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The structure of real normed linear spaces with the extension property-
was clarified by Nachbin [10], Goodner [6] and Kelley [8]. Such a space is
known to be equivalent to the Banach space of all real-valued continuous
functions on a suitable stonean space with the topology of uniform norm. In
connection with this, it has been conjectured that an analogous theorem will
hold for complex normed linear spaces (cf. Grothendieck [7]). The object of
the present note is to give an affirmative solution to this problem by utiliz-
ing the device of Kelley [8]. In our discussion, a theorem on continuous selec-
tions, proved in § 1, enables us to apply well the device of Kelley to our case.

I am indebted to Professor Z. Takeda for his helpful suggestions and
encouragement, and I also wish to thank Professor M. Fukamiya for his
guidance at the final stage of this work.

1. A continuous selection theorem. Let X, Y be any topological
spaces and ψ a mapping which assigns to each x ζ X a non-void subset ψ(x)
of Y. ψ is called upper (lower) semi-continuous if {xζ X:ψ(x)a £/}({# €E X
-ψix) Π U Φ φ}) is open in X for any open set U in Y. We denote by $(F)
the totality of non-void closed subsets of Y.

THEOREM 1. Let X be a stonean space, Y a compact space and ψ a map-
ping of X into \$(Y). If ψ is upper semi-continuous, then there exists a con-
tinuous mjppingf of X into Y such that f(x) € ψ(x) for eυery x € X

Before proceeding to the proof of the theorem, we state several lemmas.

LEMMA 1. Let X be a topological space, Y a compact space and ψτ, ψ.,
two upper semi-continuous mappings of Xinto $(Y). If W is a closed entourage
of Y such that θ(x) = ψι(x) f| W(Ψ >(x)) is non-void for every x ζ X, then θ is
an upper semi-continuous mapping of X into $(Y).

PROOF. Since the closedness of θ{x) follows from the compactness of
Ψi(x), Ψ >(x) and W, it suffices to show that {x 6 X: θ(x) f] F Φ φ} is closed
for any closed set F in Y. As X(x) = ψχ(x) x ψ2(x) is an upper semi-continuous
mapping of X into ι$(Y x Y), the lemma follows from the equality

{xex:θ{x) (\F*Φy = {χ€X:x{χ) n {w n (F X Y} Φ Φ}.

LEMMA 2. Let X be a topological space, Y a compact space and {ψ^} a
family of upper semi-continuous mappings of X into $( Y). If{ψ\} is decreasingly
directed in the sense that, for any ψ\, ψ\r, there exists a ψk" satisfying
ΨK(X)ZDΨK»(X) and ψk,(x) ID Ψκ»(x) simultaneously, then ψ(x) = ΓlλΨ\(tf) is an
upper semi-continuous mapping of X into
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PROOF. ψ(x) is clearly non-void and closed. For any open set U in F, we
have

Since ψκ is upper semi-continuous, {x 6 X Ψ\(x) cz U} is open for each λ and
consequently {x £ X: ψ{x) c: U) is open. Hence ^ is upper semi-continuous.

LEMMA 3. Let X be a stonean space, Y a uniform space and ψ a lower
semi-continuous mapping of X into a family of non-void subsets of Y. Then,
for any open symmetric entourage W of Y, there exists a continuous mapping
f of X into Y such that f{x) e W{ψ{x)) for every

PROOF. For any y € Y, define

Since Gy = {x € X. ψ(x) f] W(y) Φ φ} and ψ is lower semi-continuous, Gy is
open for any y. The totality of non-void Gy forms an open covering of X.
Since X is stonean, there exists a refinement {G't: i = 1,2, . . . . , n} of this cover-
ing which is a partition of X into a finite number of open-closed sets. Take,
for any i (1 <Ξ * g w), a set G,J% satisfying G\ a GVi and define a mapping/ of
X into Y by setting

f(x)=yi forxζG'ί, i= 1,2, ....,n.

Then/ satisfies the required conditions in the lemma, q.e.d.

Let, once for all, X be a stonean space and Y a compact space. Let ψ
be an upper semi-continuous mapping of X into $(Y) and set

for any open set U in Y. Since ψ is upper semi-continuous and X is stonean,

both Mu and Mu are open in X Now define

# ( * ) = Π (EΓ:*€ΪWV),

where the intersection is taken over all open subsets U of Y satisfying
x €ί MET. Then, as we shall see from the following lemma, ψ(x) is non-void
for any x € X and we obtain a mapping of X into 3?(F). We shall call ψ
the regularization of ψ\

LEMMA 4.

where {Ui} is any finite number of open sets in Y and V = (~\ί=ιUi.

