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Abstract. We study property of Nevanlinna’s deficiency as functions on linear systems
in smooth complex projective algebraic varieties. We give a structure theorem for the set
of deficient divisors. This structure theorem yields that the set of values of deficiency is at
most countable. Moreover, we have a correspondence between the deficiencies and the linear
systems.

Introduction. Since Cartan [C], Weyl-Weyl [W1] and Ahlfors [A] established the clas-
sical theory of holomorphic curves in complex projective spaces, many works have been done
for its generalization in various ways. The aim of this paper is to study the properties of the
deficiencies of holomorphic curves as functions on linear systems on algebraic varieties. We
define the deficiency for the base locus of a linear system by means of the new language in
the value distribution theory for coherent ideal sheaves due to Noguchi-Winkelmann-Yamanoi
[NWY]. We give a structure theorem for the set of deficient divisors and prove that the set of
values of deficiency is at most countable. We also show that the values of deficiency corre-
spond to the families of linear systems with the non-empty base loci.

Let M be a smooth complex projective algebraic variety and L → M an ample line
bundle. For a transcendental holomorphic curve f : C → M , Nevanlinna’s deficiency δf (D)
of f can be regraded as a function on the complete linear system |L|. It is an important
problem to study the structure of the set

{D ∈ |L| ; δf (D) > 0}
of deficient divisors (cf. Stoll [St, p. 54]). When the dimension of M is greater than one, the
structure of the above set is very complicated. Shiffman constructed a dominant holomorphic
mapping f : C2 → P 2(C) and linear pencils of lines in P 2(C) on which δf (D) is a con-
stant function [Shi1]. It follows from this result that there exist algebraically non-degenerate
holomorphic curves in P 2(C) with the same property. In his construction, each pencil has
the non-empty base locus. He also considered a proximity function for higher codimensional
subvarieties of a special type. Shiffman’s result is considered to be a prototype of our study

2000 Mathematics Subject Classification. Primary 32H30.
Key words and phrases. Nevanlinna theory, holomorphic curve, deficiency, linear system.
This research was partially supported by Grant-in-Aid for Scientific Research, ((C) No. 21540205), Japan Soci-

ety for the Promotion of Science.



288 Y. AIHARA

on defect functions. There have been several contributions from this point of view. Among
these, we are especially interested in works by Ochiai [O] and Nochka [Nc1], [Nc2]. We now
recall their results.

We let Γ (M, L) denote the space of all holomorphic sections of L → M and |L| the
complete linear system defined by L. Let W ⊆ Γ (M, L) be a linear subspace with l0 + 1 =
dimW ≥ 2. Denote byΛ the linear system determined byW , that is, Λ = P (W). The linear
system Λ may have the non-empty base locus. Let D1, . . . ,Dq be divisors in Λ such that
Dj = (σj ) for σj ∈ W . We first give a definition of subgeneral position. Set Q = {1, . . . , q}
and take a basis ψ0, . . . , ψl0 of W . We write

σj =
l0∑
k=0

cjkψk

for each j ∈ Q. For a subset R ⊆ Q, we define a matrix AR by AR = (cjk)j∈R,0≤k≤l0.

DEFINITION 0.1. Let N ≥ l0 and q ≥ N + 1. We say that D1, . . . ,Dq are in N-
subgeneral position in Λ if

rankAR = l0 + 1 for every subset R ⊆ Q with �R = N + 1 .

If they are in l0-subgeneral position, we simply say that they are in general position.

The above definition is different from the usual one (cf. [No1, p. 339]). In fact, the
divisorsD1, . . . ,Dq are usually said to be in N-subgeneral position in Λ provided that⋂

j∈R
Dj = ∅ for every subset R ⊆ Q with �R = N + 1.

However, the divisorsD1, . . . ,Dq may have a common point when they are in N-subgeneral
position in the sense of Definition 0.1. Thus our definition is weaker than the usual one.
Throughout this paper we use “N-subgeneral position" in the sense of Definition 0.1.

Let f : C → M be a transcendental holomorphic curve that is non-degenerate with
respect toΛ, namely, the image of f is not contained in the support of any divisor inΛ. Then
Ochiai showed that there exists a non-negative constant e0 such that δf (D) defines a function
δf : Λ → [e0, 1] and the set {D ∈ Λ ; δf (D) > e0} is a null set for the Lebesgue measure of
Λ. The constant e0 is given by

e0 = lim inf
r→+∞

mf (r, Λ)

Tf (r, L)
,

where mf (r, Λ) is a nondecreasing function in r depending on f and Λ. Now we assume
that D1, . . . ,Dq ∈ Λ are in general position. The defect relation

q∑
j=1

(δf (Dj )− e0) ≤ (1 − e0)(l0 + 1)

holds under a certain condition on the growth of f . In the classical case whereM is a complex
projective space P n(C) andΛ is the complete linear system of the hyperplane bundle OP n (1),
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we see e0 = 0. Hence the classical defect relation is contained in Ochiai’s one. Until now, the
geometric significance of the constant e0 has not been understood well. Nochka [Nc1] lately
pointed out that the existence of a subset E(f ) of R+ at which the characteristic function
of f has abnormally fast growth gives an influence on deficiencies. In order to avoid this
problem, he introduced a notion of modified deficiency δ̃f (H) for hyperplanes in P n(C)

from an analytic point of view. He improved Ochiai’s theorem in the case whereM = P n(C)

and L = OP n(1). In particular, he obtained some remarkable results on the structure of the
set of deficient hyperplanes and gave an example that shows his result is optimal. The works
of Ochiai and Nochka are based on some methods in integral geometry as in [A] and [W1].

In this paper, we will give generalizations of the results of Ochiai and Nochka, especially
theorems concerning the structure of the set of deficient divisors and the set of values of
defect functions as we announced in [Ai]. Our first goal is to give a geometric meaning of the
constant e0. Let I0 be the coherent ideal sheaf of the structure sheaf OM over M that defines
the base locus of Λ as a complex analytic space. We notice here that I0 is a subsheaf of OM .
We denote by BΛ the base locus as a complex analytic space and by BsΛ its support, that is,

BΛ = (Supp(OM/I0), OM/I0) and BsΛ = Supp(OM/I0).

We also let mf (r, I0) denote the proximity function for I0. Then it is the proximity function
for BΛ. We define a defect of f for BΛ by

δf (BΛ) = lim inf
r→+∞

mf (r, I0)

Tf (r, L)
.

By making use of Crofton type formula, we see

e0 = δf (BΛ) .

This gives us a geometric meaning of e0. In particular, e0 = 0 if BsΛ = ∅. It is worth noting
that there exist f and Λ with the non-empty base locus such that f does not hit BsΛ but
0 < δf (BΛ) < 1 (see Section 6). Hence δf (BΛ) has a potential theoretical character. We
have then the following inequality of the second main theorem type:

THEOREM 0.2. Let f : C → M be a transcendental holomorphic curve that is non-
degenerate with respect to Λ and D1, . . . ,Dq ∈ Λ divisors in N-subgeneral position. Then
an inequality

(q − 2N + l0 − 1)(Tf (r, L)−mf (r, I0)) ≤
q∑
j=1

N(r, f ∗Dj )+ Sf (r)

holds, where Sf (r) = O(log Tf (r, L)) + O(log r) as r → +∞ except on a Borel subset
E ⊆ [1,+∞) with finite measure.

We let δ̃f (D) and δ̃f (BΛ) denote modified deficiencies in the sense of Nochka (for the
definition, see Section 4). In general, δf (D) ≤ δ̃f (D) and δ̃f (D) = δf (D) if f is of finite
type. We also see that δ̃f (D) ≥ δ̃f (BΛ) for all D ∈ Λ. We get the following defect relation
without assuming any growth condition on f .
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THEOREM 0.3. Let Λ, f andD1, . . . ,Dq be as in Theorem 0.2. Then

q∑
j=1

(δ̃f (Dj )− δ̃f (BΛ)) ≤ (1 − δ̃f (BΛ))(2N − l0 + 1) .

We consider the sets Df and D̃f of divisors defined by

Df = {D ∈ Λ ; δf (D) > δf (BΛ)} and D̃f = {D ∈ Λ ; δ̃f (D) > δ̃f (BΛ)} .
We can show that Df and D̃f are P-polar in Λ. In particular, the Hausdorff dimensions of
those sets are at most 2l0 − 2. By making use of the above defect relation, we have a structure
theorem for D̃f .

THEOREM 0.4. The set D̃f is a union of at most countably many linear systems in-
cluded in Λ.

