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The present note is devoted to some supplementary results to be added to
the previous paper of the author with the same title (Kato [1], which will be
quoted as (I) in the following). We follow throughout the notations and ter-
minology of (I).

It was proved in (I), among others, that $\mathfrak{D}(A^{\alpha})=\mathfrak{D}(A^{*\alpha})$ for $0\leqq\alpha<1/2$

whenever $A$ is closed and maximal accretive. But there remained many un-
solved questions regarding the case $\alpha=1/2$ . The first part of the present
note is mainly concerned with this case.

It has been shown by J. L. Lions [4] (see the preceding paper by Lions)

that $\mathfrak{D}(A^{1/2})=\mathfrak{D}(A^{*1/2})$ is in general not true. The question is still open, how-
ever, whether or not this is true when $A$ is regularly accretive (see (I)). In
particular, it is of considerable interest to decide whether

(1) $\mathfrak{D}(A^{1/2})=\mathfrak{D}(A^{*1/2})=\mathfrak{D}(\phi)$

is true ( $\phi$ is the regular sesquilinear form associated with $A$ , see (I)).

It has also been shown by Lions that (1) is true in many important cases
in which $A$ is a partial differential operator of elliptic type. For the proof
of these results, Lions makes use of the theory of interpolation spaces. We
shall present here another proof for some of the theorems of Lions (Theorems

1 and 2 below). Also we shall consider the relationship between $\mathfrak{D}(A^{\alpha}),$ $\mathfrak{D}(A^{*\alpha})$

and $\mathfrak{D}(\phi)$ for $\alpha\lessgtr 1/2$ (Theorem 3); the results will have some applications in
the theory of evolution equations. We shall next consider the properties of
the powers $A^{\alpha}$ for complex $\alpha$ and, as an application, a new proof of the gen-
eralized Heinz inequality will be given.

REMARK. (1) implies that the form $\phi$ has the representation:

(1a) $\phi[u, v]=(A^{1/2}u, A^{*1/2}v)$ , $u,$ $v\in \mathfrak{D}(\phi)$ .
If ${\rm Re}\phi$ is strictly positive so that $A^{-1}$ and $A^{*-1}$ are both bounded, (1) implies
that $A^{1/2}$ and $A^{*1/2}$ are comparable:

(1b) $m\leqq\Vert A^{1/2}u\Vert/\Vert A^{*1/2}u\Vert\leqq M$ ,

$M\geqq m>0$ being constants. Furthermore, (1) implies that $A^{1/2}$ and $A^{*1/2}$ have
an acute angle:



Fractional powers of dissipative operators, II 243

(1c) ${\rm Re}(A^{1/2}u, A^{*1/2}u)\geqq m_{0}\Vert A^{1/2}u\Vert\Vert A^{*1/2}u\Vert$ , $m_{0}>0$ .
These results can be proved easily by using the fact that $\mathfrak{D}(\phi)=\mathfrak{D}(H^{\iota/2})$ , where
$H$ is the real part of $A$ (see (I)).

\S 1. Some theorems related to $\mathfrak{D}(\phi)$ .
LEMMA 1 Let $A$ be regularly accretive with the real part H. If $H$ is strictly

positive, we have
(2) $\Vert H^{1/2}u\Vert\leqq\Vert H^{-1/2}$ Au $\Vert\leqq c\Vert H^{1/2}u\Vert$ , $u\in \mathfrak{D}(A)$ ,

and similar inequalities with A replaced by $A^{*};$ $c$ is a constant depending only

on $A$ .
PROOF. $H^{-1}$ is bounded by hypothesis. We have

${\rm Re}(H^{-1\prime 2}Au, H^{1,/2}u)={\rm Re}(Au, u)={\rm Re}\phi[u]=\Vert H^{1/2}u\Vert^{2}$ ,

whence follows the first inequality of (2). Again,

$|(H^{-1/2}Au, v)|=|$ (Au, $H^{-1/2}v$) $|=|\phi[u, H^{-1/2}v]|\leqq(1+\beta)\Vert H^{1/2}u\Vert\Vert v\Vert$

for all $v\in H$ (see (2.3) of (I)), whence the second inequality of (2) with $ c=1+\beta$ .
THEOREM 1 Let $A$ be regularly accretive with the associated regular ses-

quilinear form $\phi$ . Then the following two conditions are equivalent:

(3) $\mathfrak{D}(A^{1/2})\subset \mathfrak{D}(\phi)$ , (4) $\mathfrak{D}(A^{*1/2})\supset \mathfrak{D}(\phi)$ .
The same is true when $A$ and $A^{*}$ are exchanged.

