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The structure of real normed linear spaces with the extension property
was clarified by Nachbin [10], Goodner [6] and Kelley [8]. Such a space is
known to be equivalent to the:- Banach space of all real-valued continuous
functions on a suitable stonean space with the topology of uniform norm. In
connection with this, it has been conjectured that an analogous theorem will
hold for complex normed linear spaces (cf. Grothendieck [7]). The object of
the present note is to give an affirmative solution to this problem by utiliz-
ing the device of Kelley [8]. In our discussion, a theorem on continuous selec-
tions, proved in § 1, enables us to apply well the device of Kelley to our case.

I am indebted to Professor Z. Takeda for his helpful suggestions and
encouragement, and I also wish to thank Professor M. Fukamiya for his
guidance at the final stage of this work.

1. A continuous selection theorem. Let X, Y be any topological
spaces and Y a mapping which assigns to each ¥ € X a non-void subset V()
of Y. v is called upper (lower) semi-continuous if {x € X:Y(x)c U}({x € X:
Y(x) N U = ¢}) is open in X for any open set U in Y. We denote by F(Y)
the totality of non-void closed subsets of Y.

THEOREM 1. Let X be a stonean space, Y a compact space and » a map-
ping of X into (Y). If ¥r is ubper semi-continuous, then there exists a con-
tinuous mapping f of X into Y such that f(x) € Y (x) for every x € X.

Before proceeding to the proof of the theorem, we state several lemmas.

LEmMA 1. Let X be a topological space, Y a compact space and v, ¥,
two upper semi-continuous mappings of Xinto 5(Y). If W is a closed entourage
of Y such that 0(x) = (%) | Wrs(x)) s non-void for every x< X, then @ is
an upper semi-continuous mapping of X into 3(Y).

Proor. Since the closedness of 6(x) follows from the compactness of
Yri(x), Yra(x) and W, it suffices to show that {x &€ X:0(x) F = ¢} is closed
for any closed set Fin Y. As X(x) = Y (x) X Yrx(x) is an upper semi-continuous
mapping of X into $(¥Y x Y), the lemma follows from the equality

{2€X:00) NFxdp)={x€ X: XX N{WNEFXY}=¢}

LemvaA 2. Let X be a topological space, Y a compact space and {V¥,\} a
family of upper semi-continuous mappings of X into FY). If {{.\} is decreasingly
directed in the sense that, for any Y\, ¥, there exists a Vi satisfying
Yra(2) D Yo%) and (%) D Yar(x) simultaneously, then V(%) = N¥x) is an
upper semi-continuous mapping of X into F(Y).
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ProoF. V¥ (%) is clearly non-void and closed. For any open set U in Y, we
have
e X: VX cUr= UNx € X:¥\(x) < U).
Since ¥, is upper semi-continuous, {* € X:¥\(x) U} is open for each A and
consequently {x € X:Yr(x) < U} is open. Hence V¥ is upper semi-continuous.

LEMMA 8. Let X be a stonean space, Y a uniform space and ¥ a lower
semi-continuous mapping of X into a family of non-void subsets of Y. Then,
for any open symmetric entourage W of Y, there exists a continuous mapping
fof X into Y such that f(x) € Wr(x)) for every x € X.

Proor. For any y € Y, define

Gy ={r€ X:y € W¥x)).
Since Gy = {x € X:¥(x) N W(¥) + ¢} and ¥ is lower semi-continuous, Gy is
open for any y. The totality of non-void G, forms an open covering of X.
Since X is stonean, there exists a refinement {G;:7= 1,2, ...., »} of this cover-
ing which is a partition of X into a finite number of open-closed sets. Take,
for any i (1 <i=<n), a set G,, satisfying G; = G,, and define a mapping f of
X into Y by setting

(%) = y; forxe G, i=1,2,....,n.
Then f satisfies the required conditions in the lemma. q.e.d.