PROOF. We denote by N the first member of the equality. Since M
is clear, we may suppose that N is non-void. To prove NczMv, it is suffi-
cient to show that, for any x € N and any open neighborhood G of x,
G Π Mv =t= Φ> Since N is open, we may assume G cz N. A s G c MΰΊ and MVi
is open, G1 = G Π Λ̂ î is a non-void open set. Since Gi cz: M^, G2 = Gλ {\Mut

is also non-void and open. Repeating the same argument a finite number of
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times, we find that £,, = Gπf/^^Λf^ 1 ) is non-void. Since we can easily

verify that, Mv - l\imιMut, G- contains a point of Mv*

LEMMA 5. The regularization ψ of an uppέr semi-continuous mapping ψ
of X into $(F) is semi-continuous in both senses and satisfies ψ(x) ZD ψ(x) for
every # € X.

PROOF. Let /be any open set in Y such that G = {x € X. ψ(x)czj} is non-

void. If x0 is any point in G, then Ψίxo)czJ.' Since ψ(x0) is the intersection of

compact sets £7 such that ΛΓ0 € ~Mϋ,a there exist a finite numbeίr of open sets

Ui(i =1,2, Λ) in Y such that *b ̂  Mi, (ί = 1,2, , n) and ψ(ab)iD

CzJ. By Lemma 4, #6 6 1 / n \ " . 1 ^ Γ = 3?7 where F = ΓX=ιUi. If

then φ(#) C F ̂ fXlmfit cr/. Thus Λb € 34? c: G. Since Mr is open

and ΛΓ0 is arbitrary in G, G is open. Hence ψ is upper semi-continuous.

To show that ψ is lower semi-continuous, it suffices to verify that A~
{ΛΓ^ X:-ir(x)tzF} is closed for any closed set F in Y. Suppose that xk 6 A
and λ̂->Λr. Let W be any open entourage of Y. Since TΓ(F) is open and
Ψ W c F c f f F ) , there exist; for eaόϊi λ, a finite number of open sets Uλ,i
(2 = 1,2, , nx) in Y such that Λ:V € Mσχί/(ί =1,2, , wA) and ψ(*λ) c

/ΛΓ-i27^^ ^ F ) / Xt f o l l o w s t h a t

Λ;λ € f \ ^ Mΰ^i = Λ?^ c: 34^7) for each λ,

where Vλ = ΓY^UM-
 S i n c e 3fu"^ is closed, ΛΓ € M ^ . Thus VK#) c=

As TF is arbitrary, ψix^f^^jF) = F. Hence #<E A and A is closed.

The latter part is clear, q. e. d.

PROOF OF THEOREM 1. Let II be the set of all upper semi-continuous mappings
of X into 3(F). If we define an ordering relation in U by setting ψλ > ψλ when
and only when ψL(x) ID Ψ2{x) for every x ^ X, then Lemma 2 implies that U
is inductively ordered with respect to ^ . Now, let Ψ be any upper semi-
continuous mapping of X into S(F), i.e. any element in It. Then there exists,
by the Zorn lemma, a minimal element θ € U satisfying ψ>θ. Let θ be the
regularization of θ* Since θ is upper semi-continuous and θ }>θ, we have
θ = # by the minimality of 0., Hence θ is also lower semi-continuous. We
assert that θ{x) consists of a single point for any x € X. Suppose, on the
contrary, that θ(x0) coηtains two distinct points yY and y2 for some#0 € X
Then we can find symmetric entourages PFi, PFa of Y such that ^ is closed,
W2 is open, WΊ =3 T7a an,d ̂ ι ί WfO )̂. By Lemma 3, there exists a continuous
mapping ^ of X into Γ such that g(x) € W2(θ(x)) for any xξX. Then
X̂(ΛΓ) = (̂Λr)f| P7i(ί7(Λ;)) is hon-void for any xξ X and,,by Lemma 1, θλ is upper

semi-coiitinuous. Since ϋ >θι, we have^i = θ by the minimality of θ. Thus
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θifa) must contain yι and y2. Therefore, we have yu y z € Wi(g(xo)), which
implies yx € W((y2). This contradiction shows that θ(x) consists of a single
point for every x^X. Iff denotes a mapping of X into Y which assings to
each x 6 X the point contained in θ(x), then / is clearly continuous and f{x)
€ θ(x) dψ(x) for any x € X This completes the proof.

