A REMARK ON THE HAUSDORFF MOMENT PROBLEM

GÜNTER SCHROETER

(Received June 23, 1974)

In his publication "Density Properties of Hausdorff Moment Sequences" [2] Trautner gives a rather complicated proof of the following theorem:

Let $d_n = \int_0^1 t^n d\chi(t)$, $\chi \in V[0, 1]$. If $d_{n_k} = O(c^{n_k})$, $(0 < c < 1, n_k \ natural \ numbers)$ and $\sum 1/n_k = \infty$, then $d_n = O(c^n)$ for all n, and hence $d_n = \int_0^1 t^n d\chi(t)$, $d_n = \int_0^1 t^n d\chi(t)$ $\int_{0}^{c} t^{n} d\chi(t).$

This theorem is a direct consequence of the following well-known theorem of Boas [1]:

Let f be integrable on (a, b), $0 \le a < b$, $\{\lambda_n\}$ a sequence of complex numbers with Re $\lambda_n \to \infty$, arg $\lambda_n \to 0$, $\sum 1/|\lambda_n| = \infty$, $|\lambda_m - \lambda_n| \ge |m - n|h$, h>0. If $\int_a^b t^{\lambda_n}f(t)dt=O((a+arepsilon)^{\lambda_n})$ for all arepsilon>0, then f(t)=0 almost everywhere on (a, b).

PROOF. Without loss of generality let $\chi(1)=0$ (otherwise we consider $\int_0^1 t^n d\tilde{\chi}(t)$, where $\tilde{\chi}(t)=\chi(t)-\chi(1)$). Then $d_{n_k}=\int_0^1 t^{n_k} d\chi(t)=-n_k \int_0^1 t^{n_k-1}\chi(t) dt$. If $d_{n_k}=O(c^{n_k})$, we get $\int_0^1 t^{n_k-1}\chi(t) dt=O(c^{n_k-1})$. If now $\sum 1/n_k=\infty$, then $\sum 1/(n_k-1)=\infty$. From the above theorem it follows $\chi(t)=0$ a.e. on (c,1), hence $d_n = O(c^n)$ for all n, i.e. $d_n = \int_a^c t^n d\chi(t)$.

REFERENCES

- [1] R. P. Boas, Remarks on a moment problem, Studia Math. 13, 59-61.
- [2] R. TRAUTNER, Density properties of Hausdorff moment sequences, Tôhoku Math. J., 24 (1972), 347-352,

FACHBEREICH MATHEMATIK DER UNIVERSITÄT 63 GIESSEN ARNDTSTR. 2

GERMANY