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In the previous paper [7], we have defined the weak centrality of an
operator algebra modifying I. Kaplansky’s definition of the (strong) centrality
[6]. Although we have assumed an additional condition in the previous
occasion, here we shall study the weak centrality as itself. It will be seen
in the below, that a weak central C*-algebra can be decomposed into C*-
algebras each of which is factorial C*-algebra. The other purpose of this
paper is to prove that any W¥*-algebra is weakly central.

1. Definitions and notations. We shall assume in this papar that
any algebra which we consider has a unit element. A self-adjoint algebra
A of bounded linear operators on a Hilbert space will be called a C*-algebra
(W*-algebra), according to I.E.Segal, provided that A is uniformly (weakly)
closed in the sense of J.von Neumann [97.

Let Q be the set of all maximal ideals in the C*-algebra A. In simple
case we shall consider the 0-ideal as its maximal ideal. If S is a nonvacuous
subset of ), we define M, is contained in the closure of S if and only if
M, o ﬂSM. This topological space Q will be called the spectrum of A,

Me

according to I. E. Segal [10]. The spectrum {2 becomes, in general, a compact
T:-space. In the commutative case, it is known that the spectrum becomes
a T,-space.

A C*-algebra A is called weakly central provided that two maximal ideals
M, and M, coincide if and only if

MiNZ=MNZ

where Z means the center of A. It will be seen that A is weakly central
if it has at most one maximal ideal. Conversely, if the center of a weakly
central algebra A is a field, then A contains at most one maximal ideal.
It is not difficult to see that the spectrum of a weakly central C*-algebra is
homeomorphic in its natural mapping to the spectrum of the center, whence
it is a compact T,-space.

In the terminology of N. Jacobson [47], an ideal P of A is called primitive
if there exists a maximal right ideal M’ such that

M:A={xcAlaxe M for all ac A} = P.

It is known that a C*-algebra is semi-simple in the sense of Jacobson [4],
i.e., the intersection of all primitive ideals in a C*-algebra vanishes. The
set of all primitive ideals is called the structure space of the algebra with
the Stone topogy. A C*-algebra is central if and only if the definitive property
of the weak centrality is held for primitive ideals in stead of maximals
ideals.
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By o(x) we mean the set of all complex numbers ) = 0 such that x — Al
have not inverses and we insert 0 € o(x) unless x has an inverse.

When 7 is a closed ideal of a C*-algebra A, we can consider a factor
algebra A/I in the usual way and define

28] = inf (x + .
yel

where x? is the class of A/I which contains ». It is known that A/l is a
C*-algebra too.

An algebra will be called factorial if its center contains only scalar
multiples of the identity.

2. The decomposition of a wéakly central C*-algebra. Firstly we
shall prove a following lemma.

LeMMA 1. Let Z be the center of a weakly central Ct-algebra A and let
I be a closed ideal A. If the intersection of Z and I is a maximal ideal in Z,
then the factor algebra AllI is a factorial C*-algebra.

Proor. Let M; and M, be two maximal ideals in A which contain 7,
then by N. Jacobson [4] M; (| Z are maximal ideals in Z. Because of M; DI,
we have M; N Z>I\ Z for i=1,2. Since I | Z is a maximal ideal in Z,
we have

MiNZ=M,NZ=1INZ
This implies M; = M, by weak centrality of A. Thus, there is a unique
maximal ideal which contains /. In other words A// has a unique maximal
ideal.

Let Z? be the center of A/I and let M? be the unique maximal ideal
of A/I. We shall assume that A/I is not factorial, then any maximal ideal
of Z is not the 0-ideal. Thus M? | Z¢ is a nontrivial maximal ideal of Z°.
Let P be any primitive ideal of A/I, then P? (| Z° is a maximal ideal of
Z% [47. On the other hand P M? and hence we have

PNZ=M°NZ
for any primitive ideal P° of A/I. Since A/I is a C*-algebra, the intersection

of all primitive ideals of A/I vanishes. This contradicts to non-triviality of
M® (N Z. That is, A/I is a factorial C*-algebra.

