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On complex analytic vector bundles.

By Shigeo NAKANO

(Received October 18, 1954)

The theory of complex line bundles, which was developed by A.
Weil and K. Kodaira, D. C. Spencer, has proved to be of importance
in the theory of algebraic varieties. $(Cf. [12], [6]-[11].)^{1)}$ As a natural
generalization, one thinks of complex analytic vector bundles at once,
which are also of significance in view of Chern’s theory of character-
istic classes. (Cf. [2], [4] and [5].)

In this paper, we shall consider complex analytic vector bundles
over an algebraic variety by Kodaira’s method [8], and prove an ana-
lytical imbedding theorem for these bundles, analogous to Chern’s
topological imbedding theorem. As a consequence of this theorem, we
shall find that the characteristic classes of complex analytic vector
bundles are of analogous form to that of Todd canonical systems.
This result generalizes a result of Chern [4].

The author communicated his results to Prof. Kodaira and learned
that the same results had already been obtained by J. P. Serre by a
different method. The author is very grateful to Profs. Akizuki and
Kodaira for their kind encouragement.

\S 1. Complex vector bundles (topological considerations).

In this section we summarize the theory of characteristic classes
in a form suitable for later use.

We denote by $E^{r}$ an r.dimensional vector space over the field of
complex numbers, and by $GL(r)$ the general linear group operating on
$E^{r}$ . A fiber bundle whose fibers are $E^{r}s$ and whose structure group
is $GL(r)$ , shall be called a complex vector bundle or an $E^{r}\cdot bundle$ .

If $\mathfrak{F}$ is an $E^{r}$-bundle over the base space V, then $\mathfrak{F}$ can be
described in terms of an open covering $\{U_{\alpha}\}$ and a system of transition $A^{\backslash }$;

1) Numbers in $[]$ refer to the bibliography at the end of the paper.
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functions $\{g_{\alpha\beta}\}$ , where $g_{\alpha\beta}$ is a mapping from $U_{\alpha}\leftrightarrow U_{\beta}$ into $GL(r)$ ,
satisfying the condition
(1.1) $g_{\alpha\beta}g_{\beta\gamma}=g_{\alpha\gamma}$ in $U_{\alpha}\leftrightarrow U_{\beta}\leftrightarrow U_{\gamma}$ .

If we denote by $\pi$ the projection from $\mathfrak{F}$ to V, then a point $\mathfrak{p}$ of
$\pi^{-1}(U_{\alpha})$ can be described by coordinates $(z, \zeta_{\alpha})$ with $z=\pi(\mathfrak{p})\in U_{\alpha}$ and
$\zeta_{\alpha}eE^{r}$ , and if $\mathfrak{p}\in\pi^{-1}(U_{\alpha}\leftrightarrow U_{\beta})$ , the coordinates $(z, \zeta_{\alpha})$ and $(z, \zeta_{\beta})$ of $\mathfrak{p}$ with
respect to $\pi^{-1}(U_{\alpha})$ and $\pi^{-1}(U_{\beta})$ respectively are combined by the relation
(1.2) $\zeta_{\alpha}=g_{\alpha\beta}\zeta_{\beta}$ .

Two systems of transition functions $\{g_{a\beta}\}$ and $\{g_{a\beta}^{\prime}\}$ define the
same bundle if and only if

(1.3) $g_{\acute{a}\beta}=f_{\alpha^{-1}}g_{\alpha\beta}f_{\beta}$ ,

where each $f_{\alpha}$ is a mapping from $U_{\alpha}$ into $GL(r)$ .
In this paper we shall consider the case where V is a compact

complex analytic manifold and shall assume that all mappings and
differential forms which appear are infinitely many times differentiable.

In particular, if $\mathfrak{F}$ is defined by a system of complex analytic
transition functions, then $\mathfrak{F}$ has a structure of complex analytic manifold
in which $\pi$ is a regular analytic mapping. Then we can speak of a
complex analytic vector bundle. In this case, equivalence of transition
functions is defined by (1.3) with analytic $f_{\alpha}$ .

