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The relations between cohomology groups and different in the number
theory were already treated by A.Weil [11], Y.Kawada [6], A.Kinohara [7]
and M. Moriya [9] in cases of dimension 1 and 2. In the present paper we
shall treat the same subjects for general dimensions under a slight modifica-
tion.

In §1 we shall explain the definitions and main results of this note. In
§2 we shall prove the equalities of the right-, left- and two sided homological
differents. § 3 and § 4 are preliminaries for the following sections. In §5
we shall prove, essentially, that the homological different is noc zero, and
in §6 we shall treat the reduction to the local homological different. In §7
we shall consider the local homological different and prove the different
theorem, and in §8 we shall show the equality between homological diffe-
rents and the usual different.

1. Definitions and results. Let R be a Dedekind ring, K its quotient field,
L a finite separable extension field over K and A the principal order (the
unique maximal order) of L over R. We regard A as an algebra over R. " For
any two sided A-module A, the homology groups H.(A, A) and the cohomology
groups H*(A, A) are defined as usual [1] i.e.

Hy (A, A) = Tor)A, A),

HY(A, A) = Ext(A, A).

An element A = SARp of A induces a A’-endomorphism A¢ of A

1.2) AM:A—- A, M) = Na;

»* induces an endomorphism A* of H(A, A)

i Hu(A, A)—> HyA, A),
Hy (A, A)— Hy (A, A).

Therefore H(A, A) may be considered as a A®module. Using these endomor-

phisms 7\.7, we define the z-homological (cohomological) different of A/R.
DeFNITION 1. Left n-homological and cohomological differents

D' (A/R) and DYA/R):

DYA/R) = {» € A|A®1 HiA, A) =0 for all A},

DMAJR) = {A € A|NOL HYA, A) =0 for all A}.

1.1

1.3)

1) In the following our main objects are these algebras, which we shall quote
as “the number theoretical algebras” or “the number theoretical cases”.
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DeriNiTION II. Right #-homological and cohomological differents
D, (A/A) and D(A/R):

D(AJR) = {\ € A|1DN Hn(A, A) = 0 for all A},
D A/R) = {n € A|IQNHYA, A) =0 for all A}.

DerFiNiTION III. 7#-homological and cohomological differents
D.(A/R) and DYA/R):
Di(A/R) = {SADp € A |SA @ pHiA, A) = 0 for all A},
Di(A/R) = {SAQp € A*|SADpHYA, A) = 0 for all A},
Du(A/R) = p(Di(A/R)),
DY A/R) = p(DXA/R)),
where p is a A’-homomorphism of A’ to A
(1.4) p:Af— A PAA W) = Ap.
Since A is commutative, p is also a ring homomorphism of A® to A.

DerNITION IV. Commutative #-homological and cohomological differents
D;(A/R) and DX A/R). We denote by A. the module in which A e = a A for

any a € A and A € A.
DiAJR) =€ A| ND1 HA A =0 for all A,
DIA/R) ={rnE Al AL HYA, A) =0 for all Ac).

Sinca D'.(V/R) is the annulator of modules of derivations, this Def. IV
corresponds to the definition in [6]. We may easily construct the different
theory concerning D'.(A/R).

Obviously these differents are ideals in A. Now, we explain the main results.

I (Cor.2.3)

D*A/R) = D{(A/R) = DXA/R) = D}A/R),
D.(A/R) = D,{A/R) = Di(A/R) = Di(A/R).

II (Th.6.2)
D'A/R) + 0, Dy(A/R) 0.
[II (Th.7.5)

Lzt B be any prime in A, let # be a fixed integer # = 1. Then P divides
DY(A/R) if and only if P is ramified or inseparable. The result is also true
for Du(A/R),n > 1.

As a consequence of II and III, we know that, for any fixed #, D(A/R)
(or D,(A/R)) plays the same role as the usual different.

IV (Th.8,6)
The homological and cohomological differents of any dimension are all

equal to the usual different D defined by Spix.
Though we may obtain II and III as an immediate consequence of 1V, it
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is desirable to obtain them independent with the theory of the usual diffe-
rent ®. In the present paper we shall prove them using D" of given dimen-
sion 7 only, independent from the other D™ and D.

As for the chain theorem, we may prove it by using the local cohomo-
logical 0-different D%(A,/R,). But, since the proof is essentially dependent
with the theory of the usual different, we shall not state it here.

We also obtain a theorem similar to the theorem of Dedekind (Th.8.7).

2. D(A/R) = DA/R) = D{A/R). Let R be a commutative ring, A an
algebra over R, A a A’module® and 3SA¥u+ an element in the center
of A¢ (we denote it briefly by A%). Similar to §1, we have an induced
endomorphism A of H(A, A),

1.3) N : H(A, A)—~ HA, A).

On the other hand, A is also considered as follows: Let
2.1) XX XA
be a A’-projective resolution of A. Since A* = SAZu* induces a A’-endomor-
phism Af of A

(2.2) AA A,

A(x) = SA for x in A,
there exists an extended A’.endomorphism A’ of X over N,
@2.3) XX,

and any two such maps are homotopic. Therefore, the map (2.2) induces a
uniquely determined endomorphism of H(A, A),

@2.4) N HA, A)— H(A, A).
We may take the following map as one of the extended maps in (2.3):
2.5) VXX
() = S,
since di(A%) = Ndi(%:), % €Xi. The induced map of (2.5) is
2.6  NO)=fO@) = fovm) = AW, fi%) € Hom (X, A),
AN(@Px) = aQN'x = aQZ A = Sap@x, aQrEARsX,
which is the induced map (1.3). Thus we have

PRrOPOSITION 2.1. The induced map X of (2.2) s the same as the induced
map N of (1.2)

COROLLARY 2.2 If N\ is an element in the center of A, the left operation
induced by N on H(A, A) coincides with the right operation induced by \,i.e.
ARDLu = 1@\ %

2) It will always be assumed that R and A have the unity element in com-
mon, and the unity element acts also as the identity on all modules.
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Jor any u in H(A, A).
Proor. Indeed, A®1 — 1QA* induces the 0-endomorphism on A and the
0-endomorphism of X is one of its extended endomorphism. ‘
COROLLARY 2.3. In the number theoretical case we have
DY(A/R) = DXA/R) = DXA/R),
D«A/R) = D\(A/R) = D}A/R)
Sforn=12,....
Next we consider the relations between D* and D?. Let A be a commu-
tative algebra over R and A any A°’module.
PROPOSITION 2. 4.
@.7 Homy (A, HY(A, A))=H"(A, A)
(2.8) AQseH(A, A)=H,(A, A)
as A°-modules. 2
Proor. For each # € H"(A, A) the map 1— « induces a A*-homomorphism
uy of A to H™(A, A) since M = #A for any A in A. The mapping #—u, is a
A’-epimorphism of H™A, A) to Homae(A, H*(A, A)) which is also an isomor-

phism. Similariy, the mapping # — 1 @« is a A’-isomorphism of H.(A,A) to
AQseHu(A, A) since M # = u A for any A in A.