Let, once for all, X be a stonean space and Y a compact space. Let Y

be an upper semi-continuous mapping of X into %(Y) and set

My ={xc X:¥{(x)c U}
for any open set U in Y. Since ¥ is upper semi-continuous and X is stonean,
both My and My are open in X. Now define

Y@= NT:x M),
where the intersection is taken over all open subsets U of Y satisfying
x € My. Then, as we shall see from the following lemma, ﬂx) is non-void

for any ¥ € X and we obtain a mapping of X into F(Y). We shall call \7
the regularization of Y.

LeEMMA 4.
(... Mo, = My
where {U:} is any finite number of open sets in Y and V = ﬂ;Ui.

Proor. We denote by N the first member of the equality. Since My =N
is clear, we may suppose that N is non-void. To prove N < My, it is suffi-
cient to show that, for any x&€ N and any open neighborhood G of x,
G N My + ¢. Since N is open, we may assume G < N. As G < My, and My,
is open, G; = G [} My, is a non-void open set. Since G, < Mun,, G, = G, N My,
is also non-void and open. Repeating the same argument a finite number of
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times, we find that G. = GN( ﬂ:;an") is non-void. Since we can easily
verify that. My, = n:‘lM v,, G contains a point of My.

LemMmA 5.- The regularization $ of an uppeér semi-continuous mapping ¥
of X into F(Y) is semi-continuous in both senses and satisfies Y¥(x) D %(x) for
every x &€ X.

Proor. Let /be any open set in Y such that G = {x € X: \F(x)c]} is non-
void. If % is any pointin G, then Y{x) < /. Since ¥{x,) is the intersection of
compact sets U such that x € My, there exist a finite number of open sets
Ui(i=1,2,...., n) in Y such that xy € My, G=1,2,........ ,m) and Y{x)>

:1?;(:]. By Lemma 4, x e'ﬂllﬁl?: My, where V = ﬂ;U;. If
x € My, then ¥x <V cﬂlfU_i —J. Thus % € My < G. Since My is open
and % is arbitrary in G, G is open. Hence 1]; is upper semi-continuous.

To show that ¥ is lower semi-continuous, it suffices to verify that A =

{xe X: \F(x) i F}_ is closed for any closed set F in Y. Suppose that x € A
and xy— x. Let W be 'any open entourage of Y. Since W(F) is open and

17;(x,\) — F < W(F), there exist, for each X, ‘a finite number of open sets U,

(¢(=1,2,...., m) in Y such that x,. € My(t=1,2,........ ,m) and Y(x) <
[\ Unic W), Tt follows that

S ﬂ:l:]MEA—' = My, < M) for each A,
where V) = ,"; Uny. Since Mg is closed, x € Mw). Thusv?r(x) - W(F).

As W is arbitrary, %{x)cﬂw:WG:) = F. Hence € A and A is closed.
The latter part is clear. q.e.d.

ProoF oF THEOREM 1. Let 11 be the set of all upper semi-continuous mappings
of X into §(Y). If we déﬁﬁe an ordering relation in U by setting ¥, =V, when
and only when ¥,(x) D V¥.(%) for every x € X, then Lemma 2 implies that Ul
is inductively ordered with respect to=. Now, let ¥ be any upper semi-
continuous mapping of X into (Y), i.e. any element in Il. Then there exists,

by the Zorn lemma, a minimal element § € 1 satisfying ¥ = 6. Let 9 be the
régularization of: 6. Since € is upper semi-continuous and § =6, we have

0=0 by the minimality of 8., Hence 0 is also lower semi-continuous. We
assert that 6(x) consists of a single point for any x € X. Suppose, on the
contrary, that 6(x) contains two distinct points ¥, and y. for some % € X.
Then we can find symmetric entourages W;, W; of Y such that W, is closed,
W is open, W, D W, and ¥ ¢ Wiy.). By Lemma 3, there exists a continuous
mapping' g .of X into Y such that g(x) € Wu@(x)) for any x< X. Then
6,(%) = 0(x)'N Wi(g(x)) is non-void for any x € X and, by Lemma 1, ¢, is upper
semi-continuous. Since'd = 6,, we have 8, = 0 by the minimality of 8. Thus
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0,(x,) must contain y, and y,. Therefore, we have y,, ¥, € Wi(g(%)), which
implies ¥, € W¥y.). This contradiction shows that 6(x) consists of a single
point for every x € X. If f denotes a mapping of X into Y which assings to
each x € X the point contained in 6(x), then f is clearly continuous and f(%)
€ 6(x) cYr(x) for any x € X. This completes the proof.

