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A characterization theorem for lattices
with Hausdorff interval topology.

By R. M. BAER

(Received Sept. 18, 1954)

1. Introduction. The problem of finding necessary and sufficicnt
conditions that determine Hausdorff interval topologies in lattices was
posed by Birkhoff $[1]^{1)}$ . It has been solved in the particular case of
Boolean algebras2) by Katetov [2] and by Northam [3]. The latter has
found a necessary condition that a lattice be Hausdorff in the interval
topology, the condition being that every closed interval in the lattice
has a finite separating set3). In this note, we shall show that the
notion of a certain type of separating set for the lattice is strong
enough to yield a characterization of lattices with Hausdorff topology.
We obtain this result from consideration of the relationship between
a sub-basis for the closed sets and the Hausdorff separation principle4).

We here recollect some standard terms and introduce a definition
of comparison for subsets of a partially ordered set. Let $P$ be a set
of points, written $a,$ $b,\cdots,$ $x,y$ . $P$ is partially ordered if it is subject to
a binary relation $\leqq$ which is reflexive, antisymmetric, and transitive.
$P$ is a lattice if it contains with every pair of elements their least
upper bound and greatest lower bound. In $P$, if neither $x\leqq y$ nor
$y\leqq x$ , then $x$ and $y$ are said to be incomparable and this is denoted

1) Numbers in brackets represent references listed at the end of the paper.
2) If $B$ is a Boolean algebra, then $B$ has a Hausdorff interval topology if and only

if, for every non-zero $x$ in $B$, there exists some atom $e$ such that $e\leqq x$ . (An atom is a
non-zero element $e$ such that $0<y\underline{<_{-}}e$ implies that $y=e.$ )

3) Northam defines a $s\circ.parating$ set for closed intervals in the following way. Let
$x$ and $y$ be two elements in a partially ordered set, with $x<y$ . A set of elements $(a_{i})$ is
called a separating set for the closed interval $[x, y]$ if $x<a_{i}<y$ , all $i$, and every element
in $[x, y]$ is comparable with at least one $a_{i}$ . This requires that intervals containing less
then three elements are said to be separated by the empty set.

4) I am indebted to L. Gillman for several suggestions for notation which I have
used below.
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by $x\# y$ . If $X$ and $Y$ are nonempty subsets of $P$, we define $X\prec Y$ to
mean that $x\in X,$ $y\in Y$ implies that either $x<y$ or $x\# y$ . Similarly
$X\leqq Y$ means that either $x\leqq y$ or $x\# y$ whenever $x\in X,$ $y\in Y$. (We
shall take the liberty of writing $a\leqq Y$ when $X$ reduces to a set con-
sisting of the single element $a.$ ) The interval topology for $P$ is defined
by taking as a sub-basis for the closed sets the class $\mathfrak{F}$ of all sets
(half intervals) of the form $[x:x\leqq a]$ and $[x:a\leqq x]$ . It is convenient
to introduce the notation $\hat{a}$ and $\check{a}$ to denote, respectively, the preceding
half intervals. By a covering of an arbitrary set $M$ we mean a collec.
tion of subsets of $M$ whose union is $M$. We let $E^{\prime}$ denote the comple.
ment of a set $E$.

2. The Hausdorff interval topology.

LEMMA. Let $(W_{\lambda})_{\lambda\epsilon T}$ be an indexed class of sets which is a cover.
$ing$ for a space X. If $(l_{\alpha}^{7})_{\alpha\epsilon A}$ is in turn a covering of I‘, then

$\bigcap_{\alpha\epsilon A}[(\bigcup_{\lambda\epsilon T_{\alpha}}W_{\lambda})^{\prime}]=0$ .

PROOF. Take the dual of $\bigcup_{\alpha\epsilon A}\bigcup_{\lambda\epsilon T_{\alpha}}W_{\lambda}=X$.
THEOREM. A necessary and suffcient condition that the interval

topology of a lattice $L$ be Hausdorff is that, for every pair of elements
$a,$

$b$ in $L$ with $a<b$ , there exist finite nonempty subsets $A$ and $B$

(dePending on $a,$ $b$) in $L$ such that both of the following conditions are
satisfied.