By the above theorem, we have a family {Λj } of at most countably many linear systems
in Λ such that D̃f = ⋃

j Λj . We define L = {Λj } ∪ {Λ}. Let δ̃f (Λ) be the set of values of

the function δ̃f : Λ → [0, 1]. Then we can establish the correspondence between the values
in δ̃f (Λ) and the subfamilies of L, which is the main result in this paper.

MAIN THEOREM 0.5. The set δ̃f (Λ) is an at most countable subset of [0, 1]. For

each α ∈ δ̃f (Λ), there exists a unique finite subfamily Lα = {Λ(α)j } of L such that α =
δ̃f (BΛ(α)j

) for all Λ(α)j ∈ Lα and α 
= δ̃f (BΛj ) for all Λj ∈ L \ Lα .

It is known that holomorphic curves without defect are dense in the space of holomor-
phic curves f : C → P n(C) with respect to a certain kind of topology. Moreover, we can
eliminate all defects of f by a small deformation of f (see [M1] and [M2]). In [O], Ochiai
exhibits an example of δf (BΛ) = 1. We can show the existence of holomorphic curves with
0 < δf (BΛ) < 1 in the case where M = P n(C) and L = OP n(1).

THEOREM 0.6. Let Λ ⊆ |OP n(1)| and suppose that BsΛ 
= ∅. Let e0 be an arbitrary
positive number less than one. Then there exists an algebraically non-degenerate transcen-
dental holomorphic curve f : C → P n(C) of finite type such that e0 = δf (BΛ).

In Sections 1 and 2, we recall some facts in Nevanlinna theory for holomorphic curves
and basic results in value distribution theory for coherent ideal sheaves. In Sections 3 and 4,
we will proved Theorems 0.2 and 0.3. In the proof of Theorem 0.3, we need to give a precise
estimate for the error term in Theorem 0.2. Its proof is somewhat complicated. Hence we
will give the proof in Section 7. By making use of results in Section 4, we give the structure
theorem for the set of deficient divisors in Section 5. The proofs of Theorems 0.4 and 0.5
are based on Nochka’s idea. In Section 6, we prove Theorem 0.6 and discuss the existence of
holomorphic curves with deficiencies.
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Junjiro Noguchi for their useful advice and valuable comments. He is also grateful to the referee for
his/her valuable comments.
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1. Preliminaries. We recall some known facts on Nevanlinna theory for holomorphic
curves. For details, see [NO] and [Sh].

Let z be the natural coordinate in C and dc = (
√−1/4π)(∂ − ∂). Set

∆(r) = {z ∈ C ; |z| < r} and C(r) = {z ∈ C ; |z| = r} .
For a (1,1)-current ϕ of order zero on C, we set

N(r, ϕ) =
∫ r

1
〈ϕ, χ∆(t)〉 dt

t
,

where χ∆(r) denotes the characteristic function of ∆(r). Let M be a projective algebraic
manifold and L → M a positive line bundle over M . We denote by Γ (M,L) the space of
all holomorphic sections of L → M . Let |L| = P (Γ (M,L)) be the complete linear system
defined by L. Denote by ‖ · ‖ a hermitian fiber metric in L and by ω its Chern form. Let
f : C → M be a meromorphic mapping. We set

Tf (r, L) =
∫ r

1

dt

t

∫
∆(t)

f ∗ω ,

and call it the characteristic function of f with respect to L. If

lim inf
r→+∞

Tf (r, L)

log r
= +∞ ,

then f is said to be transcendental. We define the order ρf of f : C → M by

ρf = lim sup
r→+∞

log Tf (r, L)

log r
.

We notice that the definition of ρf is independent of the choice of positive line bundle L →
M . We call f of finite type if ρf < +∞. Let D = (σ ) ∈ |L| with ‖σ‖ ≤ 1 on M . Assume
that f (C) is not contained in SuppD. We define the proximity function of D by

mf (r, D) =
∫
C(r)

log

(
1

‖σ(f (z))‖
)
dθ

2π
.

Then we have the following first main theorem for holomorphic curves:

THEOREM 1.1. Let L → M be a line bundle over M and let f : C → M be a
nonconstant holomorphic curve. Then

Tf (r, L) = N(r, f ∗D) +mf (r,D) +O(1)

for D ∈ |L| with f (C) 
⊆ SuppD, where O(1) stands for a bounded term as r → +∞.

Let f and D be as in Theorem 1.1. We define Nevanlinna’s deficiency δf (D) by

δf (D) = lim inf
r→+∞

mf (r, D)

Tf (r, L)
.

We have then the defect functions δf defined on |L|. If δf (D) > 0, then D is called
a deficient divisor in the sense of Nevanlinna. Let E = ∑

j νjpj be an effective divisor on
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C, where νj ∈ Z+ and pj ∈ C are distinct points. For a positive integer k, we define the
truncated counting function of E by

Nk(r, E) =
∑
j

min {k, νj }N(r, pj ) .

In general, for an effective divisor D on M , we write OM(D) for the line bundle deter-
mined by D. We now consider the case where M = P n(C). Let OP n(1) → P n(C) be the
hyperplane bundle over P n(C) and ω0 the Fubini-Study form on P n(C). In the case where
M = P n(C) and L = OP n(1), we always take ω0 for ω and we simply write Tf (r) for
Tf (r,OP n(1)). The following form of Tf (r) is due to Cartan [C]:

Tf (r) =
∫
C(r)

log max
0≤j≤n |fj (z)| dθ

2π
+O(1) ,(1.2)

where f = (f0, . . . , fn) is a reduced representation of f . For a meromorphic function f on
C and a point a ∈ P 1(C), we write N(r, a, f ) for N(r, f ∗a). We also write m(r, f ) for
mf (r, ∞). Let L → P n(C) be a positive line bundle over P n(C). Then L = OP n (1)

⊗d for
some positive integer d and D ∈ |L| is a hypersurface of degree d in P n(C). It is clear that

Tf (r, L) = d Tf (r)+O(1) .

We have the following second main theorem for holomorphic curves due to Cartan-
Nochka:

THEOREM 1.3. LetH1, . . . , Hq be hyperplanes inN-subgeneral position in |OP n (1)|.
Let f : C → P n(C) be a nonconstant holomorphic curve that is non-degenerate with respect
to OP n (1). We let Wf denote the Wronskian of f . Then

(q − 2N + n− 1) Tf (r) ≤
q∑
j=1

N(r, f ∗Hj)−N(r, (Wf )0)+ Sf (r) ,

where

Sf (r) = O(log Tf (r))+O(log r)

as r → +∞ except on a Borel subset E ⊆ [1,+∞) with finite measure. If f is of finite type,
then E = ∅.

For a simple proof, see [No2].

REMARK 1.4. The above second main theorem can be written in the following form
that involves the truncated counting function:

(q − 2N + n− 1) Tf (r) ≤
q∑
j=1

Nn(r, f
∗Hj)+ Sf (r) .
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2. Value distribution theory for coherent ideal sheaves. In this section we recall
some basic facts in value distribution theory for coherent ideal sheaves and give Crofton
type formula needed later. For details, see [No1, Chapter 2] and [NWY]. We keep the
same notation as in Section 1. Let f : C → M be a holomorphic curve and I a coher-
ent ideal sheaf of the structure sheaf OM of M . Let U = {Uj } be a finite open covering of
M with a partition of unity {ηj } subordinate to U . We can assume that there exist finitely
many sections σjk ∈ Γ (Uj , I) such that every stalk Ipover p ∈ Uj is generated by germs
(σj1)p, . . . , (σjlj )p. Set

ρI(p) =
( ∑

j

ηj (p)

lj∑
k=1

∣∣σjk(p)∣∣2
)1/2

.

We take a positive constant C such that CρI(p) ≤ 1 for all p ∈ M. Set

φI(p) = − logρI(p)

and call it the proximity potential for I. It is easy to verify that φI is well defined up to
addition of a bounded continuous function on M . We now define the proximity function
mf (r, I) of f for I, or equivalently, for the complex analytic subspace (may be non-reduced)

Y = (Supp (OM/I),OM/I) ,
by

mf (r, I) =
∫
C(r)

f ∗φI(z)
dθ

2π

provided that f (C) is not contained in SuppY . For z0 ∈ f−1(Supp Y ), we can choose an
open neighborhood U of z0 and a positive integer ν such that

f ∗I = ((z − z0)
ν) on U .

Then we see

logρI(f (z)) = ν log |z− z0| + hU(z) for z ∈ U,
where hU is a C∞-function on U . Thus we have the counting functions N(r, f ∗I) and
Nl(r, f

∗I) as in Section 1. Moreover, we set

ωI,f = −ddchU on U ,

and thus obtain a well-defined smooth (1, 1)-form on C. Define the characteristic function
Tf (r, I) of f for I by

Tf (r, I) =
∫ r

1

dt

t

∫
∆(t)

ωI,f .