We shall denote by $H(r, N)$ the Grassmann variety which consists
of the vector subspaces $E^{r}$ of a fixed $E^{N}$, and by $\mathfrak{R}(r, N)$ the space of
all pairs $(E^{r}, y)$ , where $E^{r}$ is a point of $H(r, N)$ , and $y$ is a vector in
$E^{r}$ . $\mathfrak{R}(r, N)$ is a complex analytic manifold and has a structure of an
analytic $E^{r}$-bundle over $H(r, N)$ . In fact, if $(p_{i_{1}\cdots i_{r}})$ is the Pl\"ucker
coordinate of $E^{r}$ , then the bundle structure of $\mathfrak{R}/H$ is defined by the
covering $\{U_{\alpha}\},$ $U_{\alpha}=H-(p_{\alpha})_{0}$ , and the transition functions

(1.4)

$ g_{\alpha\beta}(p)=p_{i_{1}\cdot i_{r}}^{-}1..\left(\begin{array}{llll}i_{r} & \cdots & p_{i_{1}} & i_{r- 1}j_{1}\\i & \cdots & p_{i_{1}}. & \cdots 1ji\end{array}\right),\cdot$

(Here we write $\alpha,$
$\beta$ , instead of $(i_{1}\cdots i_{r}),$ $(i_{1},$ $\cdots,i_{r})$ for brevity.)

Now Chern’s imbedding theorem ([2], ths. 1 and 2) $as^{\wedge}\vee$-erts that
If V is a compact $C^{\infty}$ manifold of topological dimension $d$, and $\mathfrak{F}$
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an $E^{r}$-bundle over V, then there is a mapping $f:V\rightarrow H(r, N)$ such that
$\mathfrak{F}$ is equivalent to $f^{-1}(\mathfrak{R})$ , the bundle induced by $f$ and $\mathfrak{R}/H$, provided
$2(N-r)\geqq d$. Moreover, if $\mathfrak{F}$ and $\mathfrak{F}^{f}$ are two $E^{r}$ -bundles over V and

$f,f^{\prime}$ corresponding mappings (into the same $H$), then $\mathfrak{F}$ and $\mathfrak{F}^{\prime}$ are
equivalent if and only if $f$ and $f^{\prime}$ are homotopic,

Because of this fact, we call $\mathfrak{R}$ the universal bundle over $H$.
Next, for a sequence of integers $0\leqq a_{1}\leqq\cdots\leqq a_{r}\leqq N-r$, we have

a Schubert variety $\Omega_{a_{1}\cdots a_{f}}$. and $\Omega_{a_{1}\cdot\sim a_{r}}s$ generate the homology group of
$H(r, N)$ . In particular $\Omega_{(p)}=\Omega_{N-r-1,\cdots,N-r-1,N-r,\cdots,N-r}(p$ of $(N-r-1)s$

and $r-p$ of $(N-r)s;p=1,$ $\cdots,$ $r$) generate, together with $\Omega_{(0)}=H$ itself,
the homology ring of $H$.

If we denote by $V(r,p)$ the variety of (not necessarily ortho-normal)
p.frames in $E^{r}$ , and by $\mathfrak{R}(p, r, N)$ the $V(r, p)$ -bundle associated to
$\mathfrak{R}(r, N)/H(r, N)$ , then

$\Omega_{(p)}$ is dual to the cohomology class of the primary obstructions
of $\sigma_{!\{(r-p+1,r,N)}$ .

For an $E^{r}$-bundle over V, we take $f:V\rightarrow H(r, N)$ as in the im-
bedding theorem, then the image $f^{*}(\Omega_{(p)})$ of $\Omega_{(p)}$ (considered as a
cohomology class) is the class of the primary obstructions of the
$V(r, r-p+1)\cdot bundle$ associated to $\mathfrak{F}/V$. This class is the p-th basic
characteristic class of $\mathfrak{F}$

We shall make use of Chern’s theory of connections in a vector
bundle (Cf. [3], Chap. 3).

Let $\mathfrak{F}$ be an $E^{r}\cdot bundle$ over V defined by a covering $\{U_{\alpha}\}$ and a
system of transition functions $\{g_{\alpha\beta}\}$ . Then a system $\theta=\{\theta_{\alpha}\}$ of square
matrices $\theta_{\alpha}$ of degree $r$, whose elements $\theta_{\alpha ij}(i,j=1,2, \cdots, r)$ are linear
differential forms in $U_{\alpha}$ , is said to define a connection in $\mathfrak{F}$ , provided
that the relation
(1.5) $\theta_{\alpha}=g_{\alpha\beta}(\theta_{\beta}-\omega_{\alpha\beta})g_{\alpha\beta}^{-1}$

holds in $U_{\alpha}\leftrightarrow U_{\beta}$ , where $\omega_{\alpha\beta}=g_{\alpha\beta}^{-1}dg_{\alpha\beta}$ .
A system $\varphi=\{\varphi_{\alpha}\}$ of vectors $\varphi_{\alpha}={}^{t}(\varphi_{\alpha 1}, \cdots, \varphi_{\alpha r})$ , whose components

are differential forms of degree $d$ in $U_{\alpha}$ , is called an $\mathfrak{F}$-vectorial $dif$ .
ferential form of degree $d$, if