PRrOPOSITION 2.5. We have the exact sequences

2.9) 0 — Hom.(A, H'(A, A)) — H¥(A, Hom 1A, A)
11

(2. 10) 0 —> A.®A¢ Hn(A, A) e Hn(A, A®A¢A):

where i and i are A°-isomorphism.*”

Proor. Let X be a A‘projective resolution over A, then X®i.A =
A@aeX since Acleft modules are two sided A module and also considered to
be Afright modules. X is considered as A’ left-A¢ right module since A is
commutative, so we have

Hom (A, Hom, (X, A)) =2 Homa o X®1eA, A) == Hom,(X, Hom;e(A, A)).

From this isomorphism we have the first half of the assertion.
Similarly, we have the second part from the isomorphism

A@Ae(A@AeX) = (A®ACA)®ACX

where A is considered as A°-A¢ two sided module.
The last part is obvious from the definition of the operations.

2') Let A and B be two sided A-modules. Since A is commutative, the operator
A¢ of A induces an operator on Homae(B,A4) and B®ae A as follows:
(AQu) R F (&) =f(ubr), (A (6@a)=bQ par=(bQa) AQu*).
It also induces the operation A®u on H#(A.A) and Han(a,4)(cf(1.3)). Combining
these process we have the operations on modules in (2.7)~(2. 10).
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COROLLARY 2.6.
D}(A/R) = DY(A/R), D,(A/R) = DyA/R)

Proor. Obviously DXA/R) > D*(A/R). Conversely, by (2.9) and (2.7) we
have D”(A/R)_ > D™ A/R) since Homy. (A, A) is one of the A..?” Similarly we
have Di(A/R) = DA/R) by (2.10) and (2.8)

3. Preliminaries about symmetric algebras. In this section we shall
explain some properties about symmetric algebras. As for the details we
refer [3] and [8].

Let R be a commutative ring and A an R-module, then we denote the
dual R-module Homz(A, R) by A°. If A is an algebra over R and A is a left
A-module, then A° is a right A-module. If A is a two sided A-module, then
A° is a two sided A-module; in particular, A° is also a two sided A-module.

Let A be an R-algebra, R-projective and finitely R-generated. Then A
is called a Frobenius algebra when there exists an isomorphism & of A to A°
as left A-modules. We say that A is a symmetric algebra when there exists
an isomorphism ® of A to A° as two sided A-modules.

If A is a Frobenius algebra over R, » = ®(1) is an R-homomorphism of

A to R and
(3.3 [PAIN) = (A7), for any 7\ in A.

Conversely, starting from an R-homomorphism @ of A to R, we may define
a left A-homomorphism ® of A to A’ by (3.3). Then the conditions that ®
is isomorphic and onto are equivalent respectively to the following conditions:

(1.1 if (A7) =0 for all A in A then 7= 0,
@.2) for any f in A, there exists  in A such that
S = @An).

The condition that & is two sided A-homomorphism is reduced to
(s) @A) = @(P\), for any 7, A in A.

We coonsider an R-free Frobenius algebra A over R. Let %, ....,u, be
a linearly independent basis of A over R, then there exists a linearly in-
dependent basis »;, ...., v, of A such that
(3 4) (p(ui?)j) = 8ij-
The left regular representation of A by #,, ..., #, is the same as the right
regular representation by v, ...., v, i.e.
3.5) Naui) = (wi)aiy), Wi)A = (aiz)(vy).

ProrosITION 3.1. Let A be an R-free algebra over R and u,. . . .. , Uy a linearly
independent basis of A over R. If there exists R-homomorphism ¢ of A to R and
a system of elements v, -..., v, of A such that ¢(u;v;5) = p(vm;) = 8;;, then A

is symmetric over R.
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Proor. ¢ satisfies (I.1), (1.2) and (s). If @(\) = 0 for an element X = Xa;%
and any 7 in A, then a; = @@;3a;u;) = 0, so A = 0. For any f/ in Homg(A, R)

we have f(») = q)(er(ui)vt).
[

Division algebras and full matric algebras over R are symmetric; tensor
products over R of symmetric algebras over R are also symmetric.

Let A be an R-free symmetric algebra over R, (%, ..., #%a), (01, ----,Un)
dua] basis of A over R and A a two sided A-module. We may consider the
standard complete complex of A with augmentation [11]:

dy do d—y

(3.6)cnnnnnn X X, X Xoy—>einnn.
N NE
A = A
o

We define as usual

3.7 HYA, A) = H(Homy (X, A),n= ...., —1,0,1, .....
The 0 and — 1 dimensional cohomology groups are

HYA, A) = A2 Zu @ o) A,

3.3

H-1(A, A) = AFe® /A4,
where A={ac A|]ra=a A for all A € A},
(3.9) (S ®@v*) A = {Zmav.|a € A},

A = {a € A| Duav, = 0}

1
AA = submodule of A generated by Az —a\, a € A, A € A.

The other negative dimensional cohomology groups coincide with the homology
groups of A over A, i.e. there exists an isomorphism

(3.10) o: H ™A, A) ~ H, (A, A), n=23,....
If 7 is a A%homomorphism of A into B,
7:A— B,

then the diagram
H-"(A, A)— H-"(A, B)

ol . o
H, (A, A) —> Ha—i(A, B)
is commutative for = 2,3, .....

If A, A and A” are A°modules and
0>A—>A—->A">0
is an exact sequence of A’-homomorphisms, then the sequence
3.12)........ — H"(A, Ay — HY(A, A)— H(A, A”) > H**1(A, A)
> H" (A A)—> ool

(3.11)
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is exact.
From the definition we have
ProrosITION 3.2. If I is a A*-injective module then
H"A,)=0
for any integer .

Proor. Homy.( ,7) is an exact functor.

ProrosiTION 3.3. If P is A*-projective then H™ (A, P) =0 (n = 0, 1).
Proor. It is sufficient to prove the prop. for Atfree F.

For n < —1: We have H™*(A, P) = Tor} (P, A) = 0.

For n>0:F=A"Q@H where H is an R-free R-module.
Then [3, Prop.7]

HYA, A*Q rH) = Ext} (A, A° QrH) = Ext(A, H),
where Ext%(A, H) = 0 because A is R-projective.

4. The element Euivt. As we have explained above, the elementzzq@v}‘
of symmetric algebras plays the same rble as the norm of groups. If A = AA
i,e. Aa=a M for all a€ A and A € A, then it reduces to sz)i. In this

section we prepare some propositions about ;.