$CoROLLARY$ . (1) is true if both $\mathfrak{D}(A^{1/2})$ and $\mathfrak{D}(A^{*1/2})$ are subsets (or oversets)

of $\mathfrak{D}(\phi)$ .

PROOF OF THEOREM 1. Since $ A+\epsilon$ is associated with the form $\emptyset+\epsilon$ and
since $\mathfrak{D}((A+\epsilon)^{a})=\mathfrak{D}(A^{\alpha}),$ $0\leqq\alpha\leqq 1$ (see Lemma A 2 of (I)), we may assume that
$\phi$ , and hence $H$ too, is strictly positive so that $A^{-1},$ $H^{-1}$ are bounded and
Lemma 1 is applicable.

Since $\mathfrak{D}(\phi)=\mathfrak{D}(H^{1/2}),$ (3) implies that $H^{1/2}A^{-1/2}$ is bounded. Hence $A^{*-1/2}H^{1/2}$

is bounded, or $\Vert A^{*-1/2}v\Vert\leqq const\Vert H^{-1/2}v\Vert$ for $v\in \mathfrak{H}$ On setting $v=A^{*}w,$ $w$

$\in \mathfrak{D}(A^{*})$ , one obtains by Lemma 1

(5) $\Vert A^{*1/2}w\Vert\leqq const\Vert H^{-1/2}A^{*}w\Vert\leqq const\Vert H^{1/2}w\Vert$ .
Since $\mathfrak{D}(A^{*})$ is a core of $H^{1/2}$ (see (I); this is equivalent to that $\mathfrak{D}(A^{*})$ is dense
in the Hilbert space $H_{\phi}=\mathfrak{D}(\phi)$ with the norm $\Vert H^{1/2}u\Vert=({\rm Re}\Phi[u])^{1/2})$ , the in-
equality (5) extends to all $w\in \mathfrak{D}(H^{1/2})=\mathfrak{D}(\phi)$ , the inclusion (4) being thereby

1) Lemma 1 corresponds to Lions’ Propcsition (4.4).

2) This corresponds to Lions’ Theorem 5.1.
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implied.
Conversely, (4) implies that $A^{*1/2}H^{-1/2}$ is bounded. Hence $H^{-1/2}A^{1/2}$ is bounded

and $\Vert H^{-1/2}v\Vert\leqq const\Vert A^{-1/2}v\Vert$ for $v\in \mathfrak{H}$ On setting $v=Au,$ $u\in \mathfrak{D}(A)$ and us-
ing Lemma 1, we have
(6) $\Vert H^{1/2}u\Vert\leqq\Vert H^{-1/2}Au\Vert\leqq const\Vert A^{1/2}u\Vert$ .
Since $\mathfrak{D}(A)$ is a core of $A^{\iota/2}$ (see Lemma A 3 of (I)), this again extends to all
$u\in \mathfrak{D}(A^{1/2})$ , the inclusion (3) being implied.

THEOREM. 2 Let $A,$ $\phi$ be as in Theorem 1. The following two conditions
are equivalent;

(7) $\mathfrak{D}(A^{1/2})\subset \mathfrak{D}(A^{*1/2})$ , (8) $\mathfrak{D}(A^{1/2})\subset \mathfrak{D}(\phi)\subset \mathfrak{D}(A^{*I/2})$ .
The same is true when $A$ and $A^{*}$ are exchanged.