(i) $a\prec A\leq b,$ $a\leqq B\prec b$ ;

(ii) $(\check{x})_{x\epsilon A}$ , $(\hat{y})_{y\epsilon B}$ , is a cove $\prime ing$ of $L$ .
PROOF. We shall show first that (i) and (ii) are necessary in any

partially ordered set $P$ that has a Hausdorff interval topology. Let $a$ ,
$b$ be two elements in $P$ such that $a<b$ . If $P$ is Hausdorff, then $a$

and $b$ may be separated by two basic open sets $V_{a},$ $V_{b}$ . That is, there
exist disjoint open sets $V_{a},$ $V_{b}$ such that $a\in V_{a},$ $b\in V_{b}$ , and $V_{a}$ and $V_{\tilde{o}}$

each has a complement consisting of a union of a finite number of sets
in the sub-basis $\mathfrak{F}$ Hence there are four finite subsets $A_{1},$ $A_{2},$ $B_{1},$ $B_{2}$

in $P$ such that
$V_{a}=[\bigcup_{x\epsilon A_{1}}\hat{x}]\cup[\bigcup_{x\epsilon A_{2}}\check{x}]$ ,
$V_{b}=[\bigcup_{\mathcal{Y}eB_{1}}\hat{y}]\cup[\bigcup_{x\epsilon B_{2}}y^{v}]$ .
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We assert that (i) and (ii) are satisfied with finite sets $A$ and $B$ defined
by

$A=$ [$x:x$ minimal in $A_{2}uB_{2}$],

$B=$ [$y:y$ maximal in $A_{1}\cup B_{1}$].

Since the sets $V_{a}$ and $V_{b}$ are disjoint, their complements form cover.
ing of $P$, and we see that the class of sets $(\check{x})_{x\epsilon A_{2^{\cup}}B_{2}},$ $(\hat{y})_{y\epsilon A_{1^{\cup}}B_{1}}$ (together)
form a covering of $P$. The restriction of the index sets to those $x$

which are minimal in $A_{2}\cup B_{2}$ and to those $y$ which are maximal in
$A_{1}\cup B_{1}\cdot evidently$ gives a subcovering of $P$. Hence we obtain (ii).
Now, if $x\in A_{2}$ , clearly either $a<x$ or $a\# x$ . On the other hand, if
$x\in B_{2}$ and $x\leqq a$, then $x\leqq b$ (since $a<b$), which is impossible. Hence
we may conclude that $a\prec A$ . Now, since $b$ lies in the complement of
the open set $V_{a},$ $x\leqq b$ for at least one $x$ in $A$ , and the minimality
condition on $A$ therefore precludes $b<x$ for any $x$ in $A$ . Hence, $A$ is
a finite set of pairwise incomparable elements and satisfies condition
(i). The remainder of (i) is obtained by the dual argument.

We now consider sufficiency, and show first that if $P$ is any
partially ordered set in which (i) and (ii) hold, then any pair of ele-
ments $a,$

$b$ , for which $a<b$ holds, may be separated by disjoint open
sets. For in this case, suppose that $A$ and $B$ are nonempty finite sets
in $P$ which satisfy conditions (i) and (ii) with respect to the comparable
pair $a,$

$b$ . Define two sets $U_{a},$ $U_{b}$ by their complements,

$U_{a}^{\prime}=\bigcup_{x\epsilon A}\check{x}$ ,

$U_{b}^{\prime}=\bigcup_{y\epsilon B}\hat{y}$ .

Since their complements are finite unions of closed sets, $U_{a}$ and $U_{b}$ are
open. By (i), $a$ is in $U_{a}$ , and $b$ is in $U_{b}$ . By (ii), and the preceding
lemma, $U_{a}$ and $U_{b}$ are disjoint. Finally we consider the case of two
incomparable elements $p,$ $q$ in a lattice $L$ such that $L$ satisfies (i) and
(ii). Let $a$ and $b$ , respectively, be the greatest lower bound and least
upper bound of the pair $p,$ $q$ . Let $A$ and $B$ be two sets specified by
(i) and (ii) with respect to $a$ and $b$ . We shall add the element $p$ to
the set $B$ (if $B$ does not already contain it), and call the resulting set
$B^{*}$ . (So, $B^{*}$ may be $B.$ ) Similarly, we shall add the element $q$ to the
set $A$ and call the resulting set $A^{*}$ . Evidently the sets $A^{*}$ and $B^{*}$
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also satisfy conditions (i) and (ii), with respect to $a$ and $b$ . Now we
first define, for any $z$ in $L$ ,

$A_{z}=[x:x\in A^{*}, x\leq_{-}z]$ ,

$B_{z}=[y:y\in B^{*},$ $Z-\underline{-}\triangleleft_{1}:_{y]}$ .
In terms of these sets, we define open sets $U_{p}$ and $U_{q}$ by their com-
plements,

$U_{p}^{\prime}=[\bigcup_{xcA_{p}}x^{v}]\cup[\bigcup_{y\epsilon B_{p}}\hat{y}]$ ,

$U_{q}^{\prime}=[\bigcup_{x\mathfrak{c}A_{q}}x^{v}]\cup[\bigcup_{\mathcal{Y}\epsilon B_{q}}\hat{y}]$ .