LEMMA 2. Let Q) be the spectrum of the center Z of a weakly central C*-
algebra A. For any § € Q, we define I, as the intersection of all closed ideals
in A which contain . Then

n I§'= 0

e

Proor. Let P be any primitive ideal of A, then P [} Z is a maximal
ideal of Z. We shall denote this maximal ideal ¢;. By definition of I, we
have PO L. This shows that ng I; is contained in the intersection of all

primitive ideals of A. This proves the lemma.
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THEOREM 1. Let A be a weakly central C*-algebra. Then there exist a
compact Hausdorff space Q) and a factorial C*-algebra A, for each & € Q) such
that for all x € A there exists a function x(&) which is defined on Q and x(&)
€ A; for all L € Q (we denote this correspondence by x~x({))and satisfy
Jfollowing conditions :

(1) x=0 if and only if &)= 0 for all £ € Q,

(2) ax+ By~ (ax+ By)E) = ax®) + By(&) for any complex numbers o

and 3,

() xt~ KLY,

4 xy~x W),

BG) x| = sgt:(lz) | 2(&) 1y where |- |;is the norm on A,

6) | &)l is a continuous function on Q).
Furthermore, let A be a normed algebra of functions 6(§) which are defined on
Q and ) € A; for all & € Q and satisfies (1) — (6). If A contains all x~x(Z)
where x € A, then W coincides with A.

Proor. Let Q be the spectrum of A, then ) is a compact Hausdorff
space. For each { € () we define a closed ideal I; as Lemma 2. If we define
A=A/l ,

then A, is a factorial C*-algebra by Lemma 2.
Let x({) be the image of the natural mapping of x € A in A;= A/I,.

We shall denote this correspondence by x ~ x({). Then each function x(¢)
is defined on Q and

w8 e A for all £ € Q.

It is obvious that x ~ x({) satisfies (2),(3) and (4). For any ¢ € Q, %)
= 0 is equivalent to x € I. It follows that x({) = 0 for all { € Q implies

e

that is, x = 0. Conversely, it is clear that x = 0 implies that x({) = 0 for
all £ € ©. This proves (1).
Now we shall prove (5). Clearly [%(¢)l; < |«x] for all { € Q and we have

|z = sup | #(&) ;.
[0

We shall show that supremum attains for some ¢ € ). Because of the
identity || xx*| = |x?, one needs to prove this only in case x =0, and we
may assume |[x] = 1. To say that || x({)[; is less than 1is equivalent to say
that o(x(¢)) does not contain 1, that is, 1 -— x(¢) has an inverse. This is
equivalent to 1 — x has an inverse modulo 7. If | x({); is less than 1 for
all £ € Q, then 1 - x has an inverse modulo every I,. As we showed above,
any primitive ideal contains some I; this implies 1 — % has an inverse
modulo every primitive ideal. It is known that this means that 1 — x has an
inverse in A (cf.[57]). This contradicts to [ xf = 1.

Next we shall prove (6). In the first place, we shall show that | «(&) |,
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is continuous at 0, that is, if a(¢,) =0 then for any & >0 there exists a
neighborhood V of &, such that

[28) < & forallf V.
Let I be the set of all y € A such that the corresponding function y(¢)
vanishes in a neighborhood of ;. Clearly I is an ideal of A. Let I be the
closure of I. Obviously I< I,. Since Z is represented by all continuous
numerical valued function on Q, I Z is maximal in Z. Therefore,

INZ=1I,0NZ
since I, (| Z is a maximal in Z. By the definition of I, we have I, I.
Thus we have I, = I. Obviously x¢& I,, then for any & >0 there exists
y € I such that
lx—yl|<eé.
This implies that
[28) — ¥ < € for all ¢ € Q.
By the definition of I, there exists a neighborhood V of ¢, such that
¥ =0 for all L € V.

By the above, we have

Jx&) < €  for allf e V.

We pass the general proof of continuity. We assume that
| a(Eo)g, | = 7 % 0.

One needs to show that for any & >0 there exists a neighborhood V of &,
such that

r— &L | <7+ & for all L € V.

We may assume the x =0 as previous. Let S be the set of all { € Q such
that | %) | <7 — & and let {; be an element of the closure of S.

We assume that there exists 7, € o(%(£1)) such that r;, > 7 — & Now we
shall define a continuous function f(¢) which is defined on (0, o) such that

(=0 f0=st=s7r-—¢
f(t)[ =1 if ¢t=nrm.