COROLLARY 1. (1) is true if $\mathfrak{D}(A^{1/2})=\mathfrak{D}(A^{*1/2})$ ;

COROLLARY 2. (1) is true if $\mathfrak{D}(A)=\mathfrak{D}(A^{*})$ .

PROOF OF THEOREM 2. Again we may assume that $A^{-1}$ and $A^{*-1}$ are
bounded. Then (7) $impliesthatA^{*1/2}A^{-1/2}andhenceA^{*-1/2}A^{1/2}$ is bounded. Thus
$\Vert A^{*-1/2}v\Vert\leqq const\Vert A^{-1/2}v\Vert,$ $v\in \mathfrak{H}$ , and

$\Vert H^{1/2}u\Vert^{2}={\rm Re}\phi[u]={\rm Re}$ (Au, $u$) $={\rm Re}(A^{*-1/2}Au, A^{1/2}u)$

$\leqq\Vert A^{*-1/2}Au$ I 1 $A^{1/2}u\Vert\leqq const\Vert A^{1/2}u\Vert^{2}$ , $u\in \mathfrak{D}(A)$ .
This gives $\mathfrak{D}(A^{1/2})\subset \mathfrak{D}(H^{1/2})=\mathfrak{D}(\Phi)$ as in the proof of Theorem 1, and $\mathfrak{D}(A^{*1/2})$

$\supset \mathfrak{D}(\phi)$ follows by Theorem 1.

PROOF OF COROLLARY 2. According to the generalized Heinz inequality
(see Kato [2]), $\mathfrak{D}(A)=\mathfrak{D}(A^{*})$ implies $\mathfrak{D}(A^{1/2})=\mathfrak{D}(A^{*1/2})$ . Thus Corollary 2 follows
from Corollary 1.

THEOREM 3. Let $A,$ $\phi$ be as in Theorem 1. For $0\leqq\alpha<1/2$ , we have

(9) $\mathfrak{D}(A^{n})=\mathfrak{D}(A^{*\alpha})\supset \mathfrak{D}(\phi)$ ,

(10) $\mathfrak{D}(A^{1-\alpha})\subset \mathfrak{D}(\phi)$ , $\mathfrak{D}(A^{*1-a})\subset \mathfrak{D}(\phi)$ .
PROOF. (9) is a direct consequence of Theorem 3.1 of (I), by which $\mathfrak{D}(A^{\alpha})$

$=\mathfrak{D}(A^{*\alpha})=\mathfrak{D}(H^{a})$ , for $\mathfrak{D}(H^{\alpha})\supset \mathfrak{D}(H^{\iota/2})=\mathfrak{D}(\phi)$ . (10) follows from (9) exactly as
in the second part of the proof of Theorem 1.

\S 2. Complex powers of accretive operators.

So far we have been mostly concerned with the powers $A^{\alpha}$ of an accretive

3) This corresponds to Lions’ Theorem 5.2.



Fractional powers of dissipative operators, II 245

operator $A$ for real $\alpha$ (except when both $A$ and $A^{-1}$ are bounded). Let us
now consider $A^{\alpha}$ for complex $\alpha$ in a more general case; in particular we are
interested in the case in which $\alpha$ is pure imaginary.

It is easy to give a reasonable definition of $A^{a}$ for complex $\alpha$ even when
$A$ is unbounded. For example, the formula (A 7) of (I) can be used to define
$A^{\alpha}$ for $0<{\rm Re}\alpha<1$ . But it appears to be rather difficult to study the proper-
ties of $A^{\alpha}$ in this general case. In any case $A^{a}$ is in general a complicated
operator, as is seen from the special case in which $A$ is normal in addition to
being accretive; then the spectrum of $A^{\alpha}$ consists of a spiral-like band, which,

in one direction, coils in to the origin indefinitely and, in the other, coils out
to infinity. This band degenerates to a sector in the right semiplane if
$0<\alpha<1$ , and to a ring domain bounded by two concentric circles if $\alpha$ is pure
imaginary; for other $\alpha$ , the spectrum of $A$ is in general not even semibounded.
Only in the case in which $A$ is bounded (resp. bounded from below) would
this band be bounded in one direction and, accordingly, $A^{\alpha}$ could be bounded
or bounded from below.