2. Tae extension proparty. Let K be a compact space and C(ϋQ the
Banach space of all complex-valued continuous functions on K with the uni-
form norm. The dual of C(K) is denoted by C*(K), whose elements are
measures on K. For each.£ € K, an ele nents SP € C*(K), defined by Sp{f) = *"(£)
f o r / € C(ϋO, is called an evaluation at p.

LEMMA 6. Each measure μ on a compact space K is weakly* adherent to

the set Γ of linear combinations^^ cCjSpj of evaluations SPj where {pj} varies

over all fi.tite subsets of the carrier of μ and {ctj} varies ojer all finite system*

of complex numbers such that 2 \aA ^ 11 A61 K c f Bourbaki [4], p. 75).

LEMMA 7. A measure μ on a compact space K is an extreme point (in the
sense of the real vector space theory) of the unit sphere Σ* of C*(K) if and only
if there exists a point p € Kand a complex nuriier a with \a\ = 1 such that
μ = aSp.

PROOF. Suppose μ is an extreme point of Σ* and the carrier S of μ con-
tains more than one point. Let Si be a proper closed subset of S such that
S —Si Φ S and let Γ be the same as in the preceding lemma. Then any v 6 Γ
can be written uniquely in the form v = φλ{v) + φ-Jίy) where the carriers of
φι(v) and φly) are contained in Si and in S — Si, respectively. φL and φ2 are
mappings of Γ into itself. By Lemma 6, there is a filter-base ^ on Γ which
is convergent weakly* to μ. Then & = <z>i($) is a filter-base on Γ. By the
weak* compactness of Σ*, there is a filter-base ι$[ on Γ which is finer than
$i and convergent weakly* to a μι € Σ*. Let $2 be the family of sets of the
form φ2(M Π φτ\Mι)) where M € $ and Afi € Sv Then $2 is also a filter-
base on Γ and there is a filter-base $2 on V which is finer than $2 ai*d con-
vergent weakly* to a μλ € Σ*. It is easy to see that μ = μx + μ2 and \\μ\\ = ||μi||
+ H/Z2II = 1. Since the carriers of μλ and μλ are included in SL and inlS — Si,
respectively, we have μλ Φ 0, μ2 Φ 0 and μi Φ/z2. Putting ||/AI|| = cti and
II/A2II = oc2, we get μ = μγ + ^2 = «i(αf* /̂ i) + ^ ( Λ ^ 1 μ2), which is clearly a
contradiction. Thus S consists of a single point p ^ K and we have μ, = ccβP

where \a\ = 1.
To show that ^ is an extreme point of Σ*, suppose that 6P = α^i + (1 — a)μ2

where μuμz^ Σ* and 0 < α < 1. Of course, £*(/) =/(/>) = α/xι(/) + (1 — a)μ2(f)
for a n y / € Cr(ϋΓ) where G (ϋΓ) denotes the Banach space of all real-valued
continuous functions onϋΓ. We may write μ5 = μψ + iμψ for / = 1,2, where
/A5*} a r e r e a l measures on K. Then a theorem of Arens-Kelley [1] implies
that μ[ι\f) = ̂ ) (/ ) =/(/>) and /*<*>(/) = μ<2>(/) = 0 for any / € Cr(^). Thus
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μι(f) = μJJ) = £*(/) for any / € Cr(K). Hence, by linearity, μi(f) = μ//) = £„(/*)
for any / € C(iΓ). This shows that θp is an extreme point. It is then clear
that aSP with \a\ = 1 are extreme points of 2*. q.e.d.

We say that a complex normed linear space B has the extension property
if, for any complex normed linear space D and for any linear subspace A of
D, every bounded linear mapping φ of DL into B has a linear extension Φ
of D into B such that | |Φ|| =

THEOREM 2. A complex normed linear space B has the extension property
if and only if B is isomorphic in an algebraic and norm preserving fashion to
C{X) where X is a stonean space.

