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0. The torse-forming directions in Riemann spaces have the property
that, when we develop an arbitrary continuous curve xι = x\t) on the
tangential space at a point of the curve, a vector p! defined on each point
of the curve form a torse (or a developable surface). This concept was
treated by K. Yano at first. But the torse-forming directions ought to be
generally defined in affinely connected spaces or protectively connected spaces.
This paper deals with the torse forming derections in Finsler spaces. In this
paper the fundamental metric function L(x, xr) and the coefficients of the
connection ΓVk, IYfc, AΛ, CΛ have the same meaning as those of E. Cartan.

1. We assume that a vector field pf{xι, .. . ,xn) is independent upon the
linear elements. Then a point on the vector p( defined on each point of
the curve is represented by xι -f <xp\ where a is a scalar function. If the
vector pι is a torse-forming direction then the vector pι should envelop a
curve x\t) + oc(t)p\ the edge of regression of the torse. Then, we get the
following relations for the enveloping curve

(1.1) D{xl +- apι) = βp\

where β = βkdxk + β'k dek and D means the covariant differention. Therefore

dxι 4- oiitdx1* 4- <xDpι = (βkdx70 4- β^De^p1.

If we put Dp = p\k dxι> Λ P^De1*, then we get:

(1.2) I *̂ " °^βZtaP{k~ ICp1

At this time we assume p\lk = 0. For if p\lk Φ 0 then the torse depends
of the linear elements and it is difficult to deal with such a problem in
Finsler spaces. Accordingly α,=f= 0, βk =. 0. Generally we can assume that
p! is a unit vector without loss of generality. Hence p\kpι = 0 and we get
&k — βk = — Pis from (1. 2). p\{k = 0 implies that pi are the function of x1,
.., xu. Now we obtain as necessary and sufficient conditions in order that
the vector pι being a torse forming direction the following relations:

(1.3) are written by using the covariant components pi as follows:
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- H{giJΰ - pipk),

(PiW^LeCiPjO.
Then we can easily find that pi{Ίc are symmetric with respect to i, j . Hence
we get :

dp^ dpi

The above relations mean that pt is a gradient vector. Hence if we
choose a suitable scalar function Fix1, , xu) then pi are represented by

pi = ^ r Now we put

(2.2) Fix1, . . . . , xn) = C (C = const).

(2.2) is a system of oo hypersurfaces, which are transversal to p\ We
per adopt a regular representation of a hypersurf ace of (2.2) i. e. :

(2.3) xι -x\u\ . . . . , ^ - 1 ) .

If we put rdxil'dua = Q£ (β, 6, c, . . . . = 1, 2, . . . . , w - 1) then we get:

ΛOί = 0.

In the above relations we can see that the vector Qι

a are transversal to p\
Following to the general theory of Finsler spaces, we introduce the funda-
mental metric tensor ~gab on the hypersurf ace (2. 3) as follows :

#αδ = QaQbtyij.

If we adopt pi as a linear element then we have — DpiQi = PιQ\x = Habdub

or PucQIQl = ^αύ from (2.1). Hence we have :

(2.4) Ha^Hgab,

The tensor HΦ is the fundamental tensor of the second kind and the

hypersurfaces (2.2) are totally umbilical. Also we obtain H = ^ /jΓ£ from

(2.5) and H is the mean curvature of the hypersurface (2.3). It is well
known that the curves which traverse the hypersurfaces (2.2) in the
direction pι are all geodesies on account of p\J>i = 0. Therefore we get the
following results.

THEOREM. In a Finsler space which admits a torse-forming vector field,
there exists a system of oo1 totally umbilical hypersurfaces whose trajectories are
all geodesies.

3. We choose a suitable coordinate system so that xn — const, represent
the hypersurfaces F = C and x" = const, represent the trajectories. Then
we know :

(3.1) gan = gm = 0.

In this coordinate system, the vector pι is represented by δ£

rt (0, . . . . , 1).
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Accordingly, putting k — a,i = a, in (1.3X we get the following relations

(3.2) r;; = o.
(3.2) implies dgnn/'^xa = 0. Hence we obtain

(i) 9nn does not contain x1, ....:, xn~ι.

Also we have Cϊιk = 0 from (1.3)2. Hence we have the following results

(ii), (iii) by making use of C»Λ = gtjQk = d^/dx^dtf'dx", (S = ~ 2 * ) .

(ii) #n Λ ίfo&s not contain x1', .. .., ΛW/.
(iii) gab do not contain xn\

Also we have the following relations from (1.3)2:

(3.4) T** = H'g*» (H'~H/gnn).

The above relations are written in full detail as follows :

But these relations are also true for n = a. Hence if we mutiply the above
equations by xa/ and sum about a then we get

V = H
2 J Bxndx*' dx?

where Hf does not contain xι\ ,xn\ Hence we get dgab/dxu = H'rjah (M" =
HHsjnnfλ) and //"" does not contain JC1', #w', Thus we obtain the following
results (iv).

(iv) goo are written as follows :

gaυ = / I * 1 , . . . , Xn) g ab(X\ . . . ., ^ n - l ) . ^ ^ . . . . ; ^ H - 1 ^

Consequently we obtain the following theorem from (i) (ii) (iii) (iv).

THEOREM. In a Finslar space which admits a torse-forming vector field,
we can choose a suitable coordinate system such as:

ds* = fix1, ....,xn) gmjjκ\ . . . . , xn-ι;x1', . . . . , χtn~ιy)dxadx'> +

where the last term is obtained by putting ~xni= j \/gnn(xn) dxn. The

converse is also true

4. As a particular case of the torse-forming vector field. We can
consider a concurrent vector field. Then we get D(x 4- ap) = 0 from (2.1).
Hence we know βk = 0,a^ = —A. Accordingly we get (1.3). If we adopt
the coordinate system as before then we know that oC\ = — pk) is a gradient
vector and — a = F(x\ . . . .,xn). Therefore H( = —1/oc) is constant along a
hypersurface of (2.2). S. Tachibana has shown that in a Finsler space
which admits a concurrent vector field, we can choose a coordinate system
such that

ds* =
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and the converse is also true.
Also as a particular case of the concurrent vector field, we can consider

a parallel vector field. Then we get p\k = 0 (or Dp1 = 0) by putting α->oo
in (1.3). It is shown that we can choose a coordinate system such that

ds* = g<Λ{x\ tf-W, , tffi-wyd&dtf + (dxny.
At this time H = 0. Therefore the hypersurfaces (2.2) are all totally

geodesic hypersurfaces. The existence of such a coordinate system in a
Finsler space is the necessary and sufficient condition in order to admit a
parallel vector field.
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