We summarize the basic facts on value distribution theory for coherent ideal sheaves due
to Noguchi-Winkelmann-Yamanoi as follows [NWY, Theorem 2.9]:

THEOREM 2.1. Let f : C → M and I be as above. Then the following hold:
(i) (First Main Theorem) Tf (r, I) = N(r, f ∗I)+mf (r, I)+O(1).



294 Y. AIHARA

(ii) If L → M be an ample line bundle, then Tf (r, I) = O(Tf (r, L)).

(iii) Let I1 and I2 be coherent ideal sheaves. Suppose that f (C) is not contained in
Supp(OM/I1 ⊗ I2). Then

Tf (r, I1 ⊗ I2) = Tf (r, I1)+ Tf (r, I2)+O(1)

and

mf (r, I1 ⊗ I2) = mf (r, I1)+mf (r, I2)+O(1) .

(iv) Let I1 and I2 and f be as in (iii). If I1 ⊂ I2, then

mf (r, I2) ≤ mf (r, I1)+O(1) .

For a proof, see [NWY, §2].
When I defines an effective divisor D on M , we easily see

Tf (r, I) = Tf (r, OM(D))+O(1) and mf (r, I) = mf (r, D)+O(1) .

Let L → M be an ample line bundle and W ⊆ Γ (M, L) a subspace with dimW ≥ 2.
Let Λ = P (W). We define a coherent ideal sheaf I0 in the following way: For each p ∈ M ,
the stalk I0,p is generated by all germs σp for σ ∈ W . Then I0 defines the base locus BΛ of
Λ as a complex analytic subspace, that is,

BΛ = (Supp (OM/I0), OM/I0) .

Hence BsΛ = Supp(OM/I0). In the case where BΛ contains non-zero effective divisor on
M , the sheaf I0 can be written as I0 = I1 ⊗ I2. Here I1 defines an effective divisor on
M and codim Supp (OM/I2) ≥ 2. Otherwise, put I1 = OM and we have I0 = I2 with
codim Supp (OM/I2) ≥ 2. We now give some Crofton type formulas. Let f : C → M

be a nonconstant holomorphic curve that is non-degenerate with respect to Λ. We fix a basis
{σ0, . . . , σl} for W . We identify Λ with P l (C) via an isomorphism T : Λ → P l(C) defined
by

T̃ : σ =
l∑

j=1

cjσj �→ (c0, . . . , cl) .

We denote by [σ ] the elements in P l(C) corresponding toD = (σ ) inΛ. For a function g(D)
defined onΛ, we define the integration of g over Λ by∫

D∈Λ
g(D)dµ(D) =

∫
[σ ]∈P l (C)

g(T ∗[σ ])dµ([σ ]) ,

where µ is the invariant measure on P l (C) normalized as µ(P l (C)) = 1. Then we have
well-known Crofton’s formula:

THEOREM 2.2. Suppose that BsΛ = ∅. Then

Tf (r, L) =
∫
D∈Λ

N(r, f ∗D)dµ(D)+O(1) .
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For a proof, see [Shi1] and [Shi2]. The assumption BsΛ = ∅ is essential in Theorem
2.2. In the case where BsΛ 
= ∅, we have the following generalized Crofton’s formula due to
Ryoichi Kobayashi (see [No1, Theorem 2.3.28]):

THEOREM 2.3. Suppose that BsΛ 
= ∅ and f (C) 
⊆ BsΛ. Then∫
D∈Λ

mf (r, D)dµ(D) = mf (r, I0)+O(1) ,

and hence

Tf (r, L) =
∫
D∈Λ

N(r, f ∗D)dµ(D)+mf (r, I0)+O(1) .

For a reader’s convenience, we give a proof here.

PROOF. We first notice that there exists an effective divisor D on M such that L =
OM(D). We write I0 = I1 ⊗ I2 as above. Then I1 defines an effective divisor D1 on M .
Take τ1 ∈ Γ (M, OM(D1)) so that (τ1) = D1. We may assume that {σ0, . . . , σl} is a basis for
W . For each j , we write

σj = τ1 ⊗ τ2j for τ2j ∈ Γ (M, OM(D −D1)) .

An arbitrary section σ ∈ Γ (M, L) can be written as

σ = τ1 ⊗
( l∑
j=0

cj τ2j

)
,

l∑
j=0

|cj |2 = 1 .

Hence

− log ‖σ(p)‖ = − log ‖τ1(p)‖ + φI2 + log

(∑ |τ2j (p)|2
)1/2

| ∑ cj τ2j (p)| + b(p) ,

where b(p) is a C∞-function on M . Thus we see

mf (r, (σ )) = mf (r, D1)+mf (r, I2)+
∫
C(r)

log

(∑ |τ2j (f (z))|2
)1/2

| ∑ cj τ2j (f (z))|
dθ

2π
+O(1) .

On the other hand, we have∫
[σ ]∈P l (C)

log

(∑ |τ2j |2
)1/2

| ∑ cj τ2j | dµ([σ ]) = C(l) ,

where C(l) is a constant depending only on l. In fact, a direct calculation gives

C(l) = 1

2

(
1 + 1

2
+ · · · + 1

l

)
(see [W1, p. 519]). Thus we obtain∫

D∈Λ
mf (r, D)dµ(D) = mf (r, D1)+mf (r, I2)+O(1) .

This yields our assertion. �
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3. Inequality of the second main theorem type. This section is devoted to giving an
inequality of the second main theorem type for holomorphic curves that gives an improvement
of the results of Ochiai and Nochka.

Let L → M be an ample line bundle and W ⊆ Γ (M, L) a linear subspace with
dimW = l0 + 1 ≥ 2. Let Λ = P (W) be a linear system included in |L| and I0 the co-
herent ideal sheaf of OM that defines the base locus ofΛ as a complex analytic subspace BΛ.
Let f : C → M be a transcendental holomorphic curve that is non-degenerate with respect to
Λ. Let ν be a positive integer. Here we assume Lemma 4.3 which will be proved in Section
7. We define Sf (r; ν) by

Sf (r ; ν) = C1 log+ Tf (r, L)+ C2 log r + C3 log ν + C4 ,

where C1, . . . , C4 are the positive constants which satisfy the inequality in Lemma 4.3. We
will show the following theorem of the second main theorem type.

THEOREM 3.1. Let f : C → M be a transcendental holomorphic curve that is non-
degenerate with respect to Λ. Let D1, . . . ,Dq ∈ Λ be divisors in N-subgeneral position.
Then

(q − 2N + l0 − 1) (Tf (r, L)−mf (r, I0)) ≤
q∑
j=1

N(r, f ∗Dj )+ Sf (r; ν)

as r → +∞ except on a Borel subset E ⊆ [1,+∞) with finite measure. The exceptional set
E depends on f and ν. If f is of finite type, then E = ∅.

PROOF. Let ΦΛ : M → P (W∗) be a natural meromorphic mapping defined by Λ,
where W∗ is the dual of W (cf. [NO, p. 68]). Then we have the linearly non-degenerate
holomorphic curve

FΛ = f ◦ΦΛ : C → P (W∗) .

Let {ψ0, . . . , ψl0} be a basis for W . As in Section 2, we identify Λ with P l0(C) via an
isomorphism T : Λ → P l0(C) defined by

T̃ : σ =
l0∑
j=0

cjψj �→ (c0, . . . , cl0) .

Set T (D) = [σ ] whenD = (σ ). There exists an entire function f0 on C such that if we set

Ψ (z) = ψ0(f (z))/f0(z) ,(3.2)

then Ψ : C → L is a nonvanishing holomorphic mapping. We define nonzero constant entire
functions f1, . . . , fl0 on C such that

ψj(f (z)) = fj (z)Ψ (z) for j = 1, . . . , l0 .(3.3)

Then there exists an entire functionψ on C such that {f0/ψ, . . . , fl0/ψ} has no common zero
in C. Hence we have a reduced representation

F̃Λ = (f0/ψ, . . . , fl0/ψ)
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of FΛ : C → P (W∗) ∼= P l0(C). Note that FΛ may be a rational mapping.
Let B be the zero divisor of ψ on C and let I0 be the defining ideal sheaf of BΛ. Then it

is easy to verify that f ∗I0 is the defining ideal sheaf of B. Hence we have

N(r, f ∗I0) = N(r, B)+O(1) .

Let D = (σ ) ∈ Λ and [σ ] = (c0 : · · · : cl0). We define a hyperplane HD in P l0(C) by

HD : c0ζ0 + · · · + cl0ζl0 = 0 ,

where (ζ0, . . . , ζl0) is a homogeneous coordinate system in P l0(C). It is easy to see that

N(r, f ∗D) = N(r, F ∗
ΛHD)+N(r, f ∗I0)+O(1) .(3.4)

Indeed, we write σ = ∑l0
j=0 cjψj and [σ ] = (c0 : · · · : cl0). Thus we see

(f ∗σ)(z) = ψ(z)

( l0∑
j=0

cj (fj (z)/ψ(z))

)
Ψ (z) = ψ(z)

( l0∑
j=0

cjfj (z)

)
Ψ (z).

