ON THE TORSE-FORMING DIRECTIONS

IN FINSLER SPACES

YASUO NASU

(Received January 10, 1952)

- 0. The torse-forming directions in Riemann spaces have the property that, when we develop an arbitrary continuous curve $x^i = x^i(t)$ on the tangential space at a point of the curve, a vector p^i defined on each point of the curve form a torse (or a developable surface). This concept was treated by K. Yano at first. But the torse-forming directions ought to be generally defined in affinely connected spaces or projectively connected spaces. This paper deals with the torse-forming derections in Finsler spaces. In this paper the fundamental metric function L(x, x') and the coefficients of the connection Γ^{*ij}_{lk} , Γ^{ij}_{lk} , A^{ij}_{lk} , C^{ij}_{lk} have the same meaning as those of E. Cartan.
- 1. We assume that a vector field $p^i(x^1, \ldots, x^n)$ is independent upon the linear elements. Then a point on the vector p^i defined on each point of the curve is represented by $x^i + \alpha p^i$, where α is a scalar function. If the vector p^i is a torse-forming direction then the vector p^i should envelop a curve $x^i(t) + \alpha(t)p^i$, the edge of regression of the torse. Then, we get the following relations for the enveloping curve

$$(1.1) D(x^i + \alpha p^i) = \beta p^i,$$

where $\beta = \beta_k dx^k + \beta'_k de^k$ and D means the covariant differention. Therefore $dx^i + \alpha_k dx^k + \alpha Db^i = (\beta_k dx^k + \beta'_k De^k)b^i.$

If we put $Dp' = p_{|k}^t dx^k + p_{|k}^t De^k$, then we get:

(1.2)
$$\begin{cases} \delta_k^i + \alpha_k p^i + \alpha p^i_{|k} = \beta_k p^i, \\ \alpha p^i_{||k} = \beta'_k p^i \end{cases}$$

At this time we assume $p_{||k}^i = 0$. For if $p_{||k}^i \neq 0$ then the torse depends of the linear elements and it is difficult to deal with such a problem in Finsler spaces. Accordingly $\alpha \neq 0$, $\beta_k' = 0$. Generally we can assume that p^i is a unit vector without loss of generality. Hence $p_{|k}^i p_i = 0$ and we get $\alpha_k - \beta_k = -p_k$ from (1. 2). $p_{||k}^i = 0$ implies that p_i are the function of x^i , ..., x^n . Now we obtain as necessary and sufficient conditions in order that the vector p^i being a torse forming direction the following relations:

(1.3)
$$\begin{cases} p_{|k}^{i} = H(\delta_{k}^{i} - p^{i}p_{k}), \left(H = -\frac{1}{\alpha}\right) \\ p_{|k}^{i} = LeC_{k}^{i}p^{i} = 0. \end{cases}$$

2. (1.3) are written by using the covariant components p_i as follows:

100 Y. NASU

(2.1)
$$\begin{cases} \mathbf{p}_{i|k} = H(g_{ik} - \mathbf{p}_i \mathbf{p}_k), \\ \mathbf{p}_{i|k} = Le \ C_{ik}^j \mathbf{p}_j = 0. \end{cases}$$

Then we can easily find that $p_{i|k}$ are symmetric with respect to i, j. Hence we get:

$$\frac{\partial p_k}{\partial x^i} = \frac{\partial p_i}{\partial x^k}$$

The above relations mean that p_i is a gradient vector. Hence if we choose a suitable scalar function $F(x^1, \ldots, x^n)$ then p_i are represented by $p_i = \frac{\partial F}{\partial x^i}$. Now we put

$$(2.2) F(x^1,\ldots,x^n)=C (C=\text{const}).$$

(2.2) is a system of ∞ hypersurfaces, which are transversal to p^i . We per adopt a regular representation of a hypersurface of (2.2) i. e. :

$$(2.3) x^{i} = x^{i}(u^{1}, \ldots, u^{n-1}).$$

If we put $\partial x^i/\partial u^a = Q^i_u$ $(a, b, c, \dots = 1, 2, \dots, n-1)$ then we get:

$$p_i Q_a^i = 0.$$

In the above relations we can see that the vector Q_a^i are transversal to p^i . Following to the general theory of Finsler spaces, we introduce the fundamental metric tensor \overline{g}_{ab} on the hypersurface (2.3) as follows:

$$\overline{g}_{ab} = Q_a{}^i Q_b{}^j g_{ij}.$$

If we adopt p^i as a linear element then we have $-Dp_iQ_a^i=p_iQ_a^i=H_{ab}du^b$ or $p_{ik}Q_a^iQ_b^k=H_{ab}$ from (2.1). Hence we have:

$$(2.4) H_{ab} = H_{(l,ab)}^{-}.$$

The tensor H_{ab} is the fundamental tensor of the second kind and the hypersurfaces (2.2) are totally umbilical. Also we obtain $H = \frac{1}{n-1} H_a^a$ from (2.5) and H is the mean curvature of the hypersurface (2.3). It is well known that the curves which traverse the hypersurfaces (2.2) in the direction p^i are all geodesics on account of $p^i_{|k}p_i = 0$. Therefore we get the following results.

THEOREM. In a Finsler space which admits a torse-forming vector field, there exists a system of ∞^1 totally umbilical hypersurfaces whose trajectories are all geodesics.

