [a]l=[al—[/,XBB>]1="[J,<aly'XBB)Y]
where B <J<aJ<{Bp>>. Hence @p)[al=[r]-B<.

2.18. ASOn-TA1#0: D:Be ([A]D - ~CA]<=On).

Assume that MM(CA]). Then there is a 8 such that [A]J<S 3. Since [A]+0,
there is a y such that y€*A. By 2.17, there is a ¢ such that [y]=[0]-B<0.
Hence 0 = [A] and so 0 < 8 which is a contradiction. Hence Pt ([A]) and con-
sequently ~ ([A] € On).

2.19. ACSOn-=-[[A]]=[A].

If [A1=0, then it is obvious, since [0]=0. Let [A]1+#0. By 2.18, ~([LA]1=On)
and so (p)(ye*[A]-=-re[A] since [A]<SOn. Hence, by 2.3, [AJS[[A]].
Conversely assume that y € [[A]]. Thereis a & such that [y]1=[&]-&é*[A]
Hence £ =[A] and there is an » such that [§]=[»]-np&*A. Then [y]=[7]-
ne*A and so y €[A]. Hence [[AJJS[A]

2.20. ([a]€EA - = acl).

For any A, there is a B such that A=[B]-B<On. By the definition of &,
it holds that [a]€ A-=-AR[al=[p]-B*[B]). If [B]+0, then we obtain
by 2.18 that Be*[B]-=-f[B]. Hence it holds that [a]E€ A -=-AB)([a]
=[p1-Be[BD-=-@NCal=[r]l-7€*B) -=-ac[B]-=-ac A.

2.21. (@@EBBl=Lal-A).

By ©15(A4), there is a B such that A=[B]-B<On-(a)@R(Bl=[al-B). If
there is no y such that y =* B, then [B]=0 and hence the theorem is clear.
So we may assume that there is a y such that y=*B. It holds that y < B.
Assume that B On. Then there is a 0 such that [0]=[B]-B. y[B]-B
and so [B]+#0. Hence, by 2.18, Br ([8]. On the other hand, M B]- B) and
so M(LBD which is a contradiction. Hence ~(B&On) and so (P *B-
=.ne B). Take an « arbitrarily. Thereisa § such that [f]=[a]:-B. Let
ge[f]. Then é=[al-é=B. So £=*B and hence §[B]. So we obtain
[Bl1=[al-[B]. Conversely assume that §=[a]-[B]. There is an % such
that [£§]1=[»]-n<*B. It holds that y=[a]-n< B and hence = [f]. So
[a]-[B1<[B]. Hence [f]1="[a]-[B]and we obtain that (a)@R)([LI=La]-A).

2.22. Cl3(E).

We prove that E=[E]. Assume that E€On. Set y=EFE and 0= <{/,'gr)*.
re*/,%yr> and hence y [ J,\r7>]. Hence 0= FE and so d <y. On the other
hand, y < 0 since 0=<{y/,'(yr>>*, which is a contradiction. Hence ~ (E < On).
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Since E S On, it holds that (§)(¢ e*E-.=-& < E). Hence we obtain that feE -
=-@)CA =[] 7€ E)-=-GPCP1=[7] 7 €*E)-=-B[E]. Hence E=[E].
By 2.15, (a)@B)([(B1=L[a]- E) and so we obtain that €15 (E).

2.23. C18(A-B).

Let A=[A] and B=[B]. If A—B=0, then the theorem holds since €Iz (0).
Let A—B=+0. There is a y such that y € [A]—[B]. Assume that A—5 e On.
Then, by 2.16, there is a & such that [y]=[£]-A—B<é&. It holds that
e [A]—[B] and hence (F&)(A—Be¢- &= A—B) which is a contradiction.
Hence ~(A—B&On). So it is obtained that ae[A—B]-=-@B)(al=[H]"
Be*A—B)-=-@p)([al=[p]-fc A—B)-=-ac A—B for any a and hence
A—B=[A—B]. Take an a arbitrarily. For suitable 8, 7 and § it holds that
[a] - (A—B)="[a]- A—[a] - B=[f]1—[y1=[0]. So we obtain that I3 (A—B).