This shows (3.4). Define

mf (r, Λ) =
∫
C(r)

log

( l0∑
j=0

‖ψj (f (z))‖2
)−1/2

dθ

2π
.

We will show

Tf (r, L)− TFΛ(r)=N(r, f ∗I0)+mf (r, Λ)+O(1) .(3.5)

Let ω (resp. ω0) be the Chern form of L → M (resp. OP n (1) → P l0(C)). By (3.2) and (3.3),
we see

log

( l0∑
j=0

‖ψj (f (z))‖2
)1/2

= |ψ(z)|
( l0∑
j=0

|fj (z)/ψ(z)|2
)1/2

‖Ψ (z)‖

=
( l0∑
j=0

|fj (z)/ψ(z)|2
)1/2

|ψ(z)||f0(z)|−1‖ψ0(f (z))‖ .

Thus we get

ddc log

( l0∑
j=0

‖ψj (f (z))‖2
)−1/2

= −ddc log ‖ψ0(f (z))‖ − ddc log

( l0∑
j=0

|fj (z)/ψ(z)|2
)1/2

= f ∗ω − F ∗
Λω0

for z ∈ C \ f−1(BsΛ). Now, by means of Jensen’s formula, we have (3.5).
We next show

mf (r, I0) = mf (r, Λ)+O(1) .(3.6)
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By (3.4), (3.5) and Theorem 2.2, we have∫
D∈Λ

N(r, f ∗D)dµ(D)=
∫
HD∈P l0 (C)

N(r, F ∗
ΛHD)dµ(HD)+N(r, f ∗I0)+O(1)

= TFΛ(r)+N(r, f ∗I0)+O(1)

= Tf (r, L)−mf (r, Λ)+O(1) .

On the other hand, by Theorem 2.3, we have∫
D∈Λ

N(r, f ∗D)dµ(D) = Tf (r, L)−mf (r, I0)+O(1) .

Hence we get (3.6). By (3.5) and (3.6), we conclude that

Tf (r, L)− TFΛ(r)=N(r, f ∗I0)+mf (r, I0)(3.7)

= Tf (r, I0)+O(1) .

By Theorem 1.3, we obtain

(q − 2N + l0 − 1)TFΛ(r) ≤
q∑
j=1

N(r, F ∗
ΛHDj )−N(r, (WFΛ)0)+ SFΛ(r) .

It follows from (3.7) that

(q − 2N + l0 − 1)(Tf (r, L)− Tf (r, I0)) ≤
q∑
j=1

N(r, F ∗
ΛHDj )−N(r, (WFΛ)0)+ SFΛ(r) .

By (3.4) and (3.7), we have the following inequality:

(q − 2N + l0 − 1) (Tf (r, L)−mf (r, I0))≤
q∑
j=1

N(r, f ∗Dj)−N(r, (WψFΛ)0)+ SFΛ(r)

≤
q∑
j=1

N(r, f ∗Dj)+ SFΛ(r) .

By Lemma 4.3 below, we have that SFΛ(r) ≤ Sf (r; ν) for r ∈ [1,+∞) \ E, where E :=
E(f ; ν). For the definition of E(f ; ν), see Section 4. Therefore, we have our assertion. �

REMARK 3.8. The above inequality of the second main theorem type does not involve
the truncated counting function. If N(r, f ∗I0) = o(Tf (r, L)), by the above proof, we see

(q − 2N + l0 − 1) (Tf (r, L)−mf (r, I0)) ≤
q∑
j=1

Nl0(r, f
∗Dj)+ o(Tf (r, L)) .

In general, it is difficult to give the truncation level for counting functions.
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4. A defect relation. In this section, we deduce the defect relation from Theorem
3.1. We first give the definition of modified deficiency. This modification ensures that a defect
relation is valid without any condition on the growth of f . In what follows, we assume that
f , L and Λ satisfy the same conditions as in Section 3. We let E(f ; ν) denote the set of all
r ∈ [1, +∞) with

Tf (r, L)+ ν ≤ Tf

(
r + 1

(Tf (r, L)+ ν)2
, L

)
,

where ν is a positive integer. Then the Lebesgue measure |E(f ; ν)| is finite (see Lemma 7.4),
and E(f ; ν2) ⊆ E(f ; ν1) if ν1 < ν2. Set

E(f ) =
⋂
ν∈Z+

E(f ; ν) .

We call E(f ) the exceptional growth set for f . The existence of non-empty E(f ) affects on
the deficiency. If E(f ; ν) = ∅ for some ν, then E(f ) = ∅. In the case where f is of finite
type, we set E(f ) = ∅. We now define a modified deficiency following Nochka [Nc1].

We define νth Nevanlinna’s deficiency δf (D; ν) by

δf (D; ν) = lim inf
r→+∞
r 
∈E(f ;ν)

mf (r,D)

Tf (r, L)
.

It is clear that δf (D; ν2) ≤ δf (D; ν1) if ν1 < ν2. We define the modified deficiency of f in
the sense of Nochka by

δ̃f (D) = lim
ν→+∞ δf (D; ν) .

It is clear that δf (D) ≤ δ̃f (D) and δf (D) = δ̃f (D) if f is of finite type. We define a
deficiency δf (BΛ) for BΛ by

δf (BΛ) = lim inf
r→+∞

mf (r, I0)

Tf (r, L)
.

We define δ̃f (BΛ; ν) and δ̃f (BΛ) by the same way. We consider the set of divisors

Df = {D ∈ Λ ; δf (D) > δf (BΛ)} and D̃f = {D ∈ Λ ; δ̃f (D) > δ̃f (BΛ)} .
The following proposition plays an important role in what follows.

PROPOSITION 4.1. The deficiencies δf (D)(resp.δ̃f (D)) are not less than δf (BΛ)
(resp. δ̃f (BΛ)) for all D ∈ Λ. The sets Df and D̃f are null sets in the sense of Lebesgue
measure in Λ.

PROOF. The assertion for δf (D) is proved in [O]. By Theorem 2.2, we have∫
D∈Λ

mf (r, D)

Tf (r, L)
dµ(D) = (1 + o(1))

mf (r, I0)

Tf (r, L)
.
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Hence

lim inf
r→+∞
r 
∈E(f ;ν)

∫
D∈Λ

mf (r, D)

Tf (r, L)
dµ(D) ≤ lim inf

r→+∞
r 
∈E(f ;ν)

mf (r, I0)

Tf (r, L)
.

This implies ∫
D∈Λ

δ̃f (D; ν)dµ(D) ≤ δ̃f (BΛ; ν) .

Hence, by letting ν → +∞, we see∫
D∈Λ

δ̃f (D)dµ(D) ≤ δ̃f (BΛ) .

On the other hand, by (3.2) and (3.3), we see

Tf (r, L)−N(r, f ∗D) ≥ mf (r, I0)+O(1) ,

and hence

mf (r, D)

Tf (r, L)
≥ (1 + o(1))

mf (r, I0)

Tf (r, L)
.

Thus we have δ̃f (D) ≥ δ̃f (BΛ) for all D ∈ Λ. This shows∫
D∈Λ

δ̃f (D)dµ(D) = δ̃f (BΛ) .

This yields that D̃f is a null set in the sense of Lebesgue measure in Λ. �

We have then the defect function δ̃f : Λ → [δ̃f (BΛ), 1]. In the next section we will
give more precise estimate for the size of the sets Df and D̃f . We now show the following
defect relation:

THEOREM 4.2. Let Λ, f andD1, . . . ,Dq be as in Theorem 3.1. Then

q∑
j=1

(δ̃f (Dj )− δ̃f (BΛ)) ≤ (2N − l0 + 1)(1 − δ̃f (BΛ)) .