(1.6) $\varphi_{\alpha}=g_{\alpha\beta}\varphi_{\beta}$ in $U_{\alpha}\leftrightarrow U_{\beta}$ ,

and a similar system $\psi=\{\psi_{\alpha}\}$ of matrices $\psi_{\alpha}=(\psi_{a,ij})$ is called an $\mathfrak{F}-$
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tensorial differential form of adjoint kind2) if

(1.6) $\psi_{\alpha}=g_{a\beta}\psi_{\beta}g_{\alpha\beta}^{-1}$ in $U_{\alpha}\sim U_{\beta}$ .
In this connection a usual differential form $\sigma$ on V is called a scalar
differential form.

By the aid of a connection, we can define covariant differentiation
of these forms as follows:

(1.7) $\{$

$ D\sigma=d\sigma$

$D_{\varphi}=d\varphi_{\alpha}+\theta_{\alpha}\wedge\varphi_{a}$ in $U_{\alpha}\leftrightarrow U_{\beta}$ .
$D\psi=d\psi_{\alpha}+\theta_{\alpha}\wedge\psi_{\alpha}+(-1)^{d^{+1}}\psi_{\alpha}\wedge\theta_{\alpha}$

$D$ obeys the usual law of covariant differentiation, especially

(1.8) $D^{2}\varphi_{\alpha}=\Theta_{\alpha}\wedge\varphi_{\alpha}$ ,

where

(1.9) $\Theta_{\alpha}=d\theta_{\alpha}+\theta_{\alpha}\wedge\theta_{\alpha}$ .
$\Theta=\{\Theta_{\alpha}\}$ is the curvature form of the connection. We put

(1.10) $\chi_{\alpha}=(1/2\pi\sqrt{-1})\Theta_{\alpha}$ .

Now we have a theorem proved by A. Weil:
Let $P(Y_{1}, \cdots, Y_{r})$ be a symmetric multilinear polynomial in $Y’ s$ ,

which are tensorial forms of adjoint kind. If $P$ is invariant by the
adjoint group, then $P(\Theta, \cdots, \Theta)$ determines a cohomology class of V,
which is independent of the choice of the connection.

As a special case of this theorem, we see that

(1.11) $det(\lambda I_{r}+\chi)=\sum c_{p}\lambda^{r-p}$ ( $I_{r}=unit$ matix of degree r)

defines cohomology classes $c_{p}$ of V, independently of the choice of $\theta$.
As to the connections of the bundle $\mathfrak{R}(r, N)/H(r, N)$ , we find one

as follows: We restrict the structure group $GL(r)$ to the unitary group
$U(r)$ , and consider the bundle $\mathfrak{R}^{\prime}/H$ of ortho-normal r.frames over $H$.
Then

2) Here we alter Chern’s terminology ” type ” into “ kind ”, since ” type ” is used
in another meaning.
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$H(r, N)\cong U(N)/(U(r)\times U(N-r))$ ,

$\mathfrak{R}^{\prime}\cong U(N)/U(N-r)$ ,

and the bundle structure of $\mathfrak{R}^{\prime}/H$ is given by the natural mapping

$U(N)/U(N-r)\rightarrow U(N)/(U(r)\times U(N-r))$ .
We put

$u^{-1}du=(\theta_{\lambda_{\mu}})$ , $\lambda,$ $\mu=1,$ $\cdots,$
$N$ ,

where $u$ is a variable point of $U(N)$ . Then it is seen that $(\theta_{ij}),$ $(i,j=1$ ,
$r)$ , which are differentials defined locally on $H$, determine a con-

nection of $\mathfrak{R}^{\prime}/H$ and hence that of $\mathfrak{R}/H$. Its curvature form is given
by

$\Theta_{ij}=-\sum_{s=r+1}^{N}\theta_{is}\wedge\theta_{sj}$ .
Then by Chern’s theorem ([2], th. 5), we see that the $c_{p}$ given by

(1.11) is the pth basic characteristic class of the bundle $\mathfrak{F}/V$ (First
this holds for $\mathfrak{R}/H$, and then by the $covari\dot{a}nt$ character of characteristic
classes and connections, it holds for any $\mathfrak{F}/V$ because of the imbedding
theorem.)