2. The extension property. Let K be a compact space and C(K) the
Banach space of all complex-valued continuous functions on K with the uni-
form norm. The dual of C(K) is denoted by C*K), whose elements are
measures on K. For each p € K, an elenents &, € C*K), defined by &,(F) = (p)
for f € C(K), is called an evaluation at p.

LeMMA 6. Each measure p on a comba:ct space K is weakly* adherent to
th2 set T' of lincar combinationsz a;€y, of evaluations &,, where {p,} varies
over all fiaite suhsets of the carrier of p and {2} varies over all finite systems
of complex numbers such that 2 |as] =< ||pl||(cf. Bourbaki [4], p.75).

LEMMA 7. A measure p on a compact space K is an extreme point (in the
sense of the real vector space theory) of the unit sphere 3* of CXK) if and only
if there exists a point p € K and a combdlex nunder a with |a| =1 such that
M= aep.

ProoF. Suppose p is an extreme point of 3* and the carrier S of u con-
tains more than one point. Let S, be a proper closed subset of S such that
S—3S, =S and let T be the same as in the preceding lemma. Then anyr&TI’
can be written uniquely in the form » = @,(v) + @i(v) where the carriers of
@:(v) and py(v) are contained in S; and in S — S, respectively. @, and @, are
mappings of I' into itself. By Lemma 6, there is a filter-base & on I' which
is convergent weakly* to u. Then & = @,(%) is a filter-base on I'. By the
weak* compactness of 3*, there is a filter-base &, on I' which is finer than
% and convergent weakly* to a u, € 3*. Let &, be the family of sets of the
form @M N @7 (M,)) where M € & and M, € #,. Then %, is also a filter-
base on I' and there is a filter-base §, on 1' which is finer than &, and con-
vergent weakly* to a u, € S*. Itis easy to see that u = pu, + p, and ||ul| = [l
+]luo|l = 1. Since the carriers of u; and u, are included in S, and in S —S;,
respectively, we have u; +90, p;+0 and u, +pu, Putting ||| = a, and
Izl = a2, we get p = py + pe = as(a?« w) + afa;' < ug), which is clearly a
contradiction. Thus S consists of a single point p € K and we have p = a&,
where |a| = 1. .

To show that &, is an extreme point of 3*, suppose that &, = au; + (1 — @)y,
where p;, u; € 3* and 0 < ¢ < 1. Of course, &,(f) =f(D) = ay(f) + 1 — @) wo(f)
for any f € C(K) where C(K) denotes the Banach. space of all real-valued
continuous functions on K. We may write u; = p) + iuf? for j= 1,2, where
p§) are real measures on XK. Then a theorem of Arens-Kelley [1] implies
that u(f) = p®(f) =A(P) and pA(f) = uP() = 0 for any f € C(K). Thus
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() = pf) = E(f) for any f € C(K). Hence, by linearity, u(f) = pf) = Ex(1)
for any f € C(K). This shows that & is an extreme point. It is then clear
that a&, with |a| =1 are extreme points of 3*. q.e.d.

We say that a complex normed linear space B has the extension property
if, for any complex normed linear space D and for any linear subspace D, of
D, every bounded linear mapping @ of D, into B has a linear extension &
of D into B such that ||| = ||¢].

THEOREM 2. A complex normed linear space B has the extension property
if and only if B is isomorphic in an algebraic and norm preserving fashion to
C(X) where X is a stonean space.