We consider the commutative C*-algebra A, which is generated by x. A,
can be represented as a ring of all continuous numerical functions on o(x)
(vanishing at origin if 0 &€ o(x)) by a theorem due to I.Gelfand. If we
restrict f(t) on o(x), we have a continuous function on o(x) and so we have
a corresponding element of A,. We shall denote this element by f(x).
Analogously, we can define f(x({)) and we have an identity :

fxH(E)) = fix)E)
which was proved in [6]. If £ € S then
r — &= for all \ € o(x)
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by the definition of S. Therefore
f(x)8) = f(x(¢)) =0 for £ €S.

By the continuity of | x({)|; at 0, this implies that f(x({1)) = 0. On the other
hand f(x(&:)) = 0 since f(f) does not vanish at r; € o(x(£;)). This is a con-
tradiction, that is

r —&=n for all A& o(x(1)).
This implies that [[x({1)|e, =7 — &, that is, &1 € S. Thus, the closedness of
S was proved. If we denote the complement of S by Vi, V; is a neighbor-
hood of &, such that

(2 >r—¢& for all L€V,

It was proved in [6, Lemma 3.3] that there exists a neighborhood V., of
& such that

2 o< 7+ & for all €V,
It is clear that V = V; (| V, has our property. This proves (6).

Finally we shall prove the remainder part of the theorem. Let A be a
normed algebra of functions @) which are defined on Q and #(&) € A; for
all £ € O and satisfies (1)<(6). Furthermore we assume that 9 containes A.
Take any fixed element §({) of U, then by definition of A, there exists an
element x({) € A; such that (&)= x(&) for a fixed { € Q. From (6), this
implies that for any € >0 there exists a neighborhood U({) of { such that
%) [6&) — (&) g < € for all &' e UE).

If we correspond such neighborhood U(&) for each ¢ € ), then the family
{U) | ¢ € O} is an open covering of Q. From the compactness of Q, there
exists a finite covering

U(Cl)y M) U(é‘n)
It is known that there exist non negative continuous functions fy(§), /), -- - -,
Ja(&) such that

L) =1
i=1

and £(¢) vanishes outside of U({;) for each 7 (cf.[1]). For each Z, let ¥; be
the element which is determined by (*). Since each fi({) determines an
element of Z, x({) determines an element of A if we define

(&) = Zﬂ-(é')xi(é’)-

From the definition of U({;)
) = x(©)];< & for & € UL
Thus we have a following inequality :

16 — 28 g = | 2/4LE) ~ Zﬁ(é‘)xc(é’) lle
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< Efm [ 6(2) —=%AE) |p < Eﬂ(é‘)é =&

t=1
From (5), this proves that every element of U is a limit of elements of A,
that is, A < A since A is complete.
Thus Theorem 1 was proved completely.
Theorem 1 and Theorem 3.1 of [6] imply the following theorem.

THEOREM 2. Under the noté’tion of Theorem 1, any. closed (right,left)
ideal L in A has the following from: for each ¢ € Q a closed (right, left)
ideal L; in A; is given, and L consists of all x€ A with x ()€ L; for all
e Q. :

3 The weak centrahty of W *—algebras In this sectlon we shall prove
the following theorem:

THEOREM 3. A W*-algebra is a weakly central C*-algebra.

To prove this theorem we shall use the following:
LemMA 3 (J.Dixmier [2])). Let x be an element of a W*-algebra A.
Consider the linear combination 2

n
Snwmur

i=1

where u; are unitary elements of A and N 20 and EN =1. Let K, be the

¢=1
set of their uniform limits. Then the intersection of K, and the center Z of A
is not empty. Moreover, for any positive & and a pair %, y of A there exist
Y€K, NZ ¥ <K, Z and unitary "elements u,, ...., u, of A and ;=0

G\ = 1) such that

i=1

I nurut -2 <& [ 2 nmuyut—y[< &
Cod=1 im] '
ProOF oF THEOREM 2. Let M,, M, be two distinct maximal ideals in
A. One needs only to prove Ml n Z = M, N Z. From the maximality of M,
M, we have:

A=M+ M,
So, there exist x; € M(z =1, 2) sugh »that .
1 =MnN +x_,

From Lemma 3 for any & >0 there exist ¥ € Ky, [} Z, %, € Ky () Z, unitary

n
elements #; € A and \; =0 (ZM = 1_) such that

i=v -
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I n e st = K< & [ hth mag> =% < &

iwl i=1

Hence we have

I 27\4 % (% + x)u; — (x] + )l

i=l,
n n
SIBrwnu — %] + | B wuit — %[ < 28,
i=1 i=1
In other words
11— (% + 2,) | < 2€.
On the other hand, K, < M;(i=1,2) hy the definition of K, and the
closedness of M;, since they are maximal. If
MiNZ=MNLZ
then
n+xn€MNZ=MNZ
The closedness of M, (| Z implies that
leM\NZ= M, ﬂ:Z
This is a contradiction. Therefore M, | £Z%+ M, () Z. This proves the
theorem. ‘
It may be somewhat interesting to ohserve that Theorem 3 implies a
Ttesult due to J. W.Calkin [3], since the full operator algebra on a Hilbert
space is weakly central by the above theorem, that is, we have the next.