For this reason, we restrict ourselves to the rather special case in which
either the accretive operator $A$ is bounded and ${\rm Re}\alpha\geqq 0$ or $A^{-1}$ is bounded and
${\rm Re}\alpha\leqq 0$ . Since the latter case is reduced to the former by considering $A^{-1}$

instead of $A$ , we shall mainly consider the former case.

THEOREM 4. Let $A$ be bounded and maximal accretive. Then $A^{\alpha}$ can be
extended to complex $\alpha$ in such a way that it is holomorphic for ${\rm Re}\alpha>0$ and4)

\langle $[\xi]$ is the integral part of $\xi$)

$\langle 11)$ $\Vert A^{\alpha}\Vert\leqq\frac{\sin\pi\xi^{\prime}}{\pi\xi(1-\xi)}\Vert A\Vert^{\xi}e^{\frac{\pi|\eta|}{2}}\leqq\frac{4}{\pi}\Vert A\Vert^{\epsilon_{e^{2}}^{\underline{\pi}1\underline{\eta|}}}$ , $\xi=\xi-[\xi]\alpha=\xi+i\eta,$ .
If, in particular, $A$ has no eigenvalue zero, $A^{\alpha}$ can be extended to ${\rm Re}\alpha\geqq 0$ in
such a way that $A^{\alpha}$ is strongly continuous and (11) is true for ${\rm Re}\alpha\geqq 0$ . In par-
ticular $A^{i\eta}$ is strongly continuous in real $\eta$ with $\Vert A^{i\eta}\Vert\leqq e^{\frac{\pi|\eta|}{2}}$

REMARK. $A^{\alpha}$ can be defined as a holomorphic function for ${\rm Re}\alpha\geqq 0$ even
when $A$ is a bounded operator in a Banach space and is the infinitesimal gen-
erator of a bounded semigroup (this follows from the proof below). The real
interest for the case of an accretive operator lies in the estimate (11).

PROOF OF THEOREM 4. $A^{\alpha}$ can be defined for $0<{\rm Re}\alpha<1$ by

\langle 12) $ A^{\alpha}=\frac{\sin\pi\alpha}{\pi}\int_{0^{\infty}}\lambda^{\alpha-1}A(\lambda+A)^{-1}d\lambda$ .

For real $\alpha,$ $0<\alpha<1$ , this coincides with (A 7) of (I). Since the $A^{\alpha}$ given by

4) It is not known whether the factor $\sin\pi\xi^{\prime}/\pi\xi^{\prime}(1-\xi^{\prime})$ or $ 4/\pi$ is the best possible.
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(12) is obviously holomorphic in $\alpha$ , this is an analytic extension of the $A^{\alpha}$ of
(I). $A^{\alpha}$ can then be extended to the semiplane ${\rm Re}\alpha>0$ by $A^{n+\alpha;}=A^{n}A^{\alpha}$ ‘,
$n=1,2,$ $\cdots$ , $0\leqq{\rm Re}\alpha^{\prime}<1$ . There is no difficulty in verifying that $A^{\alpha}$ is holo-
morphic for ${\rm Re}\alpha>0$ and that $A^{\alpha+\beta}=A^{\alpha}A^{\beta}$ ( $\alpha\rightarrow A^{\alpha}$ is a holomorphic semigroup).

(12) gives for real $\xi,$ $0<\xi<1$ ,

(13) $\Vert A^{\xi}\Vert\leqq\frac{\sin\pi\xi}{\pi}\{\int^{\{|_{0}A||}\lambda^{\xi-1}d\lambda+\Vert A\Vert\int_{||A||}^{\infty}\lambda^{\xi-2}d\lambda\}$