By the way, we remark that the duality theorem for complex
vector bundles can very simply be deduced from the above. In fact
if $\mathfrak{F}$ and $\mathfrak{F}^{\prime}$ are $E^{r_{-}}$ and $E^{s}$ -bundles over V, defined by the systems
of transitions functions $\{g_{\alpha\beta}\}$ and $\{g_{\alpha\beta}^{\prime}\}$ respectively, then the Whitney
product fo $\mathfrak{F}$ and $\mathfrak{F}^{\prime}$ is defined by $\{g_{\alpha\beta}\dotplus g_{\alpha\beta}^{\prime}\}$ (the direct sum of
matrices), and hence the matrices of its connections and curvature
forms are also the direct sums of those of $\mathfrak{F}$ and $\mathfrak{F}^{\prime}$

If $\mathfrak{F}$ and $\mathfrak{F}^{\prime}$ are as above, we can define another vector bundle
$\mathfrak{F}\otimes \mathfrak{F}^{\prime}$ by $\{g_{\alpha\beta}\otimes g_{\alpha\beta}^{\prime}\}$ , where $\otimes$ denotes the Kronecker product of
matrices. Later we shall use the case where $\mathfrak{F}$ is an $E^{1}\cdot bundle\mathfrak{B}$ and
hence $g_{\alpha\beta}$ are simply functions. In this case we shall write $\mathfrak{B}\mathfrak{F}^{\prime}$ in.
stead of $\mathfrak{B}\otimes \mathfrak{F}^{\prime}$ . If the characteristic polynomials of $\mathfrak{B}$ and $\mathfrak{F}^{\prime}$ are
$\lambda+X$ and $F(\lambda)$ respectively, then $F(\lambda+X)$ is the characteristic poly.
nomial of $\mathfrak{B}\mathfrak{F}^{t}$ .

\S 2. Kodaira-Spencer’s lemma.

Let $\mathfrak{F}$ be an analytic $E^{r}$ -bundle over a compact analytic manifold
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V, defined by an open covering $\{U_{\alpha}\}$ and a system of transition func.
tions $\{g_{\alpha\beta}\}$ . As we have already referred, the structure group can be
reduced, from the topological point of view, to $U(r)$ , that is to say,
there exist $C^{\infty}$ -mappings

$\sigma_{\alpha}$ : $U_{\alpha}\rightarrow GL(r)$ ,

$u_{\alpha\beta}$ : $U_{\alpha}\sim U_{\beta}\rightarrow U(r)$

such that
(2.1) $g_{\alpha\beta^{=}}\sigma_{\alpha}^{-1}u_{a\beta}\sigma_{\beta}$ in $U_{\alpha}\rightarrow U_{\beta}$ .
If we put

(2.2) $h_{\alpha}={}^{t}\overline{\sigma}_{\alpha}\cdot\sigma_{\alpha}$ ,

then each $h_{\alpha}$ is a positive definite Hermitean matrix and it is easy to
see that
(2.3) $\theta_{\alpha}=h_{\alpha}^{-1}d^{\prime}h_{\alpha^{3)}}$

defines a connection in $\mathfrak{F}$ . Its curvature form is
$\Theta_{\alpha}=d\theta_{\alpha}+\theta_{\alpha}\wedge\theta_{\alpha}$ ,

i.e. simply

(2.4) $\Theta_{\alpha}=d^{\prime\prime}\theta_{\alpha}$ .
Put $\chi_{\alpha}=(1/2\pi\sqrt{}-1)\Theta_{\alpha}$, then

(2.5) $t\overline{x}_{\alpha}=h_{\alpha}\chi_{\alpha}h_{\alpha}^{-1}$ .
From this, we conclude that the p.th basic characteristic class of $\mathfrak{F}$

contains a real closed differential form of type $(p, p)$ .
From now on, we assume that $V$ is a compact K\"ahler variety.

Then to a differential form $\varphi$ defined on an open set of $V$, the adjoint
form $*\varphi$ is associated.