Let SFΛ(r) be as in the proof of Theorem 3.1. For the proof of Theorem 4.2, we need the
following estimate for SFΛ(r):

LEMMA 4.3. There exist positive constants C1, . . . , C4 independent of ν such that the
estimate

SFΛ(r) ≤ C1 log+ Tf (r, L)+ C2 log r + C3 log ν + C4

is valid for r ∈ [1, +∞) \ E(f ; ν).
Note that the exceptional set E(f ; ν) for SFΛ(r) is independent of a choice of divisors

Dj . The definition of the error term SFΛ(r) and the proof of Lemma 4.3 are complicated.
Hence we will give the definition of SFΛ(r) and will prove Lemma 4.3 in Section 7.
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PROOF OF THEOREM 4.2. By Theorem 3.1 and Lemma 4.3, we see that
q∑
j=1

mf (r,Dj )

Tf (r, L)
≤ qmf (r,I0)

Tf (r, L)
+ (2N − l0 + 1)

(
1 − mf (r,I0)

Tf (r, L)

)
+ Sf (r; ν)
Tf (r, L)

for r ∈ [1, +∞) \ E(f ; ν). Now, it follows from the definition of limit inferior that there
exists a sequence {ri} with ri 
∈ E(f ; ν) such that

lim
i→+∞

mf (ri, I0)

Tf (ri, L)
= lim inf

r→+∞
r 
∈E(f ;ν)

mf (r, I0)

Tf (r, L)
.

We can take a subsequence {rik } of {ri} such that the limit

lim
k→+∞

q∑
j=1

mf (rik , Dj )

Tf (rik , L)

exists. Then we see
q∑
j=1

δ̃f (Dj ; ν)≤ lim inf
r→+∞
r 
∈E(f ;ν)

q∑
j=1

mf (r,Dj )

Tf (r, L)

≤ lim
k→+∞

q∑
j=1

mf (rik , Dj )

Tf (rik , L)

≤ lim
i→+∞

{
qmf (ri ,I0)

Tf (ri , L)
+ (2N − l0 + 1)

(
1 − mf (ri ,I0)

Tf (ri , L)

)}

+ lim
i→+∞

Sf (ri; ν)
Tf (ri , L)

= qδ̃f (BΛ; ν)+ (2N − l0 + 1)(1 − δ̃f (Λ; ν)) .
This yields that

q∑
j=1

(δ̃f (Dj ; ν)− δ̃f (BΛ; ν)) ≤ (2N − l0 + 1)(1 − δ̃f (Λ; ν)) .

Thus, by letting ν → +∞, we have the desired conclusion. �

5. The set of deficient divisors. In this section we consider the sets of deficient di-
visors. We give theorems concerning structures of those sets that are our main theorems. Let
L → M be an ample line bundle andW ⊆ Γ (M, L) a subspace with dimW = l0+1 ≥ 2. Set
Λ = P (W). Let f : C → M be a transcendental holomorphic curve that is non-degenerate
with respect to Λ. We define the sets Df and D̃f as in Section 4. In Section 4 we see that
those sets are null sets in the sense of Lebesgue measure. By making use of Sadullaev’s
method [S1], we give an improvement of Proposition 4.1.

DEFINITION 5.1. A subset S of Λ is said to be P-polar in Λ provided that, for any
coordinate chart (U, φ) inΛ, there exists a plurisubharmonic function v on φ(U) ⊆ Cl0 with
v 
≡ −∞ and φ(S ∩ U) = {v = −∞}.
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THEOREM 5.2. The sets Df and D̃f are P-polar sets in Λ. In particular, the Haus-
dorff dimensions of those sets are at most 2l0 − 2.

PROOF. Take a basis {ψ0, . . . , ψl0} of W . We identify Λ with P l0(C) via an isomor-
phism T : Λ → P l0(C) defined by

T̃ : σ =
l0∑
j=1

cjσj �→ (c0, . . . , cl0) .

Let (ζ0 : · · · : ζl0) be a homogeneous coordinate system in P l0(C). We take the coordinate
open set Uk by

Uk = {(ζ0 : · · · : ζl0) ∈ Λ ; ζk 
= 0} for k = 0, . . . , l0

and the local coordinate system

ξ(k) = (ξ
(k)
1 , . . . , ξ

(k)
l0
) =

(
ζ0

ζk
, . . . ,

ζk−1

ζk
,
ζk+1

ζk
, . . . ,

ζl0

ζk

)
for each k .

LetD ∈ T −1(Uk) defined by
∑l0
j=0 ζjψj = 0. Then there exists a plurisubharmonic function

vk(r, ξ
(k)) in Uk such that

N(r, f ∗D) = vk(r, ξ
(k))+ sk(ξ

(k)),(5.3)

where sk(ξ (k)) is an L1-function in Uk . Indeed, by Jensen’s formula, we see

N(r, f ∗D) =
∫
C(r)

log

∣∣∣∣
l0∑
j=0

ζjψj (f (z))

∣∣∣∣ dθ2π
+O(1) .

We define vk(r, ξ (k)) by

vk(r, ξ
(k)) =

∫
C(r)

log

∣∣∣∣
l0∑
j=0

ζj

ζk
ψj (f (z))

∣∣∣∣ dθ2π
.

It is clear that vk(r, ξ (k)) is a plurisubharmonic function in Uk . If we set

sk(ξ
(k)) = N(r, f ∗D)− vk(r, ξ

(k)) ,

we have (5.3). We now write vk(r, D) for vk(r, ξ (k)) and sk(D) for sk(ξ (k)). It follows from
Theorem 2.3 and (5.3) that

Tf (r, L) =
∫
D∈Λ

vk(r, D)dµ(D) +mf (r, I0)+O(1) .(5.4)

By Proposition 4.1 and (5.3), we see

lim sup
r→+∞

N(r, f ∗D)
Tf (r, L)

= lim sup
r→+∞

vk(r, D)

Tf (r, L)

≤ 1 − δf (BΛ)
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for D ∈ T −1(Uk). Because of (5.4), there exists at least oneD ∈ T −1(Uk) such that

vk(D) := lim sup
r→+∞

vk(r, D)

Tf (r, L)

= 1 − δf (BΛ) .

By the maximal principle for plurisubharmonic functions, the regularization v∗
k (D) of vk(D)

is identically equal to 1 − δf (BΛ). It follows from Lelong’s theorem that the set

T (Df ) ∩ Uk = {T (D) ∈ Uk; vk(D) < v∗
k (D)}

is a P-polar set in Uk (cf. e.g., [S2, §12]). This yields that Df is a P-polar set in Λ, and
hence the Newton capacity of Df is zero. Thus we see that the Hausdorff dimension of Df

does not exceed 2l0 − 2 (see [HK, Theorem 5.13]). We also have the assertion for D̃f by the
method similar to the above. �

We next give a structure theorem for D̃f . In what follows, we consider points in Λ as
zero-dimensional linear systems included inΛ. For a sufficiently small positive number ε, set

D̃ε = {D ∈ Λ ; δ̃f (D) ≥ δ̃f (BΛ)+ ε} .
Then it is clear that

D̃f =
⋃
ε>0

D̃ε .

THEOREM 5.5. The set D̃ε is a union of finitely many linear systems included in Λ.
In particular, the set D̃f is a union of at most countably many linear systems in Λ.

For a proof, we first show a lemma. Let V be an (l + 1)-dimensional complex vector
space and Σ a subset of V . We say that Σ is of maximal rank if �Σ ≥ l + 1 and any distinct
l + 1 vectors a1, . . . , al+1 in Σ are linearly independent.

LEMMA 5.6. Let S be an infinite subset of V that generates V over C. Suppose that
there exists a positive integer d0 such that �Σ ≤ d0 if Σ ⊆ S is of maximal rank. Then there
exist finitely many proper linear subspaces V1, . . . , Vs of V such that

S ⊆ V1 ∪ · · · ∪ Vs .
PROOF OF LEMMA 5.6. Let S = {Sα} be the family of all sets of maximal rank con-

tained in S. Since S 
= ∅ and �Σα ≤ d0 for Σα ∈ S, there exists an element Σ in S such
that �Σα ≤ �Σ for allΣα ∈ S. Now, we let U(Σ) denote the union of all distinct linear sub-
spaces of codimension one in V spanned by distinct l vectors inΣ . We claim that S ⊆ U(Σ).
Assume the contrary. Then there exists a vector a ∈ S that is not contained in U(Σ). Since
the vector a cannot be written as a linear combination of any l linearly independent vectors
in U(Σ), we see that Σ ∪ {a} is of maximal rank. Hence Σ ∪ {a} ∈ S. This contradicts
the choice of Σ . Hence S ⊆ U(Σ). Since U(Σ) is the union of finitely many proper linear
subspaces of V , we have our assertion. �
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PROOF OF THEOREM 5.5. In the case where �D̃ε is finite, our assertion trivially holds,
that is, D̃ε is a union of finitely many zero dimensional linear systems in Λ. We consider
the case where D̃ε is an infinite set. Let S(ε) := {σ ∈ W ; (σ ) ∈ D̃ε} and denote by l1 + 1
the dimension of the linear space W ′ generated by S(ε) over C. Now, we consider the linear
system Λ′ := P (W ′). By Theorem 2.1 and Proposition 4.1, we see that

δ̃f (BΛ) ≤ δ̃f (BΛ′ ) ≤ δ̃f (D)

for all D ∈ Λ′. If δ̃f (BΛ) + ε ≤ δ̃f (BΛ′), then Λ′ ⊆ D̃ε . Hence we have D̃ε = Λ′. By
Proposition 4.1, we see Λ′ � Λ. We suppose that

δ̃f (BΛ′ ) < δ̃f (BΛ)+ ε .