Lat A be an R-free commutative symmetric algebra over R, let @ be a
defining R-homomorphism of A to R and let (s, -...,%,) and (v, ...., v,) be
the dual basis of A over R.

ProPOSITION 4.1. If w,, ...., %, is another (linearly independent) basis of
A over R and v, .. .., v, is its dual basis with respect to @, then

“.1) Suv, = 2 uv,

Proor. Let (a;;) be the matrix in R such that z; = Zai s#; and (b;;) the

’

inverse matrix of (a;;) then v, ...., v, v, = Ebl,cvz is the dual basis of (#]. .
A7) : For
P vy) = 2 a; bup(ey) = 2 a; b = Su.
I j
“Hence
D up; = 2 aiubuvy = 20 (2005 ) iy = 200650 = D g0y,
X o il 3

PROPOSITION. 4.2. Let r be another R-homomorphism of A to R satisfying
(1.1) and (I.2), and let v,, ...., v, be the duai basis of w,, .. .., wun with respect
0 Y. Then we have
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4.2) S uv, = (Zuvi)n,
where N is a regular element in A. ’

Proor. In this case, there exist A and A/ in A such that @(x) = Y(an),
Y(%) = @(x\). Therefore @(x) = Yr(x\) = @A) for all x in A, s0 @(x) — @(AAN)
= @®1 —~2AN) = 0. From (..1) we conclude 1—2AM" = 0; A is regular in A.
Now, if we put ;= v; A then V¥(wv) = @@ vAN) = 8:;5. This shows that
v, ...., v, is the dual basis of %, ....u, with respect to V. 2u¢v¢=(2u¢v;) A
is obvious.

PRrROPOSITION 4.2'. Let A be a commutative R-free symmetric algebra over R,
let @ bethe defining R-homomorphism of A to R, let (u,, .. .., u,) and (vy, -... V),
be the dual basis of A with respect to @. “Assume, further, that R and A are
both integral domains and the quotient field L of A is separable over the quotient
field K of R. Let \r be any non zero K-homomorphism of L to K ; let (u,, .. ..u,)
be a basis of L over K in A and let (v, ..., v,) be the dual basis of (u;) of L
with respect to Y. If (v, ....v,) is also contained in A, then

S’ € (Zuw) A.

Proor. In this case, L = AQrK, R-homomorphism ¢ can be extended
naturaly to a K-homomorphism @ of Z to K. The dual basis of (s, -- - ., %n)
with respect to @ is also (¥, ...., ¥,). By definition of symmetric algebra
L/K, there exists an element o in L such that @(x) = ¥(xx). Then the dual
basis of (#,-..., #,) With respect to ¥ is (na, ....,v.@). If we put

u; = Zai 45, a;; € R then vj= Ebi ; o where (b;;) is the inverse matrix
of (a;;). Moreover, if we put a = Ect“i» ¢; € K then o(av;) = ¢;, so @)=

D5 @) = X, biyc,. Therefore >, ;p)ay = 2¢b;au = ¢;, Where ay,
: : 03

@(v;) € R. This shows that ¢; € R and @ € A; We have, by the same argu-
ment in Prop. 4.2, that > uw = (> w0,)a. ’

ProPOSITION 4.3. Let A, R, @, u; and v; be as above, A, R integral domains
and L and K their quotient fields, respectively. Then, Euivi +0 2 and only
if L is separable over K.

REMARK. It is already known [10] that for any Frobenius algebra L over
a field K the ideal{ 2 A |\ E L} of 'the center C of L is equal to C if
and only if L is separable over K. But zuivi may be zero even if L is a
total matrix algebra over a field K. For example, if charac'eristic of K is
#>0and L= (K), then > v, =0.
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Proor oF Prop. 4.3. %, ...., u, is also a linearly independent basis of
L/K. R-homomophism ¢ of to R is extended to a K-homomorphism ¢ of L to
K. L is a symmetric algebra over K and (%, .. .., %), (¥1, ...., Us) are also

dual bases of L over K. So, we may consider Eu,vt in L. Then the property
%, =+ 0 is unaltered when we take another basis #;or another K-homomor-

phism ¥ (Prop. 4.1, 4.2).

Case 1. L = K(@), where 6" + a,0*' + ....+as, = 0 is the defining equa-
tion of @ in K. We take 1,0,60% ...., 0*! as a basis of L/K and a map
YV Pr-1) = 1, Y(6) = 0G+n — 1) as a defining K-homomorphism of L to K.
Then

v, =01+ a2+ ... +a;—,

is the dual basis of #;( = @*-!) and

Euiv,; = n0“_1 + (n - 1_)310"'—2 + cete +an—l =f(0)-
So we proved the proposition for Case 1.
Case 2. If L is not simple over K, we take a chain of fields as follows:

L=LD...oL =K, L;/L;_, simple, and prove it by in-
duction. =1 is Case 1. Assume that it is proved for r— 1. We consider
two steps ZL/L, and L,/K. Let @, 9 be L;-and Z,-homomorphisms of L to
L, and L, to K, respectively, and (Ui, ...., Ux), (%, -..., %) are their bases
and (Vy, ...., V), (@, -...,vs.)are corresponding dual bases concerning to yr;, ¥,

respectively. Then q; = @oo@,; is a L,-homomorphism of L to K and »;V; is

the corresponding dual basis of #; U;, which is a basis of Z/K. So <;~> is a
defining map of the symmetric algebra L over K. Therefore,

;uiUﬂ)iVl = (Ejuﬂ/s) (; U;V; )

is a considering element of L/K. This proves the proposition for 7.

ProrosITION 4.4. Let K be a field, L a finite separable extension of K and

%, ..., Uy a basis of L over K. It is a symmetric algebra. If we take Sprix as
the defining map @, then the corresponding element, zuim:l, wherev,, .. ..,0,
is the dual basis af u,, .. .., 4 with respect to Sprx.

Proor. We take a normal closure Z of Z over K and consider an algebra

L®«L over L which is contained in the full matrix ring of degree # over L.
The Sprx of an element in L coincides with the trace of the corresponding

element in L®«L regarding as a matrix over L. So (%, ..., %) and (v, ..
..vy) are also dual bases of Z®L over Z with respect to Sp. Since > %, is
independent to the choice of #, ..., #, (Prop.3.1), we may choose the most
suitable one. We decompose 1 of L@ L in the direct components of L ® L =
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L+ ....+L,

l=e + ....+e,
e, ....e, is a basis of L@ L over L and their dual basis with respect to Sp
is also ey, .. ..es. Therefore,

2“52)4 = 2852=1. .

In the preceding section we prove Prop. 3.3 for # % 0, — 1. Here, we prove
it for principal orders of fields, which is sufficient for our purpose.

