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0. Introduction. In a complex space covered by a system of complex co-

ordinate neighborhoods (2*, z*J\ the fact that the components (vκ, vκ} of a self-

conjugate contravariant vector field vh are analytic functions of complex coordinates

of the form

(0.1) v* = τf(zκ\ v« = v*(z*)

and the fact that the components (w^, ιvχ) of a self-conjugate covariant vector field

Wi are analytic functions of complex coordinates of the form

(0. 2) w^ = wλ(*"), wt = w£**)

have both a meaning which is independent of the choice of the local complex

coordinates. We call such vector fields a contravariant analytic vector and a

covariant analytic vector respectively.

In the case where the complex space admits a Kahler metric ds2 = 2gfl%dztidz*9

equations (0.1) and (0. 2) can be written in the form

(0.3) vX = 0, Vμ*>" = 0

and

(0.4) Vμ^λ = 0, vμwχ = 0

respectively, where Vί denotes the covariant differentiation with respect to the

Riemannian connection {/M defined by the Kahler metric gjiΛ

Using the tensor

'•
we can write (0. 3) and (0.4) in the form

(0.6) -Fi°Vαf* - Fa\tv
a = 0

and

(0.7) ί /V Wi ~ ίΊβVίWβ = 0

1) In the sequel, the Latin indices h, i,j, run over the range 1,2, tn\ 1,2,
and the Greek indices «, λ, μ, over the range 1,2, ,n.
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respectively.

In the case where the Kahler space is compact, one of the present authors

has proved (K. Yano [6], [7])2) : A necessary and sufficient condition for a

vector vh in a compact Kahler space to be contravariant analytic is

(0.8) 0"v,Vif * + *ιV = 0,

where Kβ is the Ricci tensor of the space.

Since a necessary and sufficient condition for a vector field vh in a compact

orientable Riemannian space to be a Killing vector is that

(0. 9) ffJίVjVi^ + Kfv* = 0, vrf = 0,

(K. Yano [7], [8]), we can see from (0. 8) and (0. 9) that a contravariant analytic

vector vh satisfying v*^* = 0 in a compact Kahler space is a Killing vector

and that a Killing vector in a compact Kahler space is contravariant

analytic.

One of the present authors has also proved (K. Yano [6]) : A necessary and

sufficient condition for a vector wt in a compact Kahler space to be co-

variant analytic is

(0. 10) 9HVjViW* - Kh

lwt = 0.

Since a necessary and sufficient condition for a vector Wι in a compact

orientable Riemannian space to be harmonic is given just by (0. 10) (K. Yano,

[7], [8]), we see that a necessary and sufficient condition for a vector wi in a

compact Kahler space to be covariant analytic is that wt be harmonic.

The purpose of the present paper is to generalize these results to the case of

the most general almost Hermitian space, that is, to the case of spaces in which

a mixed tensor F€
Λ satisfying

(0.11) F}F? = --AJ,

A] being the unit tensor, and a Riemannian metric gfi satisfying

(0. 12) gj( = FfFfg*

are given.

The Kahler space is characterized by the equation

(0. 13) V,F«Λ = 0.

An almost Hermitian space in which we have

(0. 14) VjFiΛ + ViFhJ + VAF0 = 0,

where F^ = Fjagai is called an almost Kahler space (K. Yano [7]). The results

2) See the Bibliography at the end of the paper.
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mentioned above have been already generalized to the case of almost Kahler

spaces by S. Tachibana [4]. S. Tachibana [5] has also generalized these results to
the case where

(0.15) V;F,Λ + ViF/ = 0

is satisfied. We shall call such an almost Hermitian space an almost Tachibana space.

In § 1 we give some important formulas in the differential geometry of

almost complex spaces and of almost Hermitian spaces. In § 2 we give several

formulas which are valid in almost Kahler and almost Tachibana spaces. The § 3

is devoted to the discussions of curvature tensors of these spaces. In § 4 and § 5

we discuss contravariant and covariant almost analytic vectors in the most general

almost Hermitian space and deduce as corollaries the theorems on these vectors in

almost Kahler and almost Tachibana spaces.

1. Preliminaries. We consider a 2w-dimensional real differentiable manifold

M of class C°° covered by a system of coordinate neighborhoods (ζ71). We can
introduce in this manifold M a system of complex coordinate neighborhoods

(z?, #*) defined by

If we can cover the manifold M by a system of complex coordinate neigh-

borhoods (z*, #*) in such a way that in the intersection of two complex coordinate
neighborhoods (zκ, zκ) and (zκ'9 zκ') we have

(1.2) z"'

(1.3) a/"'

where f* are complex conjugate functions of /*', we say that the manifold M
admits a complex structure and call M a complex manifold.