Let $\Phi_{\mathfrak{F}}$ be the linear space of all the $\mathfrak{F}$ -vectorial defferential forms
on $V$, and let $\varphi=\{\varphi_{\alpha}\},$ $\psi=\{\psi_{a}\}$ be elements of $\Phi_{\mathfrak{F}}$ . Then we define
the inner product of $\varphi$ and $\psi$ by

(2.6) $(\varphi, \psi)=\int\sum_{\gamma i.j}(h_{\alpha})_{ji}\varphi_{\alpha i}\wedge\overline{*\psi_{\alpha j}}$ .

3) If $z’ s$ are complex parameters of V, then $z’ s$ and $\overline{z}’ s$ can be considered as real
parameters of V. $d^{\prime}$ denotes exterior differentiation with respect to $z’ s$ and $d^{\prime\prime}$ one with
respect to $\overline{z}’ s$ .



On complex analytic vector bundles 7

The definition is legitimate since by (1.6) and (2.1) the integrand
on the right hand side is independent of $\alpha$ . By (2.2) this is a positive
definite Hermitean inner product.

The covariant differentiation defined by (1.7) (with respect to the
connection (2.3)) is an endomorphism of $\Phi_{\mathfrak{F}}$ . It is divided into two
parts

(2.7) $D=\partial+d^{\prime\prime}$ ,

where $\partial$ is defined by
$\partial\varphi_{\alpha}=d^{\prime}\varphi_{\alpha}+e(\theta_{\alpha})\varphi_{\alpha}^{4)}$ ,

and is an operator of type $(1,0)$ , while $d^{\prime\prime}$ is obviously of type $(0,1)$ .
The adjoint operator of $\partial$ and $d^{\prime\prime}$ exist and are given by

$\theta\varphi_{\alpha}=\delta^{\prime\prime}\varphi_{\alpha}-*e(\theta_{\alpha})*\varphi_{\alpha}$ ,

where $\delta^{\prime}=-*d^{\prime\prime}*and\delta^{t/}=-*d^{\prime}*are$ usual operators in the theory of
harmonic integrals.

From (1.8), we have
(2.8) $(d^{\prime\prime}\partial+\partial d^{\prime\prime})\varphi_{\alpha}=e(\Theta_{\alpha})\varphi_{\alpha}$ .

As in [6], we define the Laplace-Beltrami’s operator $\square $ by

$\coprod=d^{\prime\prime}\theta+\theta d^{\prime\prime}$ ,

and we say that $\varphi$ is harmonic if $\coprod\varphi=0$ . Then the theory of harmonic
integrals can be applied and we have

$\varphi=H\varphi+d^{\prime\prime}(\theta G\varphi)+\theta Gd^{\prime\prime}\varphi$ ,

for every $\varphi\in\Phi_{\mathfrak{F}}$ .
LEMMA 1. A harmonic $\mathfrak{F}$ -vectorial form $\varphi$ satisfies

$(e(\chi)\Lambda\varphi, \varphi)\geqq 0$ .
PROOF. $\coprod\varphi=0$ is equivalent to $d^{\prime\prime}\varphi=0$ and $\theta\varphi=0$ . From the

formula
$d^{\prime\prime}\Lambda-\Lambda d^{\prime\prime}=\sqrt{-1}\delta^{\prime}$

4) $e(\theta_{\alpha})$ denotes the exterior multiplication of $\theta_{\alpha}$, considered as a local operator to
vectorial differential forms.
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we have
$\sqrt{}-1(\delta^{\prime}\varphi, \delta^{\prime}\varphi)=((d^{\prime\prime}\Lambda-\Lambda d^{\prime\prime})\varphi, \delta^{\prime}\varphi)=(d^{\prime\prime}\Lambda\varphi, \delta^{\prime}\varphi)$

$=(\Lambda\varphi, (\theta\delta^{\prime}+\delta^{\prime}\theta)\varphi)=((d^{\prime\prime}\partial+\partial d^{\prime\prime})\Lambda\varphi, \varphi)$ .
Since $d^{\prime\prime}\partial+\partial d^{\prime\prime}=e(\Theta)=2\pi\sqrt{-1}e(\chi)$ , the lemma is proved.5)

We shall calculate the integrand of $(e(\chi)\Lambda\varphi, \varphi)$ , in the case where
$\varphi$ is of type $(n, 1)$ . ( $n$ is the complex dimension of $V.$ ) Take a point
$PeV$ and express $ds^{2}$ as