2.24. G5 (A - B)
By 2.23, it is clear.
2.25. €15 Q.4 A) for 1 =4, ---,8.

If Q;“A=0, then it is clear. Let Q;“A 0. Then there is an a such that
acsQ;“A. Assume that Q,“A < On. There is a 8 such that [a]=[p]-QA<p.
Since [a]=[f] and a € Q;“4, it holds that 8 Q,“4, which is a contradiction.
Hence ~(Q;“4A = On). So we may obtain that Q,“A=[Q,“A]. Hence the proof
is completed, provided that (a)(3B)[B]1="[a]l-Q,“A) is proved. Take an a
arbitrarily. Let B be a class defined as follows: (97> B-=:re*a-{rp
€Q; e A - ~AEE<KrE)e ;- A): BSOn2. It is easily seen that
Un(B) - W(B)S On-WD(B)) - D(B) S On. Hence, by 1.3, MB“D(B)) and so
MAR(B)). Set u=W(B). There is a 6 such that u<d- K, 0 =0 and hence
u S [0]. Since GI&(A), there is a g such that [p]=[0]-A. u<SA and so
ucs[pl. Let é=[al -Q“A. There are a y and an y such that [€]=[y]-
rye B. So ye Q“[¢] and hence & € Q;“[¢]. So we obtain that [a]-Q~A
Slal-Q/T¢]. On the other hand, [al-Q;“[¢]<S[a]  Q~[A] since [p]<c A.
Hence it holds that [a]-Q.“A="[a]- Q;“[¢] and so, by 2.15, [ J:*<apd]="[a]"
Q.“A. Consequently we obtain that («)3B)([S]=[a]-Q;“A) and hence C1&(Q,“A).

§ 3. Model construction and proof of the relativised axioms.

Now we consider the model defined by the following :
1. The classes in the model are X’s such that €15 (X).
2. The sets in the model are X’s such that M (X).

3. The membership relation in the model is €.
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The relativised formula of axiom Al is designated by Al and similar for
any other formulas.

Group A.

Al. @ CE@E.

Let £=[r]. By 219, x=[[y]]. Also, by 2.16, (@)@ Bl="[al-L[7]). Hence
G5 (%).

A2. X, HXET-D-MX)).
By the definitions of E and MM(A), it is clear.
A3. X, V@G EX =-aE?) D X=7).

Take an x< X arbitrarily. Since XS On, x=On holds. Hence, by 220,
[x]EX. M(x]) and so, by the premise, [x]E ¥. Hence x< ¥. Similar for
the converse.

Ad. ENEAD@EEEZ -=-G=ZVa=5).

Take ¥ and 7 arbitrarily. Let ¥=[a] and y=[j3]. We prove that (@)@
E{ap}*]-=-ad=xVvVi=5. Take a # arbitrarily. Let #=[y]. By Al,
CIB8 ([ {aB}*] and so, by 220, a€[{af}*]-=-r<[{af}*]. By 238, it holds
that ye[{af}*] - =-d4=xVva=73. Henced €[{af}*]-=-4=%XVvi=3. Since
M {aB}*]), we obtain that AD)@@EEZ-=-d=2% V i@ =7).

By A3 and A4, the relativised of {xy} exists uniquely. Let £=[a] and
y=[B]. Then [{af}*] satisfies A4, as shown in the proof of A4, and hence
{LadlPl =[{aP}¥].  Also <[alLBD = {{Lal}, {[allB]}} = {[{a}*I[{aB}*]}
=[{{a}*{ap}*}*]=[Kap)*] and similar for CalCFI[r]="[{afyr>*].

Group B.

Bl. @, HE, NG EA-=-2€7).

In virtue of 2.22, it is sufficient to prove that (X, HKXy)>E E-=-X€5). Let
X="[a] and y=[B]. Then it holds that V) EE-=-[(af)*]EE-=-(af)*
clk - =-ac[f]l-=-acy - =-FT€7.

B2. A, BEACO@EeC-=:x€A-X€B).
Let ¥=[a]. By 2.24, €18(A- B). Then it holds that k¥ €A-B-=-ac A-B-
=:aqcA-acB:=:x€A-xEB. Hence B2 holds.