PROOF. It is easy to show the "if'-part of the theorem. Let D be a
complex normed linear space, D{ any linear subspace of D and φ a bounded
linear mapping of Dx into C(X) where X is a stonean space. If we denote by
Cr(X) the totality of real-valued functions in C(X) and define

[<Pι{α)](x) = real par t of [φ(α)] (x)

for any αζ Dι and any x € X, then φx is a mapping of A into Cr(X) which
is linear with respect to the real scalars and satisfies ||<pi|! ^ ||<p|| and φ(α)~
ψι{ά) — iψi(iα) for any α € DΊ. Since Cr(X) has the extension property as a
real Banach space by a theorem of Nachbin [10], there exists a real-linear
mapping Φi of D into Cr{X) which extends ψλ and satisfies ||Φ]|| = \ψ\\- Put
φ(df) = Φx{α) — iΦiiiα). Then Φ is a bounded linear mapping of D into C(X)
which extends <p. We assert that | |Φ|| <g ||Φi||. By definition,

and

llΦxll = sαv\\β\\^\\Φi(β)\\criX) = supι|α||ίil«jr|[Φi(α)](ΛΓ)|.
For any £ > 0, there exists an α0 € D with | |βo | | ^ 1 and an x0 € X such that
IIΦII < \[Φ(αo)](Xo)\ + <?. There exists a real number θ = ^(ΛΓ0, β0) such that
[Φ(eiθαo)](xo) = ^θ([Φ(«o)](Λt,)) is real and therefore [
Thus we have

IIΦII < |[Φto)K*o)l + € =.|EΦ(^βb)](Λb)| -I-

As 8 is arbitrary, | |Φ|| S llΦill Consequently, | |Φ|| S ||Φi|| = I W S IMI
Since ||^|| <i | |Φ|| is clear, we conclude that | |Φ|| = \\<p\\. Hence the space C(X)
has the extension property.

Now we have to show the "only if" part of the theorem. Suppose B has
the extension property. Let E be the set of extreme points of the unit sphere
Σ* of JS*, the dual of B, and Y the weak* closure of E. Y is clearly weakly*
compact. If we set y^y* for yuy2 € Y when and only when there exists a
complex number α with \α\ = 1 such that yx = α^2, then we obtain an
equivalence relation in Y which we denote by Ro. We say that an equivalence
relation R defined in a topological space M is closed if the saturation of any
closed subset of M with respect to R is closed in Λf. Then the relation Ro
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is closed, with respect to the relative weak* topology for Y. Let F be any
weakly* closed subset of Y. . If .we denote, by h the mapping of Co x Y into
Y defined by h {a,y)~ ay where Co is the unit circle {{a: \ a \. =; l.» in the complex
plane, then the saturation of F with respect to /?<> is obviously h(C0 x F).
Since Co and F are compact and h is continuous, h(C0 x F) is weakly* com-
pact and, consequently, weakly* closed in Y. Hence Ro is closed.

Next, we shall prove

LEMMA 8. The quotient space X=Y/Ro is a stonean space where the
topology of X is the quotient of the relative weak* topology for Y.

We recall that a non-void subset L of a convex set K in any (real or
complex) linear space is called a support of K if each line segment contained
ΊnK which has an interior point in L is contained in L, and that, if a point
is an extreme point of a support of K, it is also an extreme point of K.

PROOF OF LEMMA 8. X being clearly compact, we shall show that G is

open for any open set G in, X. Let h be the natural mapping of Y onto X

and put U = A~J(G). Then U is a saturated open set in Y. Since Ro is a

closed equivalence relation, h(U) is closed and we have G~k(U) = h(U). As

U is saturated with respect to Ro, we haye only to prove that TJ fl V = φ

where F is the complement of C7 in Γ. For this end, we argue as follows.

Set Z = ({0} x U)[)({1} x V), the topology of which is defined such that a

set ih Z is open if and only if it is of the form ({0} x 'Z7Ί) \J({1} x VΊ) where

Uι and Vi are relatively open in U and in V, respectively. We notice that

V is also saturated. Now, Z being the union of disjoint compact spaces, C(Z)

is the direct sum of C({0} x if) and C({1} x V). Accordingly, the dual C*(Z)

is the direct sum of C*({0} x U) and C*({1} x V), each of which is weakly*
closed in C*(Z).

Define a mapping φ of B into C(Z) by putting [<p(̂ )](0,«) = <b,u> and

[£>(£)](1, v) = <b, v>, where b € B, u € U and v € F. It is clear that φ is a
linear isometric mapping of B into C(Z). A simple calculation shows that,

for any u^JJ, any v ^V and any complex number a,

(1) <p*(tf£(o,«)) = au and ^(αfed,,,)) = Λv,

where <τ?* is the adjoint of φ. For any w <Ξ U U V, we set K(w) = ψ*~ι(w) Π S*
where 2f is the unit sphere of C*(Z). If u € ί/ is an extreme point of the
unit sphere 2* of 2?*, then ϋf(w) is a support of 2* which is weakly* com-
pacts By the Krein-Milman theorem (cf. Bourbaki Γ3], p. M),K(u) is the closed
convex envelope of the extreme points of K(u). Since every extreme point
of K(u) is an extreme point of 2f, it follows from Lemma 7 and the first
equality in (1) that the extreme points of K(u) are of the form α:~1f(o>M)With
\cέ\"= 1. Thus K{u) c: C*({0} x ZJ). Similarly, if v € V is an extreme point
of 2*, then K(v) c: C*({1} x V).