$ds^{2}=2\sum_{\lambda=1}^{n}\omega_{\lambda}\cdot\overline{\omega}_{\lambda}$

in a neighbourhood of P. (We fix a $U_{\alpha}$ such that $P\in U_{\alpha}$ . As all quan.
tites refer to $U_{\alpha}$ , we omit the suffix $\alpha$ for a while.) Express $\chi=(\chi_{ij})$

and $\varphi=(\varphi_{j})$ as
$\chi_{ij}=\sqrt{}\overline{-1}\sum_{\lambda.\mu}\chi_{ij:\lambda\mu}\omega_{\lambda}\wedge\overline{\omega}_{\mu}$ ,

$\varphi_{j}=\sum_{\lambda}\varphi_{j\lambda}\omega_{1}\wedge\cdots\wedge\omega_{n}\wedge\overline{\omega}_{\lambda}$ ,

then we have
(2.9) $\sum_{i.k}h_{ki}(e(\chi)\Lambda\varphi)_{j}/\backslash (\overline{*\varphi})_{k}=\sum_{j.\lambda;k\mu}.H_{j;k_{\mu}}\lambda\varphi j\lambda\overline{\varphi}_{k\mu}dv$

with
(2.10) $ H_{J^{\lambda};k\mu}=\sum_{i}h_{ki}\chi_{ij;\mu}\lambda$

By (2.5), $(H_{j;k\mu}\lambda)$ is an Hermitean matrix. Combining this with
the previous lemma, we obtain

LEMMA 2. If $H=(H_{j_{\lambda;}k_{\mu}})$ is negative definite at every point of V,
then there is no harmonic form of type $(n, 1)$ other than $0$ .

Next we define the canonical complex line bundle $\mathfrak{K}$ over V as in
[7], then we have the following theorem.

THEOREM 1. (Kodaira.Spencer’s lemma).6) Let $\mathfrak{F}$ be an analytic
$E^{r}$ -bundle over V. If the matrix $H$ defined by (2.10) for the bundle
$\mathfrak{K}^{-1}\mathfrak{F}$ is everywhere negative definite, then we have

$H^{1}(V;\Omega(\mathfrak{F}))=0$ ,

5) Note that our characteristic class of a complex line bundle differs by sign from
that in [1] and [8].

6) Kodaira proved this theorem for complex line bundles ([7]), and Spencer gener-
alized it to vector bundles. Our proof is slightly different and goes along the line of $[1\neg$ .
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where $\Omega(\mathfrak{F})$ denotes the sheaf of germs of holomorphic cross sections
of $\mathfrak{F}$

PROOF. As in [6], we see that $H^{q}(V;\Omega^{p}(\mathfrak{F}))$ is isomorphic with
the module of harmonic $\mathfrak{F}$ -vectorial forms of type $(p, q)$ , where $\Omega^{p}(\mathfrak{F})$

denotes the sheaf of germs of holomorphic F.vectorial forms of degree
$p$ . On the other hand, we have $\Omega(\mathfrak{F})\cong\Omega^{0}(\mathfrak{F})$ and $\Omega^{0}(\mathfrak{F})\simeq\Omega^{n}(\mathfrak{K}^{-1}\mathfrak{F})$ .
(Cf. [7].) Hence our theorem follows from Lemma 2.

\S 3. Analytical imbedding theorem.

Following Kodaira, we consider the quadratic transform V of V,
with the center $M\in V$. $\tilde{V}$ is a compact K\"ahler variety of dimension
$n$ , and there is an everywhere regular analytic mapping $P_{M}$ from $\tilde{V}$

onto V. $P_{M}$ is biregular except at the center $M$ and $P_{M}^{-1}(M)=S$ is an
$(n-1)\cdot dimensional$ subvariety of $\tilde{V}$, analytically homeomorphic with a
projective space.

For an $E^{r}$-bundle $\mathfrak{F}$ over $V$ defined as usual, a bundle $\tilde{\mathfrak{F}}=P_{M}^{-1}(\mathfrak{F})$

on $\tilde{V}$ is determined. Clearly $\tilde{\mathfrak{F}}$ induces the trivial bundle $0$ on $S$. Also
there is a complex line bundle $\{S\}$ on $\tilde{V}$, defined by the V-divisor $S$.
Then we have the exact sequence

(3.1) $0\rightarrow\Omega(\{S\}^{-1}\tilde{\mathfrak{F}})\rightarrow i\Omega(\tilde{\mathfrak{F}})\rightarrow r\Omega_{S}(0)\rightarrow 0$ ,

where $\Omega$ is as in th. 1, $r$ is the restriction mapping and $i$ means the
multiplication by local equations of S. (Cf. [8].)

