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1. Introduction. The concept of the conditional expectation in probability
theory is very important, especially fundamental for the martingale theory.
In a book [lp> of J. Doob, various properties of the conditional expectation
in a probability space are described for the random variables having the
expectations. While in a recent paper [2], Shuh-teh C. Moy has discussed
the characteristic properties of the conditional expectation as a linear trans-
formation of the space of all extended real-valued measurable functions on
a probability space into itself.

The present paper deals with the conditional expectation as a mapping
of a space of measurable operators belonging to a Z1-integrable class asso-
ciated with a certain PF*-algebra into itself. This generalization seems to
be a first attempt of a non-commutative probability theory. The non-com-
mutative integration theory0 of I. E. Segal (cf. [3]) has its due application in
the subject.

We shall show in §2, the existence of the conditional expectation for
the space of measurable operators of the ZMntegrable class associated with
a certain W*-algebra, and in § 3, the uniqueness in a certain sense of such a
mapping which is a generalization of a characterization theorem of S. C. Moy.

2. Existence of conditional expectation. Let A be a W*-algebra,
acting on a Hubert space H, with a complete (faithful) normal trace μ with

MD = 1.
Let Ai be an arbitrary (but fixed) W*-subalgebra of A. In this section

we shall introduce a conditional expectation in A relative to Aτ.
First we shall prove in Lι(A) the existence theorem of conditional ex-

pectation where Lι(A) CDnsists of all integrable operators on H with respect
to the ZΛnorm lx[U = μ{\x\) (cf. [3] Daf. 3. 2, Cor. 10.1 and Cor. 11. 3) which
are associated with the W*-algebra A. Similarly we denote the space Ll{A^)
associated with the W;ί-subalgebra AL, then L1 (Ax) can be considered as a
closed subspace of L\A).

THEOREM 1.3> There exists a mapping x-^ xefrom Lι(A) onto L\A^) satisfying
the following conditions' for any x, y € Lι{A) and any complex numbers ct, β

<i) {ax + βyy = ax" + βy,

1) Numbers in brackets refer to the reference at the end of the paper.
2) J. Dixmier has also described the similar theory under a different way (cf. [4]).

In the present paper, we shall use the definitions and terminologies of I.E.Segal (cf.
;[3]). We shall denote the product, sum laid difference of measurable "operators x,y
merely by xytx+y and x— y,e. g., ey implies x y in the notations in [3]. When x=y
nearly everywhere, we shall denote merely x~y (n. e.) or x=y.

3) After we had prove! the Tarn 1, we have been pointed out by M. Nakamura
that the existence of mapping x^>x' from A to Λi was proved by Dixmier using his
ooerator method (cf. Thm.8 of [4]). In this Όaper, we shall prove Thm. 1 by Radon-
Nikodym Thm. of Segal (cf. [3]) and extend it onto L\A).
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(ii) x * e = x P Λ ,

(iii) x >̂ 0 implies xe > 0,

<iv) # > 0 *wra? xe = 0 zra£/y # = 0,

(v) zβ = 2 /b

Moreover the mapping x-^xe transforms A onto Aτ satisfying ϊ xβ Ί < ι'x\

(vi) (xey)e = (#y? = * e y /or ΛΓ € ZK-A), .y € A or x e A, y e L\A)r

(vii) Λ y ^ x implies x* ̂  xe for xy, x € A,

(vii/ x->xe is strongly and weakly continuous on the unit sphere of A,

(viii) (xy)e = (yx)e for x € Lι(A) and y € A[ Π A,

PROOF. For any x ^ A+, putting μx(z) = μ{xz) for z ^ ^4], />t« is a positive
linear functional on^x satisfying that \μx(z)\ -<>\x' μ(\z\) for all z € Ax. By
a lemma of Segal (cf. Lem. 14.1 of [3]), there exists a unique positive operator
x9 in A! such that μx(z) = /φ/z) for all z € Λi where the operator xf is
uniquely determined by x. Putting xβ = x', (ax 4- yβj')6 = axβ + /3y for any
Λ:., ̂  € A+ and numbers a, β^O. Since any x( € A) = xL — x2 + ^ 3 — ί #* (for
some ΛΓfĉ A+) and this expression is unique, putting xe = Λ:̂  — x\ + /Λ:| — ̂ | ,
ΛΓ -> Λ:6 is defined for all x € A and it satisfies that

(1) ,.μ{xz) = μ(xez) for any Λ:€ A and z^Aτ.