ProrosITION 4.5. Let A be an R-free symmetric algbera over R, both A and
R be integral domains. Assume that the quotient field of A is separable over
the quotient field R. Then for any A°-projective module P we have

H(A, P)=0, H'(A, P)=0,

Proor. It is suficient to prove it for A’-free modules, especially for A®.
We devide the proof in three lemmas.

LEMMaA 1.
4.3) A =2 @) A
Proor. Let A be any element in A and let (a;;) be its right regular re-
presentation by #, ....u%.. Since A@1) (2 u; @ v;") (rQ@up) = (2 %505 (X)v;‘)
i

(r@w) = (Zu@ e (p@w) = (Zu; @ Vo) (@ 1) = 1 @ M) D(u; ® v¥)
¢ N
(p @), the right hand side of (4.3) is contained in the left hand side.
Let Eb,- #:; @ vF be an element of (A%4, i.e.

a® I)Zbij u; QU = 2(2@@ bi]) uy Q vF
1 ik J
=A@ (Db @ v}) = 2 (Xbys an) o @ vt
Jj il J

so we have Zbi j@p= Eai b5, for u; @ovF is a linearly independent basis of
J J
A¢ over R. In other words, the square matrix (b;;) commutes with any matrix

(a;;) which is the right regular representation of an element in A by the basis
%y, .. - -4y ; therefore, (b;;) commutes with any matrix which is the right re-
gular representation of an element of the quotient field Q(A) of A, and it
belongs to fhe same set of matrices of the representation. So there exists an

element # in Q(A) such that w(s;)=(2;)(8;;). Put p = 20,- v;, ¢ € Q(R), then
@(ua;)=c;. On the other hand, since pz; =2 u;b;; belongs to A, @(uu;) is
in R; so p € A. Thus we have !

20w Qv = (k@D Zu @,
which proves the Lemma. i
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LeMMA 2. AA° in (3.8) is the kernel of the map p: A*— A in (1.4).

Proor. Obviously, the kernel of p contains AA°. On the other hand, we
decompose the map p in two parts

Py [
.4 p: A — A?JAA*—> A ;

though each part of (4.4) is A®homomorphism, it suffices to consider them
as homomorphisms without operators. We also consider modules as additive
groups without operators. Then, A’=(A @ 1, AA?), A’ /AN = AQ1/A Q1INAA%;
p maps the subgroup A®1 of A A isomorphically onto A; so we have
A®1N AA*=0 and p, is isomorphic.

This shows that kern. p = AA°.

LEMMA 3. (A?)¥u®uk = AA?
Proor. Since( X ® v¥)AA® =0, (Af)Zwx S AA®,

Conversely, if (2 u; @ v;“) (2#«@ v*) = (0, we map each term of this by

the homomorphism p. Since A is commutative, p is a ring homomorphism.
Therefore

P((Xu@vr) (Zp@v)) = (Zuv) (Zpi=0.
On the other hand, by Prop.4.3, Zu,- v; £0 in A. So we have p(zp@)p*) =

E/vao.

5. An annulator of H(A, A). In this section we show that there exists
a non trivial annulator of H(A, A) in our number theoretical case. Our homo-

logical and cohomological #-differents are, consequently, non zero ideals in
A.

THEOREM b5.1. Let R be an integral domain, K its quotient field, A an R-
projective algebra over R. If L=AQr K is a Frobenius algebra over K with

finite dimension, then there exists an element 27\@/&* in the center of A°® such
that

DAQu* H™(A, A)=0,

DA@p* Had, A)=0
for any A°-module A and any n=1.
More precisely, if we take dual bases (%, -...ts), (U, ....vs) of LK from

A, then
Zm v; Quiuf = (Zui Ui) @(zuivi) *
i i j

is one of the elements.

6.1

Proor. In the present case any element of L is the form A/n A€ A, 7ER,
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and we may take a basis (#;, ...., #s) of L/K from A. Let @ be a defining
K homomorphism of the Frobenius algebra A/R and (v,/s, ...., vs/S),v; € A,
s € R be the dual basis of (#, -..., #,) With respect to @. Then the K-homo-
morphism @y(x) = @p(xs~!) satisfies the defining conditions (7.1), (!.2) in §1.
The dual basis of (%) with respect to @, is (v, ...., v,); so we may always
take dual bases (#;, ..., #,) and (v, ...., v,) of L/K from A. In the fol-
lowing proof we use # and v in this sense.

For any A*module A we consider the following sequence of homomorphism :

€
(5.2) A —> Homu/A%, A) —— Homw(A", A)
) £ j
— A® ®1.’A — A° ®Ae A—A,
where i, j are connonicil A’isomorphism, #» is the cannonical A’-mono-
morphism, £ is the cannonical A*-epimorphism and the map (x):Homgz(A*% A) —
A’®@r A is defined as follows:

(5.3) @)= 2 @ v} @uf(0,Ql).
i,

Obviously, (x) is an R-homomorphism, Moreover, we have
LeEMMA. (x) is @ A°-homomorphism.

Proor. Case 1: A is R-free. Let v, = 2 0% v; and Au; = > wb,; be the
k l

regular representation of A’ and A for any M @A* in A°. There exists an
element d in R such that db; and db; are all in R(;, 7,k I=1, ...., n). Then

FEN @AY = 2w @ v3) @A@: @ uh) (N © A
4,J
=2 ® ) @ /(b ve @ d busse?)
iJ k,l

= > > [w; db}y, ® v*db,;) @ f(vs@ut)
(5.4) Y
= 2@\ 2 @ AN} ® f(ve ® u?)
Kyl

=@ 2N @A) (e @ vF) @0 @ )
k,l

=d2 N @A) [(HUN].
Since A is R-free and A‘ is R-projective, A°®=z A is also R-projective; so it
is torsion free over R. We have, therefore, from (5.4),
) [V @A*Y] — W @ AN[(*)(NH]=0.
Case 2: A is not R-free. We consider A as an R-homomorphic image of
R-free module F,
(5.5) 0->C—>F—>A—-0 (exact).

From this, using the fact that A® is R-projective, we have the following com-
mutative diagram:
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0 — Homz (A% C) — Hompz (A%, F) — Homz (A%, A) — 0 (exact)
(5.6) l(*)p l(*)A
0 — A'®=rC - A*QrF A®%RA -0 (exact),

where all horizontal maps and (x)r are A’-homomorphism. This shows that
the mapping (+)4 is also A°homomorphism, which is the conclusion of the
lemma.