Since 5 has the extension property, there exists a linear mappnig Φ of
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C(z) onto B such that | |Φ|| = 1 and Φφ is the identity mapping on B. It is

obvious that Φ* carries 2* into Σ* and ( Φ Φ ) * = #>*Φ* is the idnetity mapping

on B*. Thus ψ*Φ*(w) = w implies Φ*(w) € K(w) for any w € £7 U F. Set
C/x = £7 Π £ and VΊ = V f| E Then Φ*O) € JfiΓ(«) c C*({0> x £7) for any w €
C/i and Φ*O) <~ K(v)cz C*({1} x F) for any v e Vi. Thus we have Φ*£5ζ) fl

Φ*(FΊ) = 0, where the bars denote the weak* closure in C*(Z). Since UΊ

and VΊ are dense in U and in V, respectively, we have

Φ*(F) = Φ*(£Λ) Π Φ*(F0c: Φ*(£Λ) ft

Hence £/ ΓlT^— 0, which proves Lemma 8.
Since X = F/Ao, each element x ^ X is regarded as a subset of Y which

is denoted by ψ(x). Ψ{x) is clearly a closed subset of Y for every x ζ X.
From the weak* closedness of the equivalence relation Ro follows that ψ(x)
is upper semi-continuous. Hence, by Theorem 1, there exists a continuous
mapping π of X into Y such that τr(x) € ψ{x) for every # £ X.

Let φ be a linear mapping of 5 into C(X) defined by [φ(b)](x) = <£,7Γ(Λ;)>
for any b € B and any Λ: 6 X. Then ?̂ is clearly isometric. Since B has the
extension property, there exists a linear mapping Φ of C(X) onto B such
that | |Φ|| = 1 and Φφ is the identity mapping on B. -Let 2* and 2* be the
unit spheres of £* and C\X), respectively. If u is an extreme point of 2*,
then K(μ) = φ*-\u) Π Σ? is a support of 2? which is weakly* compact. If ^
is any extreme point of K(u), then μ is an extreme point of 2* and, by
Lemma 7, there exists a point x € X and a complex number a with | Λ | = 1
such that μ = ocθa,. Since ?>*(//) = «, we have, for any b ζ B,

<b, U> = <b,φ*(μ)> = <φ(b),μ> = <φφ),(Xβx>
= a[<pφ)](x) = α<^, 7Γ(ΛΓ)> = <6, ^7Γ(ΛΓ)>.

Hence w = ^7Γ(Λ;) and, since | α | = 1, WΞTΓ(Λ;) (mod. i?0). It follows from the
hypothesis on 7r that # and α: are determined uniquely by w. Thus K{u) con-
sists of a single point ocβa, and we have Φ*(μ) = α ^ . Putting ίli = {ct£x:π(x)
€: E,\a\ = 1}, we have shown that Φ* maps E into Ω L Conversely, let aSx

be any element in ίl,. Then O:7Γ(ΛΓ) is an element in E and Φ*(α7r(Λr)) = α ^ .
Hence Φ* maps E onto Ωi. Denote by Ex the set of extreme points of 2*.
Lemma 7 implies that Eλ = {aSx:x€ X, \oc\ =1}. Since E is weakly* dense
in Y, Oj is weakly* dense in Ex. Thus we conclude, by the weak* com-
pactness of Y, that Φ*(Y)ZDEI. Hence, by the Krein-Milman theorem,
Φ*(2*) =5 Σf and therefore Φ* maps B* onto C*(X). On the other hand,
since Φφ is the identity mapping on B, (Φφ)* = ^ * Φ * is the identity mapping
on B* and, consequently, φ* must be a one-to-one mapping of C*(X) onto B*.
It is an easy matter to see that any normed linear space with the extension
property is necessarily complete, i.e., a Banach space. Hence φ{B) is closed
in C{X) and therefore φ maps B onto OCX"). Thus B and C{X) are isometri-
cally isomorphic and Theorem 2 is established.
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