B3. AEBE@Ee B -=-~Fe A).

It is easy to see that €13(On). Hence, by 2.23, €18(On—A). Take an % arbi-
trarily. Let ¥=[a]. It holds that ¥€On—A-=-acOn—A.-=-~(ac A)-
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=.~(XE A). So B3 holds.

B4. A@EBE@E e B-=-@NCTH € A).
Let £=[a]. By 225, €18(Q;“4A). It holds that I€Q,A-=-acQ“A-
=-@PKafye ;- feA)-=-@B, V[ Ll1=[ad¥]- fe A)-=- @) (ra)*  A) -
=. (D)([vad* 1€ A)  -=- 39N FryE A). So B4 holds.

B. (DAEB)E, NG EB-=-x= 4).
By 2.25, €15 (Q,“A). Let #=[aland §=[f]. Then it holds that (Jx) = Q,“A -
= [(Ba)*1E QoA = (Bad* € QA = - @K paY*rd € Q.- 1€ A - =+ Ep)
@AWCBaYy*1=Ler*D-r€ A)-=-@N(ed=[r]- 7€ A -=-acA- =-x€ A.
So B5 holds.

B6. (DEBE, DKEIHyEB-=-(Fiy€EA).
By 2.25, €13(Qs“A). Let x=[a]and 7=[f]. Then it holds that ¥y € Q,“A-

=-<apy* € QA -=-ANKap*r Qe 7€ A) - =-AN(r1=[Bay*]-r € A) -
=.(Bad*c A.=- iy € A. So B6 holds.

B7. (AD@AB)E, 7, 2((Gyz>EB -=-(yziy € A).
By 225, G8(Q,“A). Let x=[al, =[f], and z=[y]. Then it holds that
GIEQNMA = -Lafry* QA -=- A aPy)*dy € Q,- d A) - =-{Prad*c A-
=-{yzxy < A. So B7 holds

BS. (AEB)E, 7, 2)([Gizy e B-=-(Gjz) E A).
It is similar for B7, taking Q.“A instead of Q,“A.

Group C.

Cl. AD)(~Cm@) - DEEa-D-@NTEG-TTH)).

It holds that w=/7,w0) and so K,/ @=0. It is easily seen that [0]€[w] and
hence (@)@ E[w]). Consequently ~&m([w]). Take an ¥ E[w] arbitrarily.
Let x=[a]. Then a=[w] and so there is the least & such that [a]=[Fk]-
ke w. There is an n such that k<n<w- K/n=0. Clearly [n]E€[w]. We
prove that ¥=[n]. Take an arbitrary # and set #=[£]. Let #=X. Then
e and so £=[k]. Hence there is an m such that [§]=[m]-me*k.-m<k
and so m<n. Since Kfn=0, me*n and so §=[n]. Hence #€[n]. So we
obtain that @W@EZ-D-i<[n]). Assume that Xx=[n]. Then [k]=[n].
Since ke<[n], k=[k] holds and so there is an [ such that [k]=[I].-lc*k.
Hence there is an [ <% such that [al=[[]-I/= w, which contradicts to the
definition of k. So X+ [n] and consequently X=[n]. Then we obtain that.
@EE[w]-D-@NGE[w]- 2T ). Itisclear that M[w]). So we obtain Cl.
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C2. @EENG, DVGEEV-VEZ: D -ac ).

Let ¥=[a]. There isa psucha<p-K'p=0. Take# and v arbitrarily. Let
#=[y] and v=[f]. Assume that #€70-vE %X Then yS[f] and B [a].
Hence, for suitable { and &, it holds that [y]=[{]-{*B-[fl=[&] -Ec*a.
Since {&€*B-[f]=[&], there is an » such that [{J=[n]-ne*& So [r]
=[y]-pe*é-f=*a. Hence n<aandso p<p. Since K/'p=0, »=*p holds.
Hence y € [p] and so #€[p]. So we obtain that (7, V)@ Ev-vEX: D-a Ep])).
Clearly M ¢ and so C2 holds.

C3. @EAN@@E<E-D-GE7).