Now we continue the proof of Th. 5.1. Operating 7,7, (+), £ and j suc-
cessively, we have an endomorphism of H(A, A):

5.7 HA, A) 7‘ H(A, Homg(A% A)) (—5 HA, A3®RA)L—£> H(A, A).
Let X be a A’projective resolution of A. It may be also considered as an
R-projective resolution of A. Then, we have [1, Ch.II, Prop. 5.2]
HY(A, Homgz(A® A))=H"*(Hom,.(X, Homzg(A* A)))
5.8 = H"(Homz(X, A))=Extz"(A, A)=0,
HaA, A'QrA)=H,(A*QrA)R1.X) = Hi( AQzX)=Tork(A, A)=0,
since A is P-projective. In both case, therefore, the endomorphism (5.7) is

the 0 endomorphism,
On the other hand the explicit from of the map jofo(x)onot is

(5 9) j.;:.(*).n-z'(a) = [Euﬂ),; ® v}‘u}‘]a.
%)

Sincezuivi®vj‘u}‘ belongs to the center of A’ it induces an endomorphism of
J
H(A, A), (§1), which is, by (5.8), the zero endomorphism.
REMARK : sincezu,v, belongs to the center of A, the operations on

H (A, A) induced by its left-and right mutiplication to A are the same one
(Cor.2.2), so we may take

(6.10y (2 u; Ut)2 ®1

as the seeking element in Prop. 5.1. This may be zero even if L is a separable
algebra over K. But in our number theoretical case, L is a separable ex-
tension field over K;so we haveZuivi + 0 in Z (Prop.4.3). Thus (5.10) is a
non trivial annulator of H(A, A).

6. The homological and cohomological differents. Let R be a Dede-
kind ring, K its quotient field, L a finite separable extension over K and A
the principal order of L over R. We have already defined homological 'diffe-
rents Du(A/R), Di(A/R), Di(A/R)etc. and proved that Du(A/R) = D)(A/R) =
DYA/R).

PrOPOSITION 6.1. In the above case A is R-projective.
Proor. Since R is a Dedekind ring, R%is hereditary [1;Ch. VII, Prop. 3.2].
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On the other hand A is an R-submodule of an R-free module, so A is R-pro-
jective [1;1, Th.5.4].

THEOREM 6.2. For any n =1, D(A/R) =0, D, A/R) % 0.

Proor. It follows immediately from Prop.6.1, Th.5.1 and the remark to
Th.5.1.

Next we consider the local factors of D(A/R). Let b be any prime in
R,R, and A, be the quotient ring of R and A by p respectively. A, is the
principel order of Z over R,. For any ideal D of A the ideal D, =DA, may
identify with the p-component of D. Since this case is also the number the-
oretical case, we may consider D(A,/R,) etc. We shall prove

TuEOREM 6.3. D*(A/R), = D(\,/R,), Du(AJR), = Dy(A,/R,) for n=>1.

To prove the theorem we prepare several lemmas. At first, for any A’
module A we denote A, the quotientmodule of Aby p. It is also A, ® r, A}
-module. ¥

LemmMa 1. For any R-module A, we have
A ®R RD = Ap .
Moreover, if A is a A-module then the above is a Ar Q@ R,-isomorphism. (So
A, -isomorphism by lemma 3)
Proor. We consider the mappings
P:AQrR, = A, @a@® (r9) = (ar,s)»
VYA, >ARrR,, Yas)=a®Q1,s),
which are both R,-homomorphism and are inverse maps each other. The
second part of the lemma is obvious.
LzMmMA 2. For any R-modules A and B, we have
(AReB)®@=zFy 2(AQrRy)® Ry (BX=rRy).
Moreover, if A and B are A-modules then the above is a (A Q@i A) Qr R, -isomor-
phism (so (A,)>-isomorphism® by lemma 3).

Proor. In general, for any commutative rings S and R, S >R which
have the unity element 1 in common, we have an canonical isomorphism

(AReS)RQs(BR:rS)=ARr(SQsS)QrB =2AR:S®:rB ~(AR:B)QrS.

The second part of the lemma is obvious.

LemMa 3. The isomorphism in lemmas 1 and 2 are ring isomorphisms i
A, B are both A, i.e.
A®rRy = A, (ring isomorphism).
A QRrRy = Ay @iy A (ring isomorphism).

3) We shall denote Ap®RvA’: briefly by (ap)e.

‘ 4) The element of A, is reoresented by a pair (a.s), where a € A and s € R,.
In the following we use these representations of elements of Ay and Ry.
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Proor. Inlemma 1, @ is a ring homomorphism if A is A. The isomorphism
in Lemma 2 is also a ring isomorphism, so we have the later part of the
lemma using the first part of it,

LemMA 4. If

e X X, > A0
s the standard complex of the algebra A over R, then
e '—)'Xl ®RRp ‘-)Xo ®RRp ")‘JA@[{R" —0
is the standard complex of the algebra A, over R,.
Proor. From lemmas 1, 2 and 3 we see that the second modules are

identical with the standard complex of A, over R, as (A,)-modules. And
induced differen ial operators coincide with those of standard complex, too.

Now, if A, is a (A,)-module, we may also consider A, as a A°module.
So we may consider H(A/R, A;) as well as H(A,/R,, A;). Since Ay, DA, A¢
operates on both H(A/R, Ay) and H(A, /Ry, Ay).
LemMA 5. For any (Ay)-module A,, we have a A*-isomorphism
H Ay, Ay)= HYA, Ay),
H,(Ay, Ay) = Hy (A, Ay).
Proor. We have [1,Ch II. Prop.5.2] a A’-isomorphism
Homyepry (X Rac A° Q@ Ry, Ay) = Homa/X, Hom egry (A°Q Ry, Ayp))
where @ means the tensor product over R. The left hand side is Homye
(X® Ry, Ay) (lemma 3);the right hand side is isomorphic to Hom,(X, A,),
since Hom A’ @gry (A°@ Ry, Ay) = A,. From this and lemma 4 the first half of

the lemma 5follows immediately.
Similarly, the Afisomorphism

(X QRy) Dacory Ap = (X @1\ Qully @ rcgroAy
= X Qael\’ Qrlly (B aegry A = X QacAy
gives the second part of the lemma.
PropoSITION 6.4. We have
D*(Ay [Ry) © DA/R), DAy /Ry) > DYA/R)
for n=1.

Proor. We may consider the left differents only. So we consider the left
operations of A on H(A, A,). Then the proposition follows immediately
from lemma 5.

LEMMA 6. For any A*-module A, we have a A*-isomorphism

H"(A: A) ®RRP = Hn(A, A ®RRP )’
HYA, A) QrRy, =~ HY(A, A Q=rRy) for n=0.