Proor. It is easy to show the “if’-part of the theorem. Let D be a
complex normed linear space, D, any linear subspace of D and ¢ a bounded
linear mapping of D, into C(X) where X is a stonean space. If we denote by
C,{(X) the totality of real-valued functions in C(X) and define

[@1(@)](%) = real part of [@(a)] (%)
for any a € D, and any x € X, then ¢; is a mapping of D, into C(X) which
is linear with respect to the real scalars and satisfies ||| < ||l@| and @(@)=
@i(a@) — ipy(ia) for any @ € D,. Since C.(X) has the extension property as a
real Banach space by a theorem of Nachbin [10], there exists a real-linear
mapping ®; of D into C(X) which extends @, and satisfies || @] = |@:]. Put
®(a) = P1(a@) — iDi(ia@). Then & is a bounded linear mapping of D into C(X)
which extends . We assert that ||®| < |®,||. By definition,
@l = supjjansil|®@llecry = sup|jajs1,zex| [P(@))()]
and
|®1| = supjjaisi|Pi(@)lle,cn = supjaysy,zex| [Pr(@)IH)].
For any & > 0, there exists an @ € D with |@]| <1 and an x € X such that
@l < [[P(@)l(x)| + €. There exists a real number 8 = (%), ao) such that
[D(ean)](%) = e*([P(an)](%)) is real and therefore [D,(e“ay)l(%) = [D(e*a)l(%).
Thus we have
[Pl < [[Plan)]o)| + &€ = [[D(e“a)](%)]| + &
= |[Di(efa)](%)]| + & < D]l + €.
As ¢ is arbitrary, |®|| =|®i|. Consequently, [®| =[P = lloi] < el
Since |@|| < ||®|| is clear, we conclude that ||®] = ||@||. Hence the space C(X)
has the extension property.

Now we have to show the “only if” part of the theorem. Suppose B has
the extension property. Let E be the set of extreme points of the unit sphere
3* of B*, the dual of B, and Y the weak* closure of E. Y is clearly weakly*
compact. If we set y,=y, for ,y, € Y when and only when there exists a
complex number a« with |a| =1 such that y, = ay,, then we obtain an
equivalence relation in ¥ which we denote by R;. We say that an equivalence
relation R defined in a topological space M is closed if the saturation of any
closed subset of M with respect to R is closed in M. Then the relation R,



140 M. HASUMI

is closed with respect to the relative weak* topology for Y. Let F be any
weakly*. closed subset of Y. .If we denote. by % the mapping of Cy x. Y into
Y defined by % («,y)=«ay where C, is the unit circle({a:|a| = 1})in, the complex
plane, then the saturation of F with respect to R, is obviously A(Cy X F).
Since Cy and F are compact and & is continuous, k(Cy X F) is weakly* com-
pact and, consequently, weakly* closed in Y. Hence R, is closed,

Next, we shall prove

- Lemma 8. The quotient space X'=Y|Ry, is a stonean space where the
topology of X is the quotient of the relative weak* topology for Y.

We recall that a non-void subset L of a convex set' K in-any (real or
complex) linear space is called a support of K if each line segment contained
inK which has an interior point in Z is contained in Z, and that, if a point
is an extreme pomt of a support of K, it is also an extreme pomt of K.

PROOF OF LeMMA 8. X being clearly compact, we shall show that G is
open for any open set G in X.. Let h be the natural mapping of ¥ onto X
and put U = h~G). Then U is a saturated open set in Y. Since R, is a
closed equivalence relation, (U) is closed and we have G = wU) = U). As
U is saturated with respect to R,, we have only to prove thatU NV = ¢
where V is the complement of U in Y. For this end, we argue as follows.
Set Z= ({0} x U)U({1} x V), the topology of which is defined such -that a
set in Z is open if and only if it is of the form ({0} x U)U{1} x V) where
U, and V, are relatively open in U and in V, respectively. We notice that
V is also saturated. Now, Z being the union of disjoint compact spaces, C(Z)
is the direct sum of C({0} x I) and C({1} x V). Accordingly, the dual C*(Z)
is the direct sum of C*({0} x U) and C*{1} x V), each of which is weakly*
closed in C*(Z).