Let Σ be an arbitrary set of maximal rank contained in S(ε) and let D1, . . . ,Dq be divisors
such that Dj = (σj ) with σj ∈ Σ . We now apply Theorem 4.2 for f and Λ′. Then we have

q∑
j=1

(δ̃f (Dj )− δ̃f (BΛ′ )) ≤ (l1 + 1)(1 − δ̃f (BΛ′)) .

Thus we see that qε ≤ (l1 + 1)(1 − δ̃f (BΛ′ )), and hence

q ≤ (l1 + 1)(1 − δ̃f (BΛ′ ))/ε .

If we denote by d0 the largest integer that does not exceed

(l1 + 1)(1 − δ̃f (BΛ′))/ε ,

then the cardinality of any set of maximal rank contained in S(ε) is less than d0. Hence by
Lemma 5.6, there exist proper linear subspacesW1, . . . ,Ws of W ′ such that

S(ε) ⊆ W1 ∪ · · · ∪Ws .

If Wj ⊆ S(ε) for all j , we have

S(ε) = W1 ∪ · · · ∪Ws .

We consider the case where Wj \ S(ε) is non-empty for some j . In this case, we will
show that we can eliminate sections σ ∈ Wj \ S(ε) if we replace the linear subspaceWj by a
finite sets of proper linear subspaces of Wj . By a suitable change of indices, we assume that
Wj \ S(ε) 
= ∅ for j = 1, . . . , s1 and Wj ⊆ S(ε) for j = s1 + 1, . . . , s. For j = 1, . . . , s1,
let W ′

j be the linear subspace of W ′ generated by S(ε) ∩Wj over C. Then it is clear that

S(ε) ⊆ W ′
1 ∪ · · · ∪W ′

s1
∪Ws1+1 ∪ · · · ∪Ws .(5.7)

If W ′
j ⊆ S(ε) for j = 1, . . . , s1, then we have

S(ε) = W ′
1 ∪ · · · ∪W ′

s1
∪Ws1+1 ∪ · · · ∪Ws .

We consider the case where W ′
j \ S(ε) is non-empty for some j . We may assume that W ′

j \
S(ε) 
= ∅ for j = 1, . . . , s2 andW ′

j ⊆ S(ε) for j = s2 +1, . . . , s1. Since S(ε)∩Wj generates
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W ′
j over C, by using the above argument, we obtain finitely many proper linear subspaces

W
(j)
1 , . . . ,W

(j)
tj

of W ′
j such that

S(ε) ∩W ′
j ⊆ W

(j)
1 ∪ · · · ∪W(j)

tj
.

We replaceW ′
j in (5.7) by W(j)

1 ∪ · · · ∪W(j)
tj

for j = 1, . . . , s2 and obtain

S(ε) ⊆
s2⋃
j=1

(W
(j)

1 ∪ · · · ∪W(j)
tj
) ∪ (W ′

s2+1 ∪ · · · ∪W ′
s1
) ∪ (Ws1+1 ∪ · · · ∪Ws) .

Note that

dimW(j)
k < dimW ′

j

for all j = 1, . . . , s2 and k = 1, . . . , tj . If W(j)

k \ S(ε) is non-empty for some j and k, we
repeat this argument. Since dimW ′

j is finite and each replacement of the linear subspace by a
finite set of linear subspaces decreases the dimension of the initial subspace, we finally obtain
finitely many proper linear subspaces X1, . . . , Xt1, Y1, . . . , Yt2 of W such that

S(ε) = X1 ∪ · · · ∪Xt1 ∪ Y1 ∪ · · · ∪ Yt2 ,
where dimXj = 1 for j = 1, . . . , t1 and dimYk ≥ 2 for k = 1, . . . , t2. This yields that there
exist finitely many linear systemsΛ1, . . . ,Λm in Λ such that

D̃ε =
m⋃
j=1

Λj .

Since D̃f = ⋃
n∈Z+ D̃1/n, we see that D̃f is a union of at most countably many linear

systems in Λ. �

We next consider the set of values of the defect function δ̃f : Λ → [0, 1]. We will show
that the set of values of δ̃f is a countable set.

THEOREM 5.8. Let f : C → M be a transcendental holomorphic curve that is non-
degenerate with respect to Λ. Then the set of values of modified deficiency of f is at most a
countable subset of [0, 1].

PROOF. We consider the set

D̃1/n = {D ∈ Λ ; δ̃f (D) ≥ δ̃f (BΛ)+ 1/n} .
For the proof, we first show that {δ̃f (D) ;D ∈ D̃1/n} is a finite set for each integer n ≥ 2.
We will give the proof by induction on the dimension of Λ. We first consider the case where
dimΛ = 1. In this case we see Λ ∼= P 1(C). Now, by Theorem 4.2, we see that D̃1/n is a
finite set of points inΛ. Hence the cardinality of the set {δ̃f (D) ;D ∈ D̃1/n} is finite. Suppose
that the above assertion is true for dimΛ < l0. Let us consider the case dimΛ = l0. It follows
from Theorem 5.5 that the set D̃1/n is a union of finitely many linear systems Λ1, . . . ,Λt in
Λ. Since dimΛj < l0 for all j , by applying the hypothesis of induction for Λj , we easily
see that {δ̃f (D) ;D ∈ D̃1/n} is a finite set. Thus we conclude that the cardinality of the
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set {δ̃f (D) ;D ∈ D̃1/n} is always finite. This yields that the set of values of δ̃f is at most
countable. �

We next show that the set of values of δ̃f corresponds to the family of linear systems
in Λ. Let f be as in Theorem 5.8. By Theorem 5.5, there exist at most countably many
linear systems {Λj } in Λ such that D̃f = ⋃

j Λj . Define L = {Λj } ∪ {Λ}. We call L the

fundamental family of linear systems for f . ForΛ′ ∈ L, we denote by δ̃f (Λ′) the set of values
of δ̃f on Λ′, that is, δ̃f (Λ′) = {δ̃f (D) ;D ∈ Λ′}. Then we have the following theorem:

THEOREM 5.9. Let f be as in Theorem 5.8 and L the fundamental family of linear
systems for f . Then, for each α ∈ δ̃f (Λ), there exists a unique finite subfamily Lα = {Λ(α)j }
of L such that

α = δ̃f (BΛ(α)j
) for all Λ(α)j ∈ Lα

and

α 
= δ̃f (BΛj ) for all Λj ∈ L \ Lα.

Furthermore, there exists a union Ej of at most countably many linear systems in L such that

δ̃f (D) = δ̃f (BΛ(α)j
) for all D ∈ Λj \ Ej .

In particular, the closure of the inverse image δ̃−1
f (α) is a union of finitely many linear systems

in L.

PROOF. Let α ∈ δ̃f (Λ). Then there exists a positive integer n such that that δ̃−1
f (α) is

included in D̃1/n. Since D̃1/n is a union of finitely many linear systems in L, we can take

finitely many linear systems Λ(α)1 , . . . ,Λ
(α)
t with α = δ̃f (BΛ(α)j

) for j = 1, . . . , t . Hence if

Λi ∈ L andΛi � Λ
(α)
j for all j , then α is not in δ̃f (Λi). We apply Theorem 5.5 for the linear

system Λ
(α)
j and obtain at most countable linear systems {Λ′

k} included in Λ(α)j such that

α = δ̃f (D) for all D ∈ Λ(α)j \
(⋃

k

Λ′
k

)
.

On the other hand, by Proposition 4.1, we see that δ̃f (BΛ(α)j
) = δ̃f (D) for almost all D ∈

Λ
(α)
j . This yields that α = δ̃f (BΛ(α)j

). Note that Λ′
k = Λ

(α)
j ∩Λk for Λk ∈ L. Therefore we

have our assertion. �

Note that δ̃f (D) > δ̃f (B
(α)
Λj
) for all D ∈ Ej .

COROLLARY 5.10. If δ̃f (D) > δ̃f (BΛ) for a divisorD inΛ, then there exists a linear
system ΛD included in Λ such that δ̃f (D) = δ̃f (BΛD ).

REMARK 5.11. Let L′ be an arbitrary at most countable family of linear systems in
|OP n(1)|. Nochka [Nc2] give a condition under which L′ is the fundamental family of linear
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systems for a holomorphic curve f : C → P n(C). He also give a method for constructing f
and the fundamental family L for f from an arbitrary given L′.