It is easily seen that z1 = 2a (̂ Ί, z2 ^ Ax) if and only if μ(z]z) = μ(z2z) for all
2 ^ AT. This fact implies that the introduced mapping x-> x6 is well defined
on A, transforms A onto Aλ and satisfies the conditions i), ii) and v) for all
x, y £Ξ A and 2 6 Ai. iii) is clear by the construction of xe in A. iv) for # ^
A follows from (1), iii) and the completeness of μ. Moreover for any x, y £E
A and 2 € A2

hence vi) holds for x, 3̂  € A. The normal continuity of x -> #β (i. e., vii)) or
more generally vii/ follow from that iv), Λ*eΛ;β <Ξ (Λ:* Λ:)6 (as below) and the
following fact: The trace μ is represented by a canonical trace, i. e., μ(x) =
(xζ, ζ) for some ζ € H, and for any ξ € H there exists a vector ξ' in [AfJ
such that (xξ, ξ) = (Λ; £',£') for all Λ: € A (by the Radon-Nikodym theorem
of Segal, cf. Thm. 14 of [3]), and for any ye A there is zζA, such that μ(x*
yy*<) = μ(χzz*). While for any z ^ Aτ, x € A and jy € AJ fl A

μφcyYz) = μίΛyz) = ft(Λε̂ ) = μ(yχz) = μ((yχYz),

hence viii) holds for such #, ̂  in A. ix) : F o r x € A the re exists a par t ia l ly
isometr ic opera to r w € Ax such t h a t |x° \ = WΛ ,̂ hence μ(\xe\) ~ μ(wxe) S
I ί ^ l , /x ([ΛΓ|) ^ /A([ΛΓ|) and w e have ix) for x 6 A. h #*•• ̂  !!ΛΓ'; is c lear by

t h e construct ion of x -> Λ;6. Since for any ΛΓ € A

0 g ((x - xeT(x - xG))e =
we have x*exe
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Since all x € A or Aτ are elementary operators respectively (cf. [3]), A
and AL are dense in L\A) and Lι(Aλ) respectively. By ix) for x € A, x -> xe

can be extended onto Lι{A) and i), ix) hold for x, y 6 Lι(A). For any x ^
Z1 (A) (or Lι{Aτ) resp.), taking {#„} c A (or Ax resp.) such that

(2) /<|*Λ-*|)->0 (w->oo),

since />&(IJV*|) = Ml^l) f° r a n v ^ ^ ^ ( ^ λ w e have ii) for x € Lι{A). (2) also
implies that

(3) μ(xez) = lim (/AΛJ*) = lim /<#ft2) = /<ΛZ) for all z £ A1#

Since v) holds for Au by (2) it also holds for Lι(AJ. If x>0 (x^LHA)\
there exists a {#w} c: A+satisfying (2) (by Cor. 12.1 of [3]). Whence x? = lim
%l (in Zi-mean) and xe > 0 by Lem. 13. 3 of [3J and if x ^ 0 and ΛΓ* = 0, then

μ(χ) = μ(^7) = μ{xe) = 0

and Λ; = 0 (n. e.), and we have iii) and iv) for Lι(A). For any x € Lι(A) and
^ € A taking {xn} d A as (2),

(x"y)e = lim (xfτy)e = lim jtj^3 = # β y

and similarly = {xy^f. We have also viii) by the similar way taking the
sequence {xn} in A. The later part of vi) follows from the former and ii).

Q. E. D.

REMARK 1. Applying the proof of Thm. 1, it holds that

viii/ (χy)β = (yχ)e

for x € A and jy € ^(Aj Π A) which is the integrable operator associated
with the W*-subalgebra A[ fl A.

We shall call the mapping x -> Λ̂  from ZJ(A) to Z^A.) the conditional
expectation relative to Ax.

3. A characterization of conditional expectation. In this section,
we shall prove a characterization theorem of the conditional expectation
which is a generalization of a theorem of Shuh-teh Chen Moy (cf. Thm. 2.2
of [2]).

THEOREM 2. Let # -> Xs be a mapping from A into itself satisfying i), ii),
YΪ), ix) for x,y €z A, and

v)' P = / .

Then the range Ae of the mapping #-> x6 is a W*-subalgebra of A and x->x*
coincides with the conditional expectation relative to Ae, that is,

Xs = xβ for all x € A.