Evidently $U_{p}$ contains $p$ , and $U_{q}$ contains $q$ . If we show that
$A_{p}\cup A_{q}=A^{*}$ and $B_{p}\cup B_{q}=B^{*}$ , then we may conclude, by the preceding
lemma, that $U_{p}$ and $U_{q}$ are disjoint. So let $x$ be any element in
$A^{*}-A_{p}$ . Then $x\leqq p$ . But we cannot also have $x\leqq q$ , because this
would imply that $x\leqq a$, which contradicts $a\prec A^{*}$ . We conclude that
this $x$ lies in $A_{q}$ . The dual argument gives the corresponding result
for $B_{p}$ and $B_{q}$ , and this completes the proof.

3. An example. We here give an example of a lattice $L_{0}$ in
which a pair of comparable points cannot always be separated by
disjoint open sets, but in which every closed interval (set of the form
$[x:a\leqq x\leqq b])$ has a finite separating set. Let $L_{0}$ be the union of an
infinite set of chains $(C^{\alpha}),$ $\alpha=0,1,2,\cdots$ , each $C^{\alpha}$ being of the form

$x_{1}^{\alpha}<x_{2}^{\alpha}<\cdots<x_{N_{\alpha}}^{\alpha}$ ( $ 2<N_{\alpha}<\infty$ , all $\alpha$).

The comparability relations in $L_{0}$ are specified in the following way.
If $\alpha^{\prime}\neq\alpha^{\prime\prime}$ and $1<n<N_{\alpha^{\prime}},$ $1<m<N_{\alpha},,$ , then $x_{n}^{l^{\prime}}\# x_{n}^{\alpha^{\prime\prime}}$ . Otherwise,
$x_{N_{0}}^{0}<\cdots<x_{\Lambda^{\gamma}a}^{3}<x_{N_{1}}^{1}$ , and $x_{\iota}^{0}=x_{1}^{a}$ , all $\alpha=1,2\ldots.$ .

First observe that every closed interval is either a chain or is of
the form $[x:x_{1}^{0}\leqq x\leqq x_{N_{\alpha}}^{a}]$ for some $\alpha=1,2,\cdots$ . In the latter case, an
obvious finite separating set is the pair of elements $x_{N_{\alpha}-1}^{\alpha},$ $x_{N_{\alpha+1}^{\vdash 1}}^{\alpha}$ . Let
us agree to call the set consisting of the elements of $C^{\alpha}$ minus the two
end.elements of $C^{\alpha}$ the interior of $C^{\alpha}$ . Now suppose that $L_{0}$ were
Hausdorff in the interval topology. Then, applying the theorem above
to the pair of (comparable) elements $x_{1}^{0}$ and $x_{N_{0}}^{0}$ , we should be able to
separate this pair of elements with disjoint open sets such that each of
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these sets has a complement consisting of a finite union of similarly
oriented half intervals. It is readily verified, however, that any such
open set necessarily contains the interiors of all but a finite number of
the chains $C^{\alpha}$ . Hence the open sets are not disjoint, $L_{0}$ is not Haus-
dorff.

Finally, we note that, although (in the theorem) the set $A\cup B$ is
a separating set for $L$, the statement of the theorem could not be
weakened to require only that there exists a finite set $D$ such that
$a=\prec D\leqq b$ and $D$ separates $L$ . A simple counter.example is the lattice
with a maximal chain $a<b<c<d$, and an infinite set $(x_{i})$ of pairwise
incomparable elements such that $a<x_{i}<c$, all $i$, and an infinite set
$(y_{j})$ of pairwise incomparable elements such that $b<y_{j}<d$, all $i$, and
$x_{i}\# y_{j}$ , all $i,j$. Let $D$ be the set consisting of the two elements $b$ and
$c$. Then $b\leqq D_{-}\preceq_{-}c$, and $D$ separates $L$ , but this lattice is easily verified
to be not Hausdorff.

Purdue University,
8 September 1954.
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