Proor. Let X be the standard complex of A over R. We consider a
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A’-homomorphism
@ : Hompe(X, A) @ R, > Hom,y (X, A Q Ry)
Plf @ (1, 9] (%) = f(%) @ (7, ).
Conversely, any homogeneous element in Hom,«(X, A ® R,) we may take an
element f in Hom,.'X, A) such that g(x)=Ax)® (1,s) for all x in X, since X,
is finitely generated over A’. We put, then,
Yvig—>rQ(Q1,s),

and have a A’-homomorphism ¥ of Hom,\.(X, A ® R;) to Hom (X, 4) @ R,.
Since «» and ¥ are inverse mapping each other, they are both A’isomorphism.
Obviously, both @ and ¥ commute with the differential operator d of X.
This shows the first half of the theorem.

As for the second part, it is obvious since we have

(ARuaeX)QR, 2 (AQR) ®acX.
LEMMA 7. For any A*-module A,we have a A’-isomorphism
HYA, A) QrRy, = H*(Ay, A QrRp)

Hn(A, A) ®RRp = Hn(Ap , A ®RR9)
Jor n =0.

Proor. It is obvious from lemmas 5 and 6.

LEMMA 8. Let A be any R-module. For any element a of A we take an
element of [1,A,, the each component of which is (a,1) in A,. Then the map-
bing

a—{...., (al),....}
is an R-isomorphism of into 11, A,.
Moreover if A is a A*module, the above mapping is a A*-isomorphism.

ProoF. Let @ be a non zero element in A. The annulators of a forms an
ideal a of R. If p is any prime divisor of a, then (e,1) in A,; for, (&, 1)=0
in A, if and only if there exists s in R such that sa = 0 and s € p, that is,p
does not divide a.

ReEMARrk. If A has a non trivial annulator, then IT,A, is reduced to a di-
rect sum of finite number of factors and into isomorphism is reduced to onto.

PROPOSITION 6.5. If an element A of A is contained in D(A, |R,) for all p,
then N\ is contained in D(A/R)

Proor. We consider A as a left operator of H(A,A). Then the proof
follows immediately from Lemmas 7 and 8.

ProOF oF THEOREM 6.3. Prop.6.4.and 6.5 constitute the proof.

7. The different theorem. At first we prove two lemmas, the proofs
of which are almost obvious.

LEMMA 1. Let A be a commutative ring,”R a subring of A ani = any element
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in R. Then we have a ring isomorphism
AfJrAe = (A)mA) @rjnr(A]TA).

LEMMA 2. Let R be a comnutative ring, mw any element in R and A,B
R-modules. Then we have an isomorphism

(A @=rB)/m(A @=rB) ~ (A7 AYR1j«x(B/mB).
Proor or LEMMAS 1 AND 2. Since the lemma 2 is proved by the same

method aslemma 1 we prove lemma 1 only. We have the desired isomorphism
from the following ring homomorphism:

@ : A @rA — (A7) @rizrAfmA)

PN Q@A) = (A mod QA mod ),
the kernel of which is 7(A ®@zrA).

(7.1)

PRrOPOSITION 7.1. ZLet A be an R-projective commutative R-algebre, m any
element in R and X the standard complex of A with the diff erential operator d
and the homotopy map s. We denote residue rings R|7R and A]J=wA by R and A,
respec tively. If A is R-projective them X=X|mwX is the standard complex of
the algebra A over R with the differential operator d=d mod = and the homotopy
map s =s mod .

ProoOF. From lemma 2 we have

(7.2) X = Xo/mXn = (AQx. . ..QrA)/mA Rk . .. QrA)
>~ ARz -- @RA_
where dn mod 7 : 2@+ . @M1 = 2 (— DR ® - AN 1D - - BNt

=D M® - BAA D - - @,

Se mod 7m: A® ... @1 > LEAR - - @iy
Whi_C}l are the original differential and homotopy maps of the standard complex
of A over R.

PRrROPOSITION 7.2. Let A be an R-projective commuiative R-algebra, m any
element in R, and let A=A]wA and R=R|wR be residue rings. If A is R-
Dprojective, then for any A*-moduel A we have

HYA, A) = HY(A, A),
H*(A, A) = H, (A, A).
Proor. If we take the standard complex X of A over R, then we have
.3 Hom (X, A) = Hom (X, A)=Hom /¢ (X, A) = Homi«(X, A),
ARy X =A®1X=AQRuejrae X = AR3.X
which proves the proposition.

Now we consider the number theoretical algebras: at first, the local case.
If we take A,, R, and a prime element 7 of p in R as A,R and = in Prop.
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7.2, respectively, then R=R/mRis a field and A is R-projective; so the as-
sumption of prop. 7.2 is satisfied in this case.
ProposITION 7.3 If b is unramified ani separable in A, |R,, then
dim A, =0, w. dim_\g A, =0.
If v is ramified or inseparable in A, [R,, then
dim A, = oo, v. dimA\i‘aK,, = oo,
i.e. for any integer n=1 there exist N\;-modules A and A’ such that
H'(A, A) 0, H, (A, A" +0.
Proor. The first assertion is obvious.
Let p=P2....P2 be the decomposition of p in A, (For the simplicity we
omit the sufix p). Then we have the direct decomposition of A
A A/Pa+ o +AJBE
So we have [1;Ch.IX, Th.5.3]
(7.4) HA, Ay~ HA/P, A) + ... +HAPE, A,
where A; = A AAL Ay = AJBr + A B+ A/Bed + AR

i+1
Hence the proof is sufficient to do with A/Py. (We shall also omit the suffix
7).

If P is inseparable, then the algebra A/Y*over a field R/p has the radi-
cal /P’. Moreover if dim A/ B¢ < o then(A/B%)/(B/PB2)(=A /P )is separable over
R/U[2], which is not the present case.

When P is separable and ramified, we assume that dim A/P¢ < o and
deduce a contradiction. Under such assump ion we have [2]

(7.5) dim A/P* = I-dimy g A/PB.
We may construct a suitable A/Pe-resolution of (A/P*left module) A/P:
(7.6) XS5 X5 XS A/Bo0
where Xu=A/P,
€ :natural homomorphism
Ayms1: A= TA
dom: A= MAE AT

(7 is a prime element of P in A). Then we have
ExtnA[Be (A/%, ;4) = H"’(HOm‘\,q'e (X, Z))

_ | A% YITA n=2m + 1
ATJTI1A n=2m =% 0,
where ATl = (g € A|TI*'q = 0}

ITA ={Ilala € A}
AU = {a € A|Ila=0}
II°-'A = {[I*-'a|a € A}.
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Since ¢ > 1, we may choose a suitable A such that
Ext}, . (A/B, A) =0
for any # (for example A = A/¥"). So we have
I-dimyjpe A/P = oo
which contradicts (7.5) and the assumption.
Since A is finite rank over R/mR and A° is Noetherian so we have [1;
Ch. VI, p.122] w. dims.A = dim A = oo in both cases.