Suppose that the bundle $\{S\}^{-1}F$ satisfies the condition of th. 1. Then
we see that

(3.2) $r^{*}:$ $H^{0}(\tilde{V};\Omega(\tilde{\mathfrak{F}}))\rightarrow H^{0}(S;\Omega_{S}(0))$

is an onto mapping.
Now $H^{0}(\tilde{V};\Omega(\tilde{\mathfrak{F}})$ and $H^{0}(V;\Omega(\mathfrak{F}))$ are isomorphic by the adjoint

homomorphism $P_{M}^{*}$ of $P_{M}$. If we take a base $\zeta^{(1)},$
$\cdots,$

$\zeta^{(M)}$ of $H^{0}(V;\Omega(\mathfrak{F}))$ ,
then the corresponding cross sections $\zeta\zeta\sim_{(1)},$

$\cdots,$

$\sim_{(M)}$ form a base of $H^{0}(\tilde{V}$ ;
$\Omega(\tilde{\mathfrak{F}}))$ , and we conclude from (3.2) that the matrix of components of
$\sim\zeta s$

$\left(\begin{array}{l}\zeta_{1}^{(M)}\\\sim_{r}\zeta^{(M)}\end{array}\right)\sim$
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has the rank $r$ on $S$, because $H^{0}(S;\Omega_{S}(0))$ has the base ${}^{t}(1,0, \cdots, 0)$ ,
${}^{t}(0, \cdots, 0,1)$ which makes up a matrix of rank $r$. Hence the matrix

(3.3) $\zeta_{\alpha}=\left(\begin{array}{lll}\zeta_{\alpha 1}^{(1)} & \cdots & \zeta_{\alpha l}^{(M)}\\\zeta_{\alpha r}^{(1)} & \cdots & \zeta_{\alpha r}^{(M)}\end{array}\right)$

of functions on V (or rather on $U_{\alpha}$ which contains $M$ ) has the rank
$r$ at $M$. Thus we obtain

THEOREM 2. If $\mathfrak{F}$ is an $E^{r}\cdot bundle$ over $V$ such that $\{S\}^{-1}\tilde{\mathfrak{F}}$

satisfies the condition of th. 1. for every quadratic transform V of $V$,
then the matrix (3.3) composed of components of a base of $H^{0}(V;\Omega(\mathfrak{F}))$

has the rank $r$ at every point of V.
Now let $\zeta_{a}$ be as above, and consider $(\zeta_{ai}^{(1)}, \cdots, \zeta_{\alpha i}^{(M)})$ as the com-

ponents of a vector $X_{\alpha i}$ in $E^{1II}$. Then, under the condition of th. 2,

(3.4) $\Phi_{\alpha}$ : $U_{\alpha}\in P\rightarrow E^{r}=X_{\alpha 1^{\cup}}\ldots\cup x_{\alpha r\in}H(r, M)$

defines a regular analytic mapping from $U_{\alpha}$ into $H(r, M)$ . Since
$\zeta_{\alpha}=g_{\alpha\beta}\zeta_{\beta}$ in $U_{\alpha}\rightarrow U_{\beta}$ . we see readily that $\Phi_{\alpha}=\Phi_{\beta}$ on $U_{a}\sim U_{\beta}$ . Hence
by (3.4), there is defined an everywhere regular analytic mapping $\Phi$

from $V$ into $H(r, M)$ . The relation between the bundles $\mathfrak{R}/H$ and $\mathfrak{F}/V$

is as follows:
We denote the sets of indices such as $(i_{1}, \cdots, i_{r}),$ $(j, \cdots,j_{r}),$ $\cdots$ by

$\lambda,$
$\mu,$ -, and put

$V_{\lambda}=$ { $P|P\in V,$ $det(\zeta_{v}^{iu})\neq 0$ at $P$},

$W_{\alpha\lambda}=U_{\alpha}\sim V_{\lambda}$ .