Let x="[a]. We define $(y) as follows: () -=- ~@E[r1=[]-&E< 7). Let
A and s(y) be two classes such that (f)(ye A-=:9() - [71S[a]) - A S On and
Ees()-=:£[y]- D) -s(r) SOn. First we show that (N(re A -D-s()
Ca). Let yre A. Take a d e s(y) arbitrarily. By the definition of s(3), e[r]
and so d € [«] since [y]1S [a]. Hence there is an » such that [0]=[n]-nE*a.
By 9(0), 0<% and so d<a. Hence s(;) S a and we obtain that (y)(y=A-
D-s() S a). Hence NGre A -D-M(s(1)). Let Fbe a class defined as follows:
G, wWuye F-=:yA-u=s()- FEOnxV. From the above, it holds that
NreA-D-@AxKrx) € F)) and hence A SW®(F). From the definition of F,
it is clear that 2B(F)<S A and hence A=28(F). Now assume that s(y)=s(0)
for any 7, 0= A. Let £=[r] and n be the least such that [&]=[%]. Then
H(n) and pe[r]. So npe<s(y) and, by the assumption, » < s(d) and so y < [d].
Hence £ =[0]. Then it holds that [y]J] S [d]. Similar for the converse and so
it holds that [y]J=[0]. Hence by $(») and () we obtain that y=4. There-
fore Wn(F). It is obvious that W(F) < On and D(F) S P(a). Hence, by the
axiom C4”, M(F“P(a)). Since A= F“DF) S F“P(a), M(A) and so there is a
B such that A= 8. Let B, be the least S8 such that AS 8- K, 8=0. Set
¥=[B,]. Take a # such that #E % arbitrarily. Let #=[y]. Let 0 be the
least & such that [y]=[&]. Then $() and [6]S[a]. So d= A and hence
o< B, Since K\ B,=0, 0€*p, and so y<=[f,]. Hence #€3j. So we obtain
that (@S X-D- i E ).
Ci. & DA -D-@N@DGEF -=-FDEE % - vy € A))) .

Set B=Q:“Q¢(4A-Q%). It holds that €18(B). Let #=T[g]. Then it holds
that Z€B-=-peB-=-@PKeB€ Qs B Q“(A-Q, %) = - AP (@Av)H]
=[uw*]- ANUPI € Q-0 € A- QD) - = Ay, DK y*dy € Q-0 € A- Q%) -
= @)wY*e 4. Q%) = @(md*e A- @O wY*E) e Q,-£€r) =- ()
Ky*e A- QL D ]1=[n8*¥] €)= - @ e -{mw)*< A). Hence
we obtain that (@)@ € B -=- @)@ € % - vy € A)). Therefore C4 holds, provided
Un(A) -O-M(B) is proved. Let Mn(A) and =[a]. We define F as follows:
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Iy e Fr=(md*e A-ve¥a - (O(E<p-D-[E]#[p]- FEOn). In virtue
of Un(A), it holds that (a, 8, ) Bad*c A -{yad* = A:D-[f]1=[r]). Hence
Un(F) holds. Since W(F)<S On and D(F) & a, MEB(F)) holds and so there is a
B such that W(F) =S B. Take a p <= B arbitrarily. By the above shown equiv-
alence, there is a v such that ve[a]-{uw)*e A. Hence there is a p such
that [v]=[p]l-p=*a. Let o be the least & such that [g]=[&]. Then <{op)*
€A and so {opp)e F. Hence o=[B] and so p[B]. Therefore BS[S]
Since €18 (B), we obtain, by 2.21, that @y)([(y1=[8]- B) and hence @y){y]= B).
Consequently M(B).
Lastly we prove

D. ~CmA) - D-ADNEE A - Gi(x, A).

Let ~@&m(A). Then there is a # such that #€ A. Hence there is a & such
that £ A. We define a to be the least & such that £ A. Let £=[al.
Then ¥ A. Now assume that there is a # such that #€x-#& A. Let
#=[p]. Then Be[a]. Hence thereis a y suchthat [fl=[y]-rc*a. a=[r]
and hence y € A -y < a which contradicts to the definition of «. Hence (@)

~@EX- A€ A), i.e., G, A). Therefore we obtain that (IR)(EE A - €x (%, A).
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