Define a mapping @ of B into C(Z) by putting [@(®))(0, %) = <b,4> and
[p®)](1,v) = <b,v>, where b€ B, u € U and v € V. It is clear that @ isa
linear isometric mapping of B into C(Z). A simple calculation shows that,
for any # € U, any v € V and any complex number «|
(@)) p*(aEow) = au and @*a€uw) = av,
where @* is the adjoint of @. For any w € U U V, we set K(w) = ¢*(w) N S*
where 3* is the unit sphere of CX(Z). If » € U is an extreme point: of the
unit sphere 3* of B*, then K(u#) is a support of 3¥ which is weakly* com-
pact.: By the Krein-Milman theorem (cf. Bourbaki [3], p. 84), K(z) is the closed
convex envelope of the extreme points of K(#). Since every extreme point
of K(u) is an' extreme point of ¥, it follows from Lemma 7 and the first
equality in (1) that the extreme points of K(u) are of the form a 1€y awWith
lal'=1. Thus K@) < C*{0} x U). Similarly, if v € V is an extreme point

of 3*, then K(») < C*{1} x V).
~ Since B has the extension property, there exists a linear mappnig ¢ of
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C(z) onto B such that |®| =1 and d¢ is the identity mapping on B. It is
obvious that ®* carries 3* into 3¥ and (®@)* = @p*dP* is the idnetity mapping
on B*. ‘Thus ¢*®*w) = w implies ®*(w) € Kw) for any we U U V. Set
U=UNEandV,=V N E. Then ®*u) € K(u) = C*{0} x U) for any u <
U, and ®*(v) € K(v) < C*({1} x V) for any » € V;. Thus we have ®*T,) N
d*(V) = ¢, where the bars denote the weak* closure in C*(Z). Since U,
and V, are dense in U and in V, respectively, we have
O N PXV) = OXT) | D(V)) < d¥U) N d*(V1) = 2.

Hence U (| V = &, which proves Lemma 8.

Since X = Y/Ko, each element x € X is regarded as a subset of ¥ which
is denoted by Y(%). Y(x) is clearly a closed subset of ¥ for every x € X.
From the weak* closedness of the equivalence relation R, follows that ¥r(x)
is upper semi-continuous. Hence, by Theorem 1, there exists a continuous
mapping 7 of X into Y such that 7(x) € ¥{x) for every x € X.

Let @ be a linear mapping of B into C(X) defined by [@(0)1(%) = <b, w(x)>
for any b € B and any ¥ € X. Then ¢ is clearly isometric. Since B has the
extension property, there exists a linear mapping & of C(X) onto B such
that |®|| = 1 and dg is the identity mapping on B.-Let 3* and 3* be the
unit spheres of B* and C%X), respectively. If # is an extreme point of 3*,
then K(u) = @*~'(u) N =¥ is a support of 3 which is weakly* compact. If p.
is any extreme point of K(#), then u is an extreme point of 3* and, by
Lemma 7, there exists a point ¥ € X and a complex number a with |a| =1
such that p = a&,. Since @*(u) = u, we have, for any b € B,

<b, u> = <b, p*()> = <), p> = <@®), at,>
= alp®)](x) = a<b, wx)> = <b, awr(x)>.

Hence # = am(x) and, since |a| = 1, #=mw(x) (mod. Ry). It follows from the
hypothesis on o that ¥ and a are determined uniquely by ». Thus K(#) con-
sists of a single print a€, and we have ®*(%) = aé,. Putting Q, = {a&,:m(x)
€ E, |a| = 1}, we have shown that ®* maps E into Q,. Conversely, let aé&,
be any element in ;. Then aw(x) is an element in £ and ®*(an(®) = as,.
Hence ®* maps E onto ;. Denote by E, the set of extreme points of Sk
Lemma 7 implies that E, = {a&:x € X, |a| = 1}. Since E is weakly* dense
in ¥, Q, is weakly* dense in E,. Thus we conclude, by the weak* com-
pactness of Y, that ®*(¥Y)D>E,. Hence, by the Krein-Milman theorem,
®*(3*) o 3F and therefore &* maps B* onto C*X). On the other hand,
since dg is the identity mapping on B, (dp)* = o*®* is the identity mapping
on B* and, consequently, o* must be a one-to-one mapping of C*(X) onto B*.
It is an easy matter to see that any normed linear space with the extension
property is necessarily complete, i.e., a Banach space. Hence ¢ (B) is closed
in C(X) and therefore @ maps B onto C(X). Thus B and C(X) are isometri-
cally isomorphic and Theorem 2 is established.
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