3. We choose a suitable coordinate system so that $x^n = \text{const.}$ represent the hypersurfaces F = C and $x^n = \text{const.}$ represent the trajectories. Then we know:

$$(3.1) g^{an} = g_{an} = 0.$$

In this coordinate system, the vector p^i is represented by δ_n^i $(0, \dots, 1)$.

Accordingly, putting k = a, i = a, in (1.3), we get the following relations (3.2) $\Gamma_{nn}^{*a} = 0$.

- (3.2) implies $\partial g_{nn}/\partial x^a = 0$. Hence we obtain
 - (i) g_{nn} does not contain x^1, \ldots, x^{n-1} .

Also we have $C_{nk}^i = 0$ from $(1,3)_2$. Hence we have the following results

- (ii), (iii) by making use of $C_{nik} = g_{ij}C^j_{nk} = \partial^3 \mathfrak{F}/\partial x^{n\prime}\partial x^{i\prime}\partial x^{i\prime}$, $(\mathfrak{F} = \frac{1}{2}\mathfrak{L}^2)$.
 - (ii) g_{nn} does not contain x^{1}, \ldots, x^{n} .
 - (iii) g_{ab} do not contain $x^{n'}$.

Also we have the following relations from $(1,3)_2$:

(3.4)
$$\Gamma_{ab}^{*n} = H'g_{ab}, \ (H' = H/g_{nn}).$$

The above relations are written in full detail as follows:

$$\frac{1}{2} g^{nn} \frac{\partial g_{ab}}{\partial x^n} + g^{nn} C_{abr} \frac{\partial G^r}{\partial x^n} = H' g_{ab}.$$

But these relations are also true for n = a. Hence if we mutiply the above equations by $x^{a'}$ and sum about a then we get

$$\frac{1}{2}g^{nn}\frac{\partial^2 \mathfrak{F}}{\partial x^n \partial x''} = \frac{\partial \mathfrak{F}}{\partial x^{n\prime}}H'$$

where H' does not contain $x^{1'}, \ldots, x^{n'}$. Hence we get $\partial g_{ab}/\partial x^n = H''g_{ab}$ ($H'' = H/(g_{nn})^2$) and H'' does not contain $x^{1'}, \ldots, x^{n'}$, Thus we obtain the following results (iv).

(iv) g_{ab} are written as follows:

$$g_{ab} = f(x^1, \ldots, x^n) \ g_{ab}^*(x^1, \ldots, x^{(n-1)}; \ x^{1'}, \ldots, x^{(n-1)'}).$$

Consequently we obtain the following theorem from (i) (ii) (iii) (iv).

THEOREM. In a Finslar space which admits a torse-forming vector field, we can choose a suitable coordinate system such as:

$$ds^{2} = f(x^{1}, \ldots, x^{n}) \ g_{ab}^{*}(x^{1}, \ldots, x^{n-1}; x^{1}, \ldots, x^{(n-1)'}) dx^{a} dx^{b} + (dx^{n})^{2}$$

where the last term is obtained by putting $\bar{x}^n = \int \sqrt{g_{nn}(x^n)} dx^n$. The converse is also true

4. As a particular case of the torse-forming vector field. We can consider a concurrent vector field. Then we get $D(x^i + \alpha p^i) = 0$ from (2.1). Hence we know $\beta_k = 0$, $\alpha_k = -p_k$. Accordingly we get (1.3). If we adopt the coordinate system as before then we know that $\alpha^k (= -p_k)$ is a gradient vector and $-\alpha = F(x^1, \ldots, x^n)$. Therefore $H(=-1/\alpha)$ is constant along a hypersurface of (2.2). S. Tachibana has shown that in a Finsler space which admits a concurrent vector field, we can choose a coordinate system such that

$$ds^{2} = (x^{n})^{2} g^{ab}(x^{1}, \ldots, x^{n-1}; x^{1}, \ldots, x^{(n-1)'}) dx^{a} dx^{b} + (dx^{n})^{2},$$

102 Y. NASU

and the converse is also true.

Also as a particular case of the concurrent vector field, we can consider a parallel vector field. Then we get $p_{|k}^i = 0$ (or $Dp^i = 0$) by putting $\alpha \rightarrow \infty$ in (1.3). It is shown that we can choose a coordinate system such that

$$ds^2 = g_{ab}(x^1, \ldots, x^{n-1}; x^{1\prime}, \ldots, x^{(n-1)\prime}) dx^n dx^n + (dx^n)^2.$$

At this time H=0. Therefore the hypersurfaces (2.2) are all totally geodesic hypersurfaces. The existence of such a coordinate system in a Finsler space is the necessary and sufficient condition in order to admit a parallel vector field.

REFERENCES

- [1] E CARTAN, Les espaces de Finsler. Actulités, (1934).
- [2] K. YANO, Parallelism and concurrence in Riemann Spaces (in Japanese) Nippon Chūtosugaku-kaishi 25 (1943).
- [3] K. YANO, On the torse-forming directions in Riemann Spaces, Proc. Imp. Acad. Tokyo 20 (1944)
- [4] S. SASAKI, On the structure of Riemannian spaces whose groups of holonomy fix a direction or a point, (in Japanese). Nippon Sugaku-butsuri gakukaishi. 16(1941).
- [5] S. TACHIBANA, On Finsler spaces which admit a concurrent vector field, Tensor, New Series, 1(1951).

KUMAMOTO UNIVERSITY.