PROOF. Let Ao be the collection of all z € A such that

(zxf = z# and (^)e = x*z for all # 6 A.

Then Ao is a self-adjoint subalgebra of A containing / . Indeed, for any 2,,
z2} z € Ao and # € A,
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and similarly (x(zι -f 22))β = ^ i + 2aX e t c n o l ( * . Clearly 7 € Ao. Let AΎ

be the weak closure of Ao, and # -> Λ6 be the conditional expectation relative
to Λi. Putting μ(x) = μ(*6)7 since

/^ is a bounded linear functoinal on Lι{A). Hence there exists an operator
r in A such that

μi(x) = μ(^) = ^(ΛJT) for all x € A

(cf. Cor. 18.1 of [3] or Thm. 5 of [4]). Therefore for any z € Aΰ:

(4) μ{zx?) = /*((z#)e) = Kzw) = /χ(̂ (Λ:r)e).
Since Ao is strongly dense in Λx and the both sides of the equation (4) are
strongly continuous for z € Ao,

μ(ztf) = μ(z(xr)e) for all z € Aj.

Hence Λ6 = (tfr)6. Since

for all Λr€A,r* = r. By !K^)I S MI^Dii r\\ and jr a ] ̂  1, hence r'Δ ̂  L
While

r e = (lr)β = 7β = /
and by iii), iv)

0 < ((7 - r)(7 - r)Y - (7 - 2rc + r2)β - 7 - 2^ + (>2)e = (ra)β - 7 < 0.

Therefore ((7 — r)(J — r))β = 0 and r = 7. This implies immediately a* = Λ;0 and

Ae = Ao = A L Q. K D.
Now we consider a normal continuous mapping x -> Λ̂  on A without the

assumptions v/ and ix) (cf. Thm. 1.1 of [2]).
THEOREM 3. Let x->x* be a mapping from A into itself satisfying i), iii),

iv) and vii) for x, y and xΊ in A, then there exists a unique positive operator
r € L\A) such that

(5) 7e = re and x€ = (Λ r)6 = (rΛ:)6 for all x € A,

where x -> JC6 is <z conditional expectation relative to a W*-subalgebra determined
by the mapping x -> Λe.

PROOF. Putting /^(Λ;) = ffc(̂ ) for all x € A, ^ is a positive linear function
and strongly continuous on the unit sphere So of A. For, since x -> x* is
weakly continuous on So (cf. Dixmier's Cor. 1 of [4]), μγ is also weakly
continuous on So, and hence strongly continuous on So because μτ is a
numerical function. By the Radon-Nikodym theorem of Segal (cf. Thm. 14
of [3]), there exists a positive operator r €Ξ Lι(A) such that

μΊ(x) = /A(AT) for all ΛΓ € A.

We now prove i) and iii) imply ii). Since any x in A can be expressed b}r
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x = xγ — x2 + ixs — iXi for xk € A, we have x* = xλ— x2 — iXoo + iχ4. i) and iii)

imply that ΛJ > 0 (& = 1, ,4) and #*« = ^ — xi — ioq + /#*, and the right
side equals to x** hence we have x*e = Λf*.

Taking Ao as in the proof of Thm. 2, the weak closedness of A follows
from the normal continuity of xs and a theorem of Dixmier (cf. Nakamura-
Turumaru [5]), that is, Ao = A1% Let Λ; -> Λ̂  be the conditional expectation
relative to Ale Then by (3) in the proof of Thm. 1, for all z € Aly

μ{ZJf) = μ((ZX)<) = />t(2ΛΓr) = μ(z(xrf)

which implies that Λf = (xr)e and /e = r5. Moreover for any x <Ξ A,

(xr)e = Λ6 = **e* = (Λ?V)β* = (Λ?V)*β = (r*#)β = (r^)e. Q. E. D.

REMARK 2. If the mapping x -> Λf in Thm. 3 is Z1-continuous instead of
the normal continuity, then we can find a positive operator r in A satisfying
(5). More generally, for a mapping x -> Λ6 from A into itself satisfying i), ii),
vi) for all x, y € A and the /^-continuity, (5) also holds for s. a. rζ A where
the conditional expectation x -> x6 is taken relative to the PΓ*-subalgebra A1

(cf. the proof of Thm. 2), and this fact results that the normal, strong and weak
continuities (on the unit sphere of A) of the mapping x -> Xs and Ae = AΛ.
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