6. The existence of holomorphic curves with deficiencies for base loci. The exis-
tence of holomorphic curves with positive deficiencies is a nontrivial matter. In this section,
we discuss the existence of holomorphic curves with deficiencies. Throughout this section,
we consider holomorphic curves in complex projective spaces. We first give an example of
linear system Λ and holomorphic curve f with 0 < δf (BΛ) < 1. The following example is
due to Noguchi [No1, Example 2.3.29].

EXAMPLE 6.1. Let (ζ0, ζ1, ζ2) be a homogeneous coordinate system in P 2(C) and
W a subspace of Γ (P 2(C), OP n(1)) generated by ζ1 and ζ2. Then BsΛ = {(1, 0, 0)}. We
define an algebraically non-degenerate holomorphic curve f : C → P 2(C) by

f (z) = (1, ez, ecz) ,

where c is a positive number greater than one. In this case, we have

φI0 = 1

2
log

( |ζ0|2 + |ζ1|2 + |ζ2|2
|ζ1|2 + |ζ2|2

)
.

Then, a direct calculation gives us the following:

Tf (r) = c

π
r +O(1) and mf (r, I0) = 1

π
r +O(1) .

Hence we have δf (BΛ) = 1/c. We notice that f does not hit the base locus.

In this example, f does not hit the non-empty base locus of Λ but 0 < δf (BΛ) < 1. In
[AM], we proved a theorem on the existence of holomorphic curves with deficiencies in the
case where L = OP n (1)

⊗d for an arbitrary positive integer d . In fact, we have the following
theorem [AM, Theorem 3.2]:

THEOREM 6.2. Let D ∈ |OP n (1)
⊗d |. There exists a positive constant λ(D) with

λ(D) ≤ d depending only on D that satisfies the following property: Let α be a positive
real number such that α ≤ λ(D)/d . Then there exists an algebraically non-degenerate holo-
morphic curve f : C → P n(C) such that δf (D) = α.

The proof of the above theorem is based on the classical theory of entire functions, espe-
cially Valiron’s theorem on entire function of order zero. The resulting holomorphic curves f
in Theorem 6.2 is of order zero. Hence δf (D) = δ̃f (D). By making use of Theorem 6.2, we
have the following proposition:

PROPOSITION 6.3. Let e0 be a positive constant less than one. Then there exist an
algebraically non-degenerate transcendental holomorphic curve f : C → P n(C) and a
linear system Λ in |OP n (1)

⊗d | such that δf (BΛ) = e0.

PROOF. We can take D ∈ |OP n(1)
⊗d | such that λ(D) = d(cf. [AM, Remark 3.7]). By

Theorem 6.2, we have a transcendental holomorphic curve f : C → P n(C) of order zero
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such that δf (D) = e0. Hence, by Theorem 5.9, there exists a linear system Λ included in
|OP n(1)

⊗d | such that δf (BΛ) = e0. �

LetΛ ⊆ |OP n (1)
⊗d | be a linear system with the non-empty base locus. We will show the

existence of holomorphic curves with 0 < δf (BΛ) < 1. We will give a proof by constructing
a holomorphic curve with the desired property. We recall some known facts on exponential
curves. Let f : C → P n(C) be a nonconstant holomorphic curve defined by

f (z) = (exp a0z, . . . , exp anz) ,(6.4)

where a0, . . . , an are complex numbers. We denote by Cf the circumference of the convex
polygon spanned by the set {a0, . . . , an}. If the convex polygon reduces to the segment with
the end points with aj and ak, then we see Cf = 2|aj − ak|. LetH be a hyperplane in P n(C)

defined by

H : L(z) =
n∑
j=0

αj ζj = 0 (α0, . . . , αn ∈ C) ,

where ζ = (ζ0 : · · · : ζn) is a homogeneous coordinate system in P n(C). We define the set
JH of index by JH = {j ; αj 
= 0}. Let Cf,H be the circumference of the convex polygon
spanned by the set {aj ; j ∈ JH }. According to [A] and [W2], we have

Tf (r) = Cf
2π

r +O(1) .(6.5)

We have a simple proof of (6.5) by using Crofton’s formula (see [Shi3, p. 630]). The following
lemma is also due to Weyl [W2, pp. 95–98]:

LEMMA 6.6. Let f and H be as above. Then the deficiency of f for H is given by

δf (H) = 1 − Cf,H
Cf .

Furthermore, the constant Cf,H depends only on f and JH .

For a reader’s convenience, we introduce the proof of this lemma by Toda [T].

PROOF. We first assume that all α′
j s are non-zero. Take hyperplanesH0, . . . , Hn so that

Hj = {ζj = 0}. Then H0, . . . , Hn,H are in general position. By Theorem 1.3,

n∑
j=0

δf (Hj)+ δf (H) ≤ n+ 1 .

Since δf (Hj) = 1 for j = 0, . . . , n, we have δf (H) = 0. Next, we assume that αjk 
= 0 for
0 ≤ j0 < · · · < jm ≤ n and αj = 0 for j 
= j0, . . . , jm. We define g : C → Pm(C) by
g = (exp aj0z, . . . , exp ajmz). By (6.5), we have

Tg (r) = Cg

2π
r +O(1) .
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This shows Cg = Cf,H . Hence Cf,H depends only on the index set {j ; αj 
= 0}. We now
regard H as a hyperplane in Pm(C) by the natural way. Then we have δg(H) = 0. Hence we
see

δf (H)= 1 − lim sup
r→+∞

N(r, f ∗H)
Tf (r)

= 1 − lim sup
r→+∞

N(r, g∗H)
Tg (r)

Tg (r)

Tf (r)

= 1 − Cf,H
Cf .

This completes the proof. �

For brevity, we consider the case where d = 1.

THEOREM 6.7. Let Λ ⊆ |OP n(1)| and e0 an arbitrary positive number less than one.
Suppose BsΛ 
= ∅. Then there exists an algebraically non-degenerate transcendental holo-
morphic curve f : C → P n(C) of finite type such that e0 = δf (BΛ).

PROOF. Let W be a subspace of Γ (P n(C), OP n (1)) such that Λ = P (W). Since
BsΛ 
= ∅, we may assume that W is generated by ζ0, . . . , ζl with 1 ≤ l < n. Take an
exponential curve f defined by (6.4). Since BsΛ 
= ∅, each H ∈ Λ is defined by

l∑
j=0

αjζj = 0 with 1 ≤ l ≤ n− 1 .

For an arbitrary positive number e0 less than one, we can choose {αj }nj=0 such that αj 
= 0
for all j and 1 − (Cf,H /Cf ) = e0. Hence, we have δf (H) = e0. Since we can take {αj }nj=0
such that αi 
= αj for i 
= j , we have the algebraically non-degenerate holomorphic curve f .
By Lemma 6.6, if αj 
= 0 for all j , then we see Cf,H is a constant independent of H . This
implies

e0 = δf (H) for all H ∈ Λ \
( t⋃
i=1

Λi

)
,

where Λ1, . . . ,Λt are finitely many proper linear systems included in Λ. On the other hand,
by Proposition 4.1, we see δf (H) = δf (BΛ) for almost all H ∈ Λ. This yields that e0 =
δf (BΛ). �

By the above proof, we have the following corollary:

COROLLARY 6.8. LetΛ be as above. Then there exists a transcendental holomorphic
curve f : C → P n(C) non-degenerate with respect to Λ such that the set of values of δf is
a finite set {ej } with 0 < ej < 1. Furthermore, there exist finitely many linear systems {Λj }
included in Λ such that

δf (H) = ej for all H ∈ Λj \
( ⋃

k

Λjk

)
,
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where {Λjk } are linear systems included in Λj .

7. Appendix. The proof of Lemma 4.3. In this section we give the proof of Lemma
4.3. We keep the same notation as in the proof of Theorem 3.1. We first give the definition of
SFΛ(r) (cf. [No2, p. 344] and [Shi2, p. 558]). We take a basis {φ0, . . . , φl0} forW and have the
isomorphism P (W) ∼= P l0(C) through the basis. Take a reduced representation (f0, . . . , fl0)

of FΛ. Let Lj (ζ ) be linear forms on P (W) such that

HDj = {Lj(ζ ) = 0}
for j = 1, . . . , q . We may assume that f0 
≡ 0. Set

uj (z) = Lj(f (z))/f0(z)

for j = 1, . . . , q. LetQ = {1, . . . , q} and J ⊆ Qwith �J = l0+1. We define the logarithmic
Wronskian∆(uj ; j ∈ J ) by

∆(uj ; j ∈ J ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1
u′
j1

uj1

· · ·
u′
jl0+1

ujl0+1

...
...

