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1. Introduction. The concept of the conditional expectation in probability
theory is very important, especially fundamental for the martingale theory.
In a book [1]® of J. Doob, various properties of the conditional expectation
in a probability space are described for the random variables having the
expectations. While in a recent paper [2], Shuh-teh C.Moy has discussed
the characteristic properties of the conditional expectation as a linear trans-
formation of the space of all extended real-valued measurable functions on
a probability space into itself.

The present paper deals with the conditional expectation as a mapping
of a space of measurable operators belonging to a ZLl-integrable class asso-
ciated with a certain W+-algebra into itself. This generalization seems to
be a first attempt of a non-commutative probability theory. The non-com-
mutative integration theory? of I E.Segal (cf. [3]) has its due application in
the subject. '

We shall show in §2, the existence of the conditional expectation for
the space of measurable operators of the Ll-integrable class associated with
a certain W+-algebra, and in §3, the uniqueness in a certain sense of such a
mapping which is a generalization of a characterization theorem of S.C. Moy.

2. Existence of conditional expectation. Let A be a W+-algebra,
acting on a Hilbert space H, with a complete (faithful) normal trace p with
w1 =1

Let A, be an arbitrary (but fixed) W+*-subalgebra of A. In this section
we shall introduce a conditional expectation in A relative to A,.

First we shall prove in ZL!(A) the existence theorem of conditional ex-
pectation where L'(A) consists of all integrable operators on H with respect
to the ZLi-norm !x'; = u(|x|) (cf.[3] D2f. 3.2, Cor.10.1 and Cor.11.3) which
are associated with the W#+-algebra A.Similarly we denote the space L(4,)
associated with the W+subalgebra A,, then L! (A,) can be considered as a
closed subspace of L!(A).

THEOREM 1.  There exists a mapping x -» x° from L'(A) onto L'(A,) satisfying
the following conditions: for any %, y € L\(A) and any complex numbers &, B

(i) (ax + Byy = ax® + By,

1) Numbers in brackets refer to the reference at the end of the paper.

2) J.Dixmier has also described the similar theory under a different way (cf. [4]).
In the present paper, we shall use the dzfiaitions and terminologies of I. E.Segal (cf.
[3]). We shall denote the product, sum la1d difference of msasurable "operators zx,y
merely by zy,x+y and z—y,e. g., ey implies z-y in the notations in [3]. When z=y
nearly everywhere, we shall denote mearely z=y (n.e.) or x=y.

3) After we had provel th: Tam 1, we have been pointed out by M. Nakamura
that the existence of mapping x—»z* from A to A; was proved by Dixmier using his
-oo3rator mathod (cf. Thm. 8 of [4]). In this paper, we shall prove Thm. 1 by Radon-
Nikodym Thm.of Segal (cf. [3]) and extend it onto LI!(A). ’
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(ii) x*e = xoK

(iii) x =0 implies x° = 0,

(iv) x=0 and x* =0 imply x= 0,

W) 2=z for any z in L'(A)).

Moreover the mapping x-> x° transforms A onto A, satisfying  x*'<'"x',
x*xe < (x*x)° and

(vi) (x°9) = (xy7) = 2"y for x€LY(A), y€ A or xc€ A, yc L\(A),
(vii) xy A x implies xi N x° for xy, x€ A,
(viiy x> x° is strongly and weakly continuous on the wunit sphere of A,
(viii) () = (yx)° for x € L\(A) and y € A] NA,
(ix) plx0]) < pl ] x]).

Proor. For any x € A+, putting p.(z) = p(xz) for z € A,, p= is a positive
linear functional on A, satisfying that |w.(2)| < ix- u(|z|) for all z € A,. By
a lemma of Segal (cf.Lem. 14.1 of [3]), there exists a unique positive operator
x’ in A, such that w.(z) = w(x’z) for all z € A, where the operator x’ is
uniquely determined by x. Putting x¢= x’, (ax + By’ = ax®+ By° for any
x, ¥ € A+ and numbers «, 3= 0. Since any x( € A) = x, — %, + ix; — ix, (for
some x,€A*) and this expression is unique, putting x° = x{ — x; + ix; — %},
x-> x° is defined for all x € A and it satisfies that
€)) p(x2) = p(xez) for any x€ A and z€ A;.