COROLLARY (J. W.Calkin). & full operator algebra om a Hilbert space has
a unique maximal ideal.

REMARK 1. Above Corollary is valid for any factor in the semse of }.
von Neumann.

REMARK 2. If the structure space.of a W*-algebra is T)-space, then an
ideal is primitive if and only if it' ¥s maximal. Therefore this structure
space is necessary Hausdorff space.

4, Some applications. In this section we shall consider only W*-algebza.
A W-algebra is weakly central, thus it can be decomposed in the sense of

Theorem 1. The purpose of this section is to give some remarks on the
components. We shall use notations in Theorem 1 in the below.

PRrOPOSITION 1. Let e(lo) € A, be a projection, then there exist a pfbiecfion
€ € A such that the value of e at &, is e&,).

Proor. Clearly we can take x, € A& such that x(&) = &&,). K we put
%, = % %%, then

2(80) = % (Lo)x(Eo)F = e(fo)e(fo)* = e(&o)-
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That is, there exists a self-adjoint wnd non-negative x,% A such that xi&,)
= &(&)

Let S be the set of all §.€ @ for which [%:({)[; = 1. Define a function
(&) on Q as following :

o [ =1 if i€ §,
=, ?G .
N EZGIE. '
Then it is clear that f(¢) is continuous on  and hence f({) determines an
element f of Z. If we define x = fx, then
x ~ HE) = /(E)x(L),
that is, x is self adjoint and ||x| < 1 and moreover x({;) = e({).

From [6, Lemma 3.37] there exists a neighborhood U of {, such that
a(x(£)) does not contain A such that 1/3 <A <2/3 for all £ € U. It is known
that Q is totally disconnected and there exists a closed V< U of ;. Now
let f(¢) be the characteristic function of V and the corresponding central
element be f. If we put &' = fx, then x'({) = x({) for all £ € V. In particular

%'(o) = e(&o)-
QObviously A € o(x(£)) for all £ € Q and for all A such that 1/3 <A <2/3.
Hence we can prave A € o(x') by an analogous way to the proof -of Theorem
1. .

Now we consider the commutative C*-subalgebra A, which is generated
by x'. Then A, is represented as a ring of all continuous functions on
o(x') (vanishing at 0 when %' has not an inverse). Let f{¢) be a function on
(0, ) such that
[=1 if 2/]3<t <1,
l=0 otherwise,
then ¢(¢) is continuous on o(x'). Thus g(¢) is determines an element e = g(x')
€ A.. Obviously e is projection. By the identity

g(x')(&o) == g(x'(§0)) = g(e(£o)),

the value of e at &, is e(¢,). This proves the Proposition.

g( t)‘

ProrosITION 2. Let e(f), f(§) € A; be two projections for which there
exists an element x(§) € A; such that
el) = xO)xE)* and f(§) = 2(EV¥x(E).
Then there exist two prjections e, f and a partially isometric element x such
that
e= xx* and f = x¥x.

ProoF. Let x, € A be any element of A taking x({) as its value at ¢
and x; = xy be the canonical decomposition in usual sense. By a Lemma of
F.J.Murray and J.von Neumann [10], x any y belong to A. We shall show
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that x({) as its value at ¢. By the definition of canonical decomposn;lon,
¥t = xx*, then

WP = m@mE* =e@).

Since y(¢) is positive, we have (&) = ¢(). The initial set of partially
isometric operator x isthe ‘range of y. That is, x = xh, where h is the
projection on the range of ¥, Obviously k€ A. From above we have

h(é’) - e(8) = (D).

Then we have

) = HOME) = 2EW(E).
On the other hand '

%(8) = 2(EW(E).
Hence x:(8) = «(&).
If we define e = xx* and f = x*x, then it is obviously that e and f satisfy
our properties.
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