THEOREM 7.4. Let nbe a fixed integer =21. Then, HYA, A) = 0 for any
As-module A if anid only if p is unramified and separadle in A,/R,.
The similar theorem holds for HiA\, A), n > 1.

Proor. If b is ramified or inseparable in A/R (we shall omit the suffix

P), there exist by Prop.7.3, two sided A-module A and A’ over R such that
H"(A, A) +=0, H, (A, A =0,

where A, R are residue rings A/mwA, R/mR respectively, and = is a prime
element of p in R. So we have, from Prop.7.2,

HYA, A) = HYA, A) =0
Hy(A, Ay = Hi(A, A" 0.

When p is unramified and separable in A/R, for any A*module A we
consider two exact sequences :

7.7) 0—>7rA—i+A—>A/7TA—>0 (exact),
(7.8) 0> A > A7 A0 (exact)
where A’ = {a € A|mra = 0}. From these sequences we have

HY(A, wA) — H(A, A) — HYA, AJor A) (exact)

HYA, A)— H'(A, 7 A) — H™ (A, A (exact)

‘where, by Prop.7.3 and Prop.7.2, the third modules in both sequences are
0. Hence the product

(7.9) fomr: HYA, A) — H™A, A)
is a homomorphism onto. Since this is the same map as oy in (1.3), we have
m H'(A, A) = H™(A, A).
‘Therefore, for any positive integer s,
H™(A, A) = = H" (A, A),
and the right hand side is 0, by Prop.6.2, for sufficiently large s.
From (7.7) and (7.8) we have also
Hi(A, 7 A)— HA, A)— HAA, A A) (exact)

HyA, A) 5> HyA, 7 A)— Ha-i(A, A") (exact),
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and for # > 1 the third modules in both sequences are 0.
The remaining part of the proof goes similarly as above.

Now we consider the global case and prove the following main theorem.

THEOREM 7.5. L et n be any fixed integer=1. Then a prime ideal B in A
divides the n-cohomological different D(AJR) if and only if P is ramified or in-
separable in A/R.

The similar reults hold for the n-homological different D.(A/R),n > 1.

Proor. Th.6.3 shows that it suffices to prove the theorem for the local
case. So we only consider the local case and write A and R instead of A,
and R, throughout the proof.

Sufficiency : Let 8 be ramified or inseparable in A/R and let p=TA, (B,
A) = 1 be the decomposition of pin A. We take a prime element 7 of p in R,
then we have

(7.10) AJrA=P)mwA + W JjmA (direct),
Pe/mA = AU, NjwA = AL (ring isomorphism)
where A, T, U are A/wA, B/wA, U /wA respectively. Since e >1 or A/P is in-
separable over R, the proof of Prop.7.4 shows that there exists two sided
A/P-module A such that A*A/T¢ A)+=0. In the decomposition (7.10) we
define the operations of A/ on A as 0 operator, then A is a two sided A-
module. Thus [1, Ch.IX, Th.5. 3]
H'(A, A) = H'(A/A, 0) + H'(A/T, A)
= H'(A/P, A) =0
and, by Prop.7.2,
H(A, A)=Hr(A, A).
So the annulator D’ of H"(A,A) does not contain 1. Since, by Prop. 6. 2,
D' > P3¢ and, by the definition D’ > D*(A/R), we have D' o (%% D"(A/R)).
Thus we have L > D o (¢, D"(A/R)) > D"(A/R).

Necessity : Let 8 be unramified and separable in A/R and let P =P,
(A, P) =1 be the decomposition of p in A. If we take sufficiently large power:

7 of the prime element = of p, then, by Prop.6.2, w:"H"(A, A)=0 for any A*-
module A. We prove that U*H"(A, A)=0 for any A, which implies the neces-
sity, since D"(A/R) > U, so (D"(A/R), P)=1.

Case 1. For modules A such that wA=0, we have AH(A, A)=0.

Since A = + %! we have

H'(A, A) = HQUAAN) + HP, PAD)

whereAﬁ is separable as an R/(w) algebra, for ¥ = A/7wA = A/P. So we have.
HQUAAA) =0 and HY(A, A)=H"(A, A)=H"(P, PAP). Thus AH*A, A) = 0 be-
cause (PATA = 0.
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Case 2. If A has an annulator =f, then Ui H*(A, A) = 0.
We prove it by induction. 7 =1 is the Case 1.
Assume it for ¢ — 1. From the exact sequence of homomorphisms
0—>mA—>A—>A]mrA—0,
we have the exact sequence

HY(A, wA)—— H (A, A)—2> HYA, AjrA).
For any # in HY(A, A) and any «a in A, @(aw) = ap(®w) = 0in HY(A, Alm A);
so there exists #' in H*(A, 7 A) such that (%) = au. From the assumption
of the induction, we have a'# = 0 for any «’ in U*-!. Thus we have
aau=a¥vu)=van)=0

where a’ and « are any elements in %*-! and ¥, respectively, and E aa
runs over A°.

Case 3. For general A, consider the exact sequences

(7.11) 0 mA—— A Ajmt A— 0,

d

(7.12) 0 A’ A—m"A 0,

where A’ is the module of all elements in A such that =% =0 Then we
have

(7.13) H'(A, wA)— HYA, A)— HYA, AJm"A) =0 (exact)
(7.14) HY(A, A)——> Hy(A, mA)— H1(A, A) =0 (exact),

Let «, a’ be arbitrary elements in ¢ and let # be any class in H™(A, A)
Since au =0 in HY(A, A/#n*A) in (7.13), there exists #' in H (A, 7*A) such
that (%) = aw. Since a’#’ =0 in H**'(A, A’) in (7.14), there exists #” in
HY(A, A) such that 7%u”’) = a’v’. Operating 7 and 7 successively, we have
i () = ad'a u.

On the other hand, as an endomorphism of H™(A, A), the mapping Zo 7 is
the same as o in (1.3), which is the zero endomorphism. Therefore, a’a %
=0 for any a,a’ in U¢ and # in H*(A, A), where 2 aa’ runs over A,

The similar proof holds for H.(A, A), except for » = 1.

Summalizing the above arguments, we have

THEOREM 7.6. Let n be any fixed positive integer. Then, using D"(A/R)

only, we have the finiteness of the ramification. The theorem also holds for
D, (A/RYn = 1.

8. Relations between various differents D" D}, D?etc. andthe
usual different. ® Lot R, A, L and K be the same as in §7. We have already
proved that

D}(A/R) = DYA/A) = D(A/R), = DYA/R),
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DY(A/R) = Di(A/R) = Dy(A/R) = Di(A/R)
for » > 0. We consider the relations between differents of various dimen-
sions.

THEOREM 8. 1.
DicD*c....,, D D,c....