It is easily seen that z; = 2, (2,2, € A,) if and only if u(z:2) = p(z,2) for all
2 € A,. This fact implies that the introduced mapping x> x° is well defined
on A, transforms A onto A, and satisfies the conditions i), ii) and v) for all
x, y€ A and z € A,. iii) is clear by the construction of x¢ in A. iv) for x €
A follows from (1),iii) and the completeness of x. Moreover for any %, ¥ €
A and z € A,
m(x°y)z) = p(x°yz) = w(¥2x°) = w(x°yz) = W(xy")z),
hence vi) holds for x,¥ € A. The normal continuity of x> x° (i. e., vii)) or
more generally viiy/ follow from that iv), a*x* < (x*x)° (as below) and the
following fact: The trace p is represented by a canonical trace, i.e., u(x) =
@&, ¢) for some ¢ € H, and for any & € H there exists a vector & in [A{]
such that (&, &) = (x &, &) for all x&€ A (by the Radon-Nikodym theorem
of Segal, cf. Thm.14 of [3]), and for any y€ A there is z€ A, such that u(x*
yy¥) = u(xzz*). While for any z€ A,, x€ Aandyc A/ N A
w(x5)2) = w(xy2) = p(xzy) = p(yxz) = p(yx)°2),
hence viii) holds for such x, ¥ in A. ix): For x € A there exists a partially
isometric operator w € A, such that |¥°| = wa’, hence u(|x°]) = pwx®) =<
fw|- p(|x])=p(|x]) and we have ix) for x€ A.  x° < 'x' is clear by
the construction of x> x°. Since for any x€ A
0 < ((x — 20 (x — x9)° = (x*x — x*x + x*%%° — x*x°)° = (x*x)° — x*%°,
we have x*ex® < (x*x)°.
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Since all x € A or A, are elementary operators respectively (cf. [3]), A
and A, are dense in L(A) and L!(A,) respectively. By ix) for x€ A, x> x°
can be extended onto Z!(A) and i), ix) hold for x, ¥y € Li(A). For any x €
L1 (A) (or L(A,) resp.), taking {x,} < A (or A; resp.) such that
2) w([x%a — x[) >0 (n > ),
since wp(|y*]) = p(|¥|) for any y € L(A), we have ii) for x € Li(A). (2) also
implies that
3) pw(xf2) = lim (px2) = lim p(x,2) = pu(x2) for all z € A,.
Since v) holds for A,, by (2) it also holds for ZL!(A;). If x=0 (x € LY(A)),
there exists a {x,} < A+satisfying (2) (by Cor. 12.1 of [3]). Whence »* = lim
X (in Z'-mean) ‘and x>0 by Lem.13.3 of [3]; and if x=0 and x*= 0, then

w(x) = w(xl) = p(x®) = 0
and x= 0 (n.e.), and we have iii) and iv) for L!(A). For any x € L{(A) and
y € A taking {x,} < A as (2),
(xy)° = lim (x.y) = lim x2y* = x°y*
and similarly = (x3?)’. We have also viii) by the similar way taking the

sequence {#%,} in A. The later part of vi) follows from the former and ii).
Q.E.D.

ReMARK 1. Applying the proof of Thm.1, it holds that
viiiy (xy) = (yx)
for x€ A and y € LY(A; N A) which is the integrable operator associated
with the W*-subalgebra A; N A.

We shall call the mapping x> x* from L!(A) to L'(A,) the conditional
expectation relative to A,.

3. A characterization of conditional expectation. In this section,

we shall prove a characterization theorem of the conditional expectation
which is a generalization of a theorem of Shuh-teh Chen Moy (cf. Thm. 2.2

of [2]).

THEOREM 2. Let x> x* be a mapping from A into itself satisfying i), ii),
vi), ix) for x,y € A, and
vy Ir=1I

Then the range A< of the mapping x> x° is a W+subalgebra of A and x> x*
coincides with the conditional expectation relative to As, that is,

x = x° Sfor all x € A.