$=\frac{\sin\pi\xi}{\pi\xi(1-\xi)}\Vert A\Vert^{\xi}\leqq\frac{4}{\pi}\Vert A\Vert^{\xi}$ ,

where we used the inequality $\Vert A(\lambda+A)^{-1}\Vert\leqq\min(1, \lambda^{-1}\Vert A\Vert)$ . We shall now
show that, assuming for the moment that ${\rm Re} A\geqq\delta>0$ so that $A^{\alpha}$ is defined
for all complex numbers $\alpha$ (see (I)),

(14) $\Vert A^{t\eta}\Vert\leqq e^{\frac{\pi|\eta|}{2}}$

Then (11) follows by noting that $A^{\alpha}=A^{\xi+i\eta}=A^{[\xi]}A^{\xi^{}}A^{i\eta}$ . The general case can
then be dealt with by replacing $A$ by $ A+\epsilon$ and letting $\epsilon\rightarrow 0$ .

To show (14), we note that $A^{\alpha}=H_{\alpha}+iK_{\alpha}$ , $A^{*\alpha}=H_{\alpha}-iK_{\alpha}$ , $\Vert K_{\alpha}H_{\overline{\alpha}^{1}}\Vert$

$\leqq|\tan\frac{\pi\alpha}{2}|$ (see the proof of Theorem 1.1 of (I)). Hence $\Vert A^{*\alpha}A^{-\alpha}\Vert$

$\leqq(1+|\tan\frac{\pi\alpha}{2}|)(1-|\tan\frac{\pi\alpha}{2}|)^{-1}$ For $\alpha=-i\eta$ this gives $\Vert A^{i\eta}\Vert^{2}=\Vert A^{*-i\eta}A^{i\eta}\Vert$

$\leqq e^{\pi|\eta|}$ , which proves (14).

To prove the second part of Theorem 4, it suffices to show that, for any
$u\in \mathfrak{H},$ $A^{\alpha}u$ is uniformly continuous for $\alpha\in \mathfrak{D}$ , where $\mathfrak{D}$ is the semi-open rec-
tangle $0<\xi\leqq 1,$ $|\eta|\leqq R,$ $R$ being any positive number. Since $A^{\alpha}$ is bounded
for $\alpha\in \mathfrak{D}$ by (11), however, it suffices to prove this for $u$ belonging to a dense
subset of $\mathfrak{H}$ If $A$ has no eigenvalue zero as assumed, the range of $A$ is dense
in $\mathfrak{H}$ (for the proof see Lemma 2 below). Thus it suffices to prove the above
proposition for $u$ of the form $u=Av$ . But then $A^{\alpha}u=A^{1+\alpha}v$ and this is obvi-
ously uniformly continuous for $\alpha\in \mathfrak{D}$ .

LEMMA 2. Let $A$ be closed and maximal accretive. If $A$ has no eigenvalue
zero, then the range of $A$ is dense in $\mathfrak{H}$

PROOF. This is an ergodic theorem and is a special case of a general
theorem valid in Banach spaces (see Theorem of Kato [3]; see also Yosida
[5]). For an accretive operator $A$ , this follows also from the inequality

(15) $\Vert A^{*}(\lambda+A^{*})^{-1}u\Vert^{2}\leqq\Vert A(\lambda+A)^{-1}u\Vert\Vert u\Vert$ , $\lambda>0$ ,

which implies that $Au=0$ implies $A^{*}u=0$ . (15) is proved as follows:

4 $\Vert A^{*}(\lambda+A^{*})^{-1}u\Vert^{2}=\Vert u-(\lambda-A^{*})(\lambda+A^{*})^{-1}u\Vert^{2}$

$\leqq 2\Vert u\Vert^{2}-2{\rm Re}(u, (\lambda-A)(\lambda+A)^{-1}u)=4{\rm Re}(u, A(\lambda+A)^{-1}u)$ ;
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note that $\Vert(\lambda-A^{*})(\lambda+A^{*})^{-1}\Vert=\Vert(\lambda-A)(\lambda+A)^{-1}\Vert\leqq 1$ .