Proor. For any A’module A we take a A’-injective module / contain-
ing A,

8.1) 0>A—>I—->A—>0 (exact).

Then, for any element A € A we have the commutaive diagram
0=H'A,I)—> H'(A, A)—> H"'(A, A )—>H"' (A, 1) =0 (exact)
AR 1 i A1 i A1 l A1
0=HYA,I)> H' (A, A)— H*'(A, A)> H"' (A, ) =0 (exact).

Therefore, if A € D" = D" then A® 1 H**1(A, A) =0 for any A, i.e.
A€ Dt o= pDrrl
As for D., we consider A as a homomorphic image of a A°-projective
module P,
8.2) 0>A"—>P—>A—0 (exact).
Then we have, instead of (8.1),
H,(A,P)(=0)—>Hy A, A)> H,_ ‘(AT A"Y—>Hy_, (A, P)(=0) (exact)

A®1 l A1 l A1 l AR 1 l
HyA, P)(=0)— H,(A, A= Ho_y(A, A”)— Ho_1 (A, P)(=0) (exact).
So if A€ D,_, then A®1 Ha(A, A) =0 for any A.

Now we consider local theory. Let p be a prime ideal in R, A, and R,
be the quotient rings of A and R by p, respectively (as §6). This is also
our number theoretical case; so A, is R,-projective. Moreover we have

PRroPOSITION 8.2. The algebra A, over R, is a symmetric algebra (§2).

Proor. Since A, is the principal order of L over R, and L is separable
over the quotient field K of Ry, A, is Ry-free and R,-finitely generated. We
take a non zero K-homomorphism ¢’ of L to K. Let (%,, ...., u,) be alinearly
independent basis of A, over Ry, (v, ....,v,) be the dual basis of (%, .....
u,) With respect to ¢’, as a basis of LZ/K. Then the Ay-module {x € L|@'(A, %)
€ R} is generated by vy, ...., v, over K,. So it is a fractional ideal of A,,
it is, therefore, a principal ideal (d@'). If we put @(x) = ¢/(xd’), then ¢ is also
a non zero K-homomorphism of L to K, and the dual basis of # with respect
to @ is v;/d’, which belongsto A,. So @ is considered an R,-homomorphism
of Ay to R, and satisfies all the assumption of Prop. 3.1. Therefore, A, is
a symmetric algebra over R,.
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Prop. 8.2 shows that we may apply the results of §3 to A,/Ry. In
particular, if we define D;” as

8.3) D;"(Ap/R) =M€ ANE 1 H"(Ay, A) =0 for all Az-module A}
for » > 1, then
8.4) D, (Ap |Ry) = D" (Ay [Ry) ;
by virtue of (3.11). We may also define, analogously, DYA,/R,) and D;Y(A,
"/R,) by using (3.8). D! and D;! are not zero ideals, since 2 #;v; is a non
trivial annulator of AH° and H! by (3.8).

PropoSITION 8.3. In the local case A, [R,, we have

Dy =D+

for all integer n.

Proor. Let A be any A,-two sided modul. We take a A‘-injective module
I and consider the exact sequence (8.1), then we have, by (3.11) and Prop.
3.2, D} Dp+! entirely same as the proof of Th. 8.1.

Conversely, if we consider the exact sequence (8.2) and use Prop. 3.3

and Prop 4.5, then we have D! > D;*'. The proof is also the same as in
Th. 8.1.

COROLLARY 8.4. In the local case A, |R,, we have
D" (A |Ry) = (S u; v;) Ay

where (u;, ..., 4s) 1S a linzarly independent basis of A\, over R, and (v, ..
vs) is a dual basis of (v, .. .., s).

ey

Proor. From (3.8) it is obvious that D°(A, /R,) > S u,v;. Conversely, if A
belongs to D(A,/Ry), then for the A¢-module A, we have A Ay = (So0;) A, ;
in particular A 1 € S u; v;) Ay

THFOREM 8.5. The homological and cohomological differents of wvarious
dimensions are all equal each other.

Proor. It follows immediately from Prop. 8.3 and Th.6.3.

Now we consider the relations between the different © in ordinary sense
and our homological differents. It is sufficient, by Th.6.3, to compare the
p-component of two differents.

THuEOREM 8.6. The homological (cohomological) different is equal to the
usual different.

Proor. It is sufficient to prove for the p-component. In the local case
A,/R,, let (8) be the inverse different defined by Sprx. Then the proof of
Prop. 8.2 shows that @(x) = Sp(x5) is the defining homomorphism of the
symmetric algebra A,/R,. Let (#) be a basis of A, over R, and (v), (v’) be
the dual bases of () with respect to Sp and ¢, respectively. From Prop 4.2
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we have > wv' = (> uv) 5-1. But by Prop. 4.4, >, uv = 1. Thus we have .
D"(Ay [Ry) = D°(Ap/Ry) = (Suv)Ap = (87) Ap = D(As/Ry).

As for the connections between the elements -, #; and the usual dif-
ferent, we have the following theorem some-hing like to that of Dedekind.

THEOREM 8.7. The different D (A/R) is the greatest common divisor of all
the elements

> %),
where (u;....,u) is a basis of L|/K contained in A and (v, ....,v,) is the dual
basis of (w,, .. .u,) with respect to some K-homomorphism of L to K and also
belong to A.

Proor. It follows from Prop. 4.2’ that > #;v' € D°(Ay/R:) = DA, /R,).
It is sufficient, therefore,to prove that there exists one of above elements
> u, v, such that p-component of the principal ideal ( > ui"v;) is D°(A; [ Dy).

Let ¢ be the defining R,-homomorphism of the symmetric algebra A,/R,,
(%1, ...., #y) and (v4,...., vy) a dual bases of A, over R, with respect

to @. We extend @ to a K-homomorphism @ of L to K. Since %, ...., #s
are p-integral, their denominators are prime to p, even if they do not belong
to A. So we may take ay,...., @, in R, all prime to p, and (#a:, %eas, ...,
#nan) is a (linearly independent) basis of A,/R. contained in A. The dual
basis of (#a;) is (v;a7'). Since (ai, ) =1, v;a;* are all p-integral. There
exists, therefore, an element & in R, (b,p) = 1, such that »;¢;* b are all in

A. Now we take K-homomorphism ¢’ defined by ¢'(x) = @(x6~1). Then the
dual basis of (#; a;) with respect to ¢’ is (v;a;! b); this is the basis in the

present proposition. On the other hand, as & is a p-unit, ¢’ induces an R,-
homomorphism ¢’ of A, to R, which is also a defining map of the symmetric
algebra A, /R,. Thus we have

D a) W aT? ) Ay = D (A [Ry) = D(A /Ry ),
i
which proves the proposition.
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