...

u
(l0)
j1

uj1

· · ·
u
(l0)
jl0+1

ujl0+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where J = {j1, . . . , jl0+1}. Then we define the error term SFΛ(r) by

SFΛ(r) =
∫ 2π

0
log

( ∑
J⊆Q, �J=l0+1

|∆(uj ; j ∈ J )(z)|
)
dθ

2π
.

If FΛ is rational, then it is easy to see that

SFΛ(r) = O(1)

as r → +∞. From now on, we assume that FΛ is transcendental.

LEMMA 7.1. Let uj be as above. Then

T (r, uj )+O(1) ≤ TFΛ(r) ≤ Tf (r, L)+O(1)

for j = 1, . . . , q .

PROOF. By (1.2), we have

TFΛ(r) =
∫
C(r)

log max
0≤j≤l0

|fj (z)| dθ
2π

+O(1) .

By making use of this representation and (3.5), we easily see our assertion. �

We now recall the Lemma on logarithmic derivative due to Nevanlinna (cf. [N, p. 61]):



DEFICIENCIES OF HOLOMORPHIC CURVES IN ALGEBRAIC VARIETIES 311

LEMMA 7.2. Let u be a meromorphic function on C and 1 ≤ r < R. Then

m

(
r,
u′

u

)
≤ 4 log+ Tu(R)+ 3 log+ 1

R − r
+ 4 logR + 24 + cu ,

where cu is a positive constant that depends only on u.

When u is of finite type, as in [N, p. 61], we have that

m

(
r,
u′

u

)
≤ (4 + 4ρ) log r + 8ρ + 32 + cu

for r ∈ [1,+∞), where

ρ = lim sup
r→+∞

log Tu(r)

log r
.

Hence there exist positive constants c1, c2, c3 such that

m

(
r,
u′

u

)
≤ c1 log+ Tu(r)+ c2 log r + c3(7.3)

for all r ∈ [1,+∞). Now, we assume that u is not of finite type. In this case, we cannot
give the estimate (7.3) for all r ∈ [1,+∞). Indeed, there exists a meromorphic function for
which the estimate (7.3) does not hold for all r ∈ [1,+∞). For example, see [GO, p. 92].
To get the estimate of type (7.3), we use the following Borel-Nevanlinna type lemma due to
Gol’dberg-Ostrovskii [GO, p. 90]:

LEMMA 7.4. Let ν be a positive integer. Then there exists a Borel subset E(f ; ν) of
[1,+∞) with the finite Lebesgue measure such that

Tf

(
r + 1

(Tf (r, L)+ ν)2
, L

)
≤ Tf (r, L)+ ν

for all r ∈ [1, +∞) \ E(f ; ν).
We can give a proof of Lemma 7.4 by using a standard argument in Nevanlinna theory

(see [GO, Chapter 3]). Hence we omit the proof here. Now we consider an estimate for the
logarithmic derivative of uj that is not of finite type. By making use of Lemmas 7.2 and 7.4,
we have the following estimate:

LEMMA 7.5. Suppose that uj is not of finite type. Then there exist positive constants
c1, . . . , c4 such that

m

(
r,
u′
j

uj

)
≤ c1 log+ Tf (r, L)+ c2 log r + c3 log ν + c4

as r → +∞ except on E(f ; ν). Furthermore, c1, . . . , c4 are independent of ν.

PROOF. Let u = uj and R = r + 1/(Tf (r, L) + ν)2 in Lemma 7.2. Suppose that
r 
∈ E(f ; ν). Then by Lemmas 7.1 and 7.4, we have

m

(
r,
u′
j

uj

)
≤ 4 log+ Tuj

(
r + 1

(Tf (r, L)+ ν)2

)
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+3 log+(Tf (r, L)+ ν)2 + 4 log+
(
r + 1

(Tf (r, L)+ ν)2

)
+ cuj

≤ 4 log+ Tf
(
r + 1

(Tf (r, L)+ ν)2
, L

)

+3 log+(Tf (r, L)+ ν)2 + 4 log+
(
r + 1

(Tf (r, L)+ ν)2

)
+ cuj

≤ 4 log+(Tf (r, L)+ ν)+ 3 log+(Tf (r, L)+ ν)2 + 4 log+ 2r + cuj

≤ 10 log+ Tf (r, L)+ 4 log r + 10 log ν + 10 log 2 + cuj .

Hence, if we put c1 = 10, c2 = 4, c3 = 10 and c4 = 10 log 2 + cuj , then we have our
assertion. �

By making use of Lemma 7.5, we have the following estimate (cf. [NO, p. 227]):

LEMMA 7.6. Let k be a positive integer. Then

m

(
r,
u
(k)
j

uj

)
≤ c

(k)
1 log+ Tf (r, L)+ c

(k)
2 log r + c

(k)
3 log ν + c

(k)
4(7.7)

for r ∈ [1, +∞) \E(f ; ν), where c(k)1 , . . . , c
(k)
4 are positive constants independent of ν.

PROOF. We will show (7.7) and

T
u
(k)
j

(r) ≤ (k + 1)Tf (r, L)+ c
(k)
1 log+ Tf (r, L)+ c

(k)
2 log r + c

(k)
3 log ν + c

(k)
4(7.8)

by induction on k. Let r ∈ [1,+∞) \ E(r; ν). We consider the case where k = 1. Lemma
7.5 implies (7.7) for k = 1. By Lemma 7.5, we see that

Tu′
j
(r)≤ (1 + 1)N(r,∞, uj )+m(r, u′

j )+O(1)

≤ 2N(r,∞, uj )+m(r, uj )+m

(
r,
u′
j

uj

)
+O(1)

≤ 2Tuj (r)+ c1 log+ Tf (r, L)+ c2 log r + c3 log ν + c4

≤ 2Tf (r, L)+ c1 log+ Tf (r, L)+ c2 log r + c3 log ν + c4 .

Hence we have

Tu′
j
(r) ≤ 2Tf (r, L)+ c1 log+ Tf (r, L)+ c2 log r + c3 log ν + c4 .

Thus, we have (7.8) for k = 1. �

Next, we assume that (7.7) and (7.8) hold for k with k ≥ 1. We consider the case where
k + 1. We will show (7.8) for k + 1. By the hypothesis of induction,

m(r, u
(k+1)
j )≤m(r, uj )+m

(
r,
u
(k)
j

uj

)
≤m(r, uj )+ c

(k)
1 log+ Tf (r, L)+ c

(k)
2 log r + c

(k)
3 log ν + c

(k)
4 .
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Hence we have

T
u
(k+1)
j

(r)≤ (k + 2)N(r,∞, uj )+m(r, uj )+ c
(k)
1 log+ Tf (r, L)+ c

(k)
2 log r + c

(k)
3 log ν + c

(k)
4

≤ (k + 2)Tf (r, L)+ c
(k)
1 log+ Tf (r, L)+ c

(k)
2 log r + c

(k)
3 log ν + c

(k)
4 .

Thus (7.8) is proved for k + 1. Next, we notice that

m

(
r,
u
(k+1)
j

uj

)
≤ m

(
r,
u
(k+1)
j

u
(k)
j

)
+m

(
r,
u
(k)
j

uj

)
.

By Lemma 7.2 and (7.8), as in the proof of Lemma 7.5, we see that

m

(
r,
u
(k+1)
j

u
(k)
j

)
≤ c′1 log+ Tf (r, L)+ c′2 log r + c′3 log ν + c′4 ,

where c′1, . . . , c′4 are positive constants independent of ν. Hence we have

m

(
r,
u
(k+1)
j

uj

)
≤ (c′1 + c

(k)
1 ) log+ Tf (r, L)+ (c′2 + c

(k)
2 ) log r + (c′3 + c

(k)
3 ) log ν + (c′4 + c

(k)
4 ) .

This gives us (7.7) for k + 1. Therefore, we have the desired conclusion. �

Now, we can give an estimate for SFΛ(r) as follows:

LEMMA 7.9. There exist positive constants C1, . . . , C4 such that

SFΛ(r) ≤ C1 log+ Tf (r, L)+ C2 log r + C3 log ν + C4

for r ∈ [1, +∞) \E(f ; ν). The constants C1, . . . , C4 are independent of ν.

PROOF. Let r ∈ [1, +∞) \E(f ; ν). Then, we have

SFΛ(r)≤
∑

J⊆Q, �J=l0+1

∫ 2π

0
log |∆(uj ; j ∈ J )(z)| dθ

2π

≤
∑

J⊆Q,�J=l0+1

∑
j∈J

l0∑
k=1

m

(
r,
u
(k)
j

uj

)
+O(1)

≤C1 log+ Tf (r, L)+ C2 log r + C3 log ν + C4 .

This gives us the desired conclusion. �

Therefore, we have completed the proof of Lemma 4.3.
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