THEOREM 5. Let $A$ be closed and maximal accretive, with ${\rm Re}$ (Au, $u$) $\geqq\delta\Vert u\Vert^{2}$ ,
$\delta>0$ , for $u\in \mathfrak{D}(A)$ . Then $A^{-\alpha}$ can be extended for ${\rm Re}\alpha\geqq 0$ in such a way that
it is holomorphic for ${\rm Re}\alpha>0$ and strongly continuous for ${\rm Re}\alpha\geqq 0$ , with

(16) $\Vert A^{-\alpha}\Vert\leqq\delta^{-\xi}e^{\frac{\pi|\eta|}{2}}$ , $\alpha=\xi+i\eta$ .
PROOF. Only (16) need to be proved, other statements being a direct con-

sequence of Theorem 4 applied to $A^{-1}$ . An inspection of the proof of Theorem
4 shows that it suffices to prove (16) for real $\xi,$ $0<\xi<1$ . But this follows
immediately from Lemma A 6 of (I).

\S 3. A new proof of the generalized Heinz inequality.

The Heinz inequality for selfadjoint operators was generalized in Kato [2]

to the case of accretive operators. In view of its importance in applications,
we shall give here another proof of it by using Theorem 4 obtained above.
It suffices to prove this inequality in the following weak form (for the un-
bounded case see Kato [2]).

THEOREM 6. Let $A,$ $B$ be maximal accretive operators in Hilbert spaces $\mathfrak{H}$ ,
$\mathfrak{H}^{\prime}$ respectively, all $A,$ $B,$ $A^{-1},$ $B^{-1}$ being bounded. Let $T$ be a bounded linear
operator on $H$ to $H^{\prime}$ such that $\Vert T\Vert\leqq 1$ , I $BTA\Vert\leqq 1$ . Then $\Vert B^{\xi}TA^{\xi}\Vert\leqq e^{\pi^{\sqrt{\xi(t-\xi)}}}$

for $0\leqq\xi\leqq 1$ .

REMARK. In the earlier result (Kato [2]), the exponent $\frac{\pi^{2}}{2}\xi(1-\xi)$ stands

in place of $\pi\sqrt{\xi(1-\xi)}$ Therefore, Theorem 6 is less sharp than the previous
one.5)

PROOF OF THEOREM 6. Consider the operator-valued function

(17) $F(\alpha)=e^{k\alpha(\alpha-1)}B^{\alpha}TA^{\alpha}$ , $0<{\rm Re}\alpha<1$ ,

wherek isapositive constant. By Theorem4, F(a)is ho1omorphic and bounded
in the domain indicated, for $(\alpha=\xi+i\eta)$

(18) $\Vert F(\alpha)\Vert\leqq e^{k^{\zeta}(\xi-1)-k\eta 2}\Vert B^{i\eta}\Vert\Vert B^{\xi}TA^{\xi}\Vert\Vert A^{i\eta}\Vert$

$\leqq e^{k\xi(\xi-1)-k\eta z+\pi|\eta|}\Vert B^{\xi}TA^{\xi}\Vert\leqq e^{-\frac{2}{k}}\pi 4\Vert B^{\xi}TA^{\xi}\Vert$ .
Furthermore, the same inequality shows that both $\Vert F(i\eta)\Vert$ and $\Vert F(1+i\eta)\Vert$ are

5) The proof of Theorem 6 is similar to the second proof by Heinz of his in $\cdot$

equality, while the proof given in Kato [2] follows the method of Cordes. See the
bibliography at the end of Kato [2].
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bounded by $e^{\frac{\pi^{2}}{4k}}$ since $\Vert T\Vert\leqq 1,$ $\Vert BTA\Vert\leqq 1$ . According to the Phragm\’en-Lin-

del\"of theorem, it follows that $\Vert F(\alpha)\Vert\leqq e^{\frac{\pi^{2}}{4k}}$ for $0<{\rm Re}\alpha<1$ . For $\eta=0$ , this

gives $\Vert B^{\xi}TA^{\xi}\Vert\leqq e^{\frac{\pi^{2}}{4k}+k\xi(1-\xi)}$ . Since le was arbitrary, the result of the theorem
follows by setting $k=\pi/2\sqrt{\xi(1-\xi)}$
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