Then $\{W_{a\lambda}\}$ form an open covering of $V$ and in $W_{\alpha^{\lambda}}\sim W_{\beta\mu}$ we have

$\left(\begin{array}{lll}\zeta_{\alpha^{t}1^{1}}^{()} & \cdots & \zeta_{ar}^{(j_{l})}\\\zeta_{a1}^{(i_{r})} & \cdots & \zeta_{ar}^{(i_{r})}\end{array}\right)\zeta_{\beta 1}^{p_{j_{r^{)}}^{1})}^{j_{1}}}\zeta_{\beta r^{r^{)}}}^{(j^{1}}t\zeta_{(}^{\subset}\ldots..\cdot.\cdot\cdot.\cdot\cdot.\cdot\zeta_{\beta r}^{(i.)}$

where $g_{\alpha\beta}$ and $s_{\lambda_{\mu}}$ denote the transition functions of $\mathfrak{F}/v$ and $\mathfrak{R}/H$

respectively. Since $f_{\alpha\lambda}=(\zeta_{\alpha v^{u}}^{(i)})$ is a regular analytic mapping from $W_{\alpha\lambda}$

into $GL(r)$, the above relation shows that $\Phi^{-1}(\backslash J\grave{\iota})$ is defined by the
system $\{{}^{t}g_{\alpha\beta}^{-1}\}$ . Hence we have

THEOREM 3. If th. 2. holds for an $E^{r}\cdot bundle$ over V, then there
is an everywhere regular analytic mapping $\Phi$ from $V$ into a suitable



On complex analytic vector bundles 11

$H(r, M)$ , and $\mathfrak{F}$ is defined by the system of transition functions $\{ {}^{t}h_{\alpha\beta}^{-I}\}$ ,
where $\{h_{a\beta}\}$ is a system of transition functions for $\Phi^{-1}(\mathfrak{R})$ .

Finally we assume that $V$ is a non-singular algebraic variety in a
projective space. Then the complex line bundle $\mathfrak{B}$ defined by a generic
hyperplane section $X$ of $V$ has the characteristic homology class $-X^{7)}$

and this is dual to the cohomology class $-(1/2_{\pi})\Omega$ , where $\Omega$ denotes
the fundamental form of the standard K\"ahler metric of $V$.

By making use of lemma 1 and formula (3) in [8], and of the fact
that the curvature forms $\Theta_{\alpha},$

$\Theta_{\alpha}^{\prime}$ for $\mathfrak{F}$ and $\mathfrak{B}\mathfrak{F}$ are related by

$\Theta_{\alpha}^{\prime}=\Theta_{\alpha}-\sqrt{-1}^{\Omega\otimes I_{r}}$

we can easily conclude
THEOREM 4. For every analytic $E^{r}$-bundle $\mathfrak{F}$ over a non-singular

algebraic variety V, there is a natural number $m$ such that $ths$. $2$ . and
3. hold for $\mathfrak{B}^{m}\mathfrak{F}$ .

Inspection on curvature forms (2.4) shows that the p-th basic
characteristic classes of two $E^{r}\cdot bundles$ , which are defined by $\{g_{\alpha\beta}\}$

and $\{^{t}g_{\alpha\beta^{l}}^{-}\}$ respectively, differ only by a factor $(-1)^{p}$ . From this we
have the following theorem, which generalizes Chern’s theorem, [41,
th. 7.

THEOREM 5. For an analytic $E^{r}$ -bundle $\mathfrak{F}$ over a non-singular
algebraic variety $V$, take $m$ as in th. 4. and form the mapping $\Phi:V$

$\rightarrow H(r, M)$ as in th. 3. Then the characteristic polynomial of $\mathfrak{F}$ is
given by $F(\lambda-mX)$ , where

$F(\lambda)=\sum_{=p0}^{r}\Phi^{-1}(\Omega_{(p)})\cdot\lambda^{r-p}$ .

REMARK. It is evident that not all analytic $E^{r}\cdot bundles$ are as-
sociated to regular analytic mappings. If we consider a Jacobian
variety $J$ of a curve and its divisor $X$, which correspond to the prin-
cipal matrix of Pfaffian 1, then $1(X)=1$ and {X} cannot be associated
to a regular analytic mapping into a Grassmann variety, in spite that
the characteristic class of {X} contains an everywhere negative definite
form.

(Added in proof) After this paper was written, the author proved

7) See footnote 5).
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that Chern classes of the tangential vector bundle of an algebraic
variety are identical with Todd canonical systems, which is a supple.
mentary result to this paper.

Mathematical Institute,
Kyoto University.
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