Proor. Let A, be the collection of all z € A such that
(zx) = zx and (x2)° = x2 for all x € A.
Then A, is a self-adjoint subalgebra of A containing 7. Indeed, for any-z,
2,2€ Ay and x € A,
(21 + 22)%)¢ = (2.%)° + (2% = 2.6 + 2,6 = (2; + 2.)%,
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(2*x) = (x*z)*e = (¥Fz)* = (x*2)f = (x="2)* = 2¥x,
(212:%)° = 21(2:%) = 212X,
(a zx); = & zx,

and similarly (x(2; + 2,)) = 2(2; + 2,), .. ..etc. hold. Clearly 7€ A, Let A,
be the weak closure of Ay, and x> x* be the conditional expectation relative
to A,. Putting u(x) = u(x°), since

()] < w(lx]) < p(lx]),
1 is a bounded linear functoinal on Z!'(A). Hence there' exists an operator
7 in A such that

m(x) = p(x) = pw(xr) forallxc A
(cf. Cor. 18.1 of [3] or Thm.5 of [4]). Therefore for any z € A,,
@ wzas) = p((zx)) = pw(zar) = p(z(xr)).

Since A, is strongly dense in A; and the both sides of the equation (4) are
strongly continuous for z € A,,

w(z2xe) = p(z(xr)?) for all z € A,.
Hence x = (x7)". Since

plar) = p(a) = pa*r) = p(x") = p(r) = p(F7)) = pr*a) = p(ar*)
for all x€ A, »*=7. By lp@r)| < p(|x]), 7| and | 72| <1, hence 2 < I
While
rr=Ury=I>r=

and by iii), iv)

OS (=T —7)r =T —2r+ 7 =1I—27°+ @2 =2y —I=<0.
Therefore (I — 7)(I — 7))’ = 0 and » = I. This implies immediately x = x¢ and
A=A, = A, Q.E.D.

Now we consider a normal continuous mapping x > x on A without the
assumptions v,/ and ix) (cf. Thm.1.1 of [2]).

TuEOREM 3. Let x> x be a mapping from A into itself satisfying i), iii),
iv) and vii) for x, ¥ and xy in A, then there exists a unique positive operator
v € L'(A) such that
5) If = 7° and x = (xr) = (rx) Jor all x€ A,
where x> x° is a conditional expectation relative to a W+-subalgebra determined
by the mapping x -» x~.

Proor. Putting u,(x) = p(x) for all x € A, u, is a positive linear function
and strongly continuous on the unit sphere S; of A. For, since x- x° is
weakly continuous on S, (cf. Dixmier’s Cor.1 of [4]), & is also weakly
continuous on S,, and hence strongly continuous on S, because g, is a
numerical function. By the Radon-Nikodym theorem of Segal (cf. Thm. 14
of [3]), there exists a positive operator r € L!(A) such that

pa(x) = p(xr) for all x € A.

We now prove i) and iii) imply ii). Since any x in A can be expressed by
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x=2x — X+ i% — ix, for x, € A, we have x*=x — x, — ix; + 7x,. i) and iii)
imply that x4 =0 (=1, ...., 4) and x* = x — x; — 7% + ¢x;, and the right
side equals to x¢* hence we have x* = x°*

Taking A, as in the proof of Thm. 2, the weak closedness of A follows
from the normal continuity of x° and a theorem of Dixmier (cf. Nakamura-
Turumaru [5]), that is, A, = A;. Let x> x° be the conditional expectation
relative to A;. Then by (3) in the proof of Thm. 1, for all z € A,,

#(zx) = p((zx)) = w(zxr) = p((x7r))
which implies that x = (x7)* and I = 7°. Moreover for any x € A,
(xr)ﬂ = x€ = gtk (xk,,)c* = (x*y)*e — (r*x)e — (rx)”. Q E.D.

ReMARK 2. If the mapping x> x in Thm.3 is Z!-continuous instead of
the normal continuity, then we can find a positive operator » in A satisfying
(5). More generally, for a mapping x> x* from A into itself satisfying i), ii),
vi) for all x, ¥ € A and the L'-continuity, (5) also holds for s.a.r€ A where
the conditional expectation x> x° is taken relative to the W*-subalgebra A4,
(cf. the proof of Thm. 2), and this fact results that the normal, strong and weak
continuities (on the unit sphere of A) of the mapping x> x and A<= A,.
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