When we write above equations in the form

§' (£) are real analytic functions of ξh and

(1.5)

Thus a complex manifold is of class C" and orientable.
The complex structure is also characterized by the existence of a mixed

tensor Ft

Λ which has numerical components

(1-6) Ft

ft=
-v-iδ!
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in all complex coordinate neighborhoods (zκ, zκ) and consequently satisfies

(1-7) F/Ft*= -A],

where A] is the unit tensor.

Indeed the components (1. 6) of the tensor in the coordinate neighborhoods

(z*, zκ) and the components

(1.8) Ff'-

of the tensor in the coordinate neighborhoods (2"', z"') should be related by equa-

tions of the form

py= a**' dz{

 F>

from which we find

a*"' = 0 at*' = 0

and consequently we get equations of the form (1. 2).

We next consider a 2/z-dimensional real differentiable manifold M of class

C°° covered by a system of coordinate neighborhoods (ξh). If there exists a mixed

tensor Ff of class C°° which satisfies (1. 7), we say that the manifold M admits

an almost complex structure and call such a manifold an almost complex mani-

fold. An almost complex manifold is orientable. If there exists a system of com-

plex coordinate neighborhoods (zκ, zκ) with respect to which the tensor F* has

always numerical components (1. 6), then we say that the almost complex structure

induces a complex structure.

It is now a well known fact (A. Newlander and L. Nirenberg [l]) that an

almost complex structure Ft

h induces a complex structure if and only if the so-

called Nijenhuis tensor

(1. 9) N»* = Fj'OaFi* - atFβ*) - FSGoFf - θ,Fα

Λ)

vanishes identically, where 9α denotes partial differentiation with respect to the

coordinate ξa.

The Nijenhuis tensor N^ satisfies the following identities (K. Yano [7]):

(1. 10) NJa

a = 0,

(1.11) N/ + Nj = 0,

(1.12) NiΛ

nFt* = - N^FS = - Nίa

nF,a,

(ι.i3) NS + F FSN** = o, NJ - FSFSN** = o.
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We now introduce the following tensors (K. Yano [7]):

(1.14) 0% = -ί (A\ Al - FfF.*),
£ι

(1.15) *0fa = -ί (AS Al + FW).
£t

For a mixed tensor T? for example we form

(I- 16) OS Tb

a

and call it the pure part of the tensor Tt

Λ. In the case where the almost complex

structure ί\Λ induces a complex structure and F* has numerical components

(1.6), putting

we have

0 T;.

For a mixed tensor T/*, we form also

(i. i?) *σ& τb

a

and call it the hybrid part of the tensor T*. In the complex case, we have

™ τ« / ° T»*\
0ίαTs Vτ,« o >

Similarly OfLTcb is the pure part of the tensor T5i and * OJt Tcδ is the

hybrid part of the tensor T#.

Take a general tensor T'.'.i71.'.'. . If we have

(1.18) 0£T:r:: = o,

that is, if the pure part of the tensor with respect to the indices h and i vani-

shes, we say that the tensor T '."*.'.'. is hybrid in h and /. If we have

(i. 19) *θfaT'::f.:. = o,

that is, if the hybrid part of the tensor with respect to the indices h and i

vanishes, we say that the tensor T'.'.i71.'.'. is pure in h and i.

Similary if we have

(i. 20) 0$T::;::;:: = o,

we say that the tensor T '.'.y.'.i'.'. is hybrid in j and i and if we have
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(i. 21) *0°,?T::;::;:: = o,

we say that the tensor T '.'.'/.'. Γ.'. is pure in j and ί.

The almost complex structure F* satisfying (1. 7), we have

(1. 22) *OS F," = -i (Al Al + M.W = 0,
£i

which shows that F? is pure in h and i.

The equations (1. 13) may respectively be written as

(1.23)

which shows that Nβ' is pure in j and i and is hybrid in h and i.

Now we can introduce in the differentiate manifold M of class C°° a posi-

tive definite Riemannian metric aβ of class C°°. From this we form

(1. 24) gβ = -1 (β* + IWO = *OS αe6,
£ι

then the < t̂ thus defined is also positive definite and satisfies

(1.25) g» = F;Fΐge1n

that is

(1.26) 05? &δ = 0,

which shows that the covariant tensor gβ is hybrid in j and /.

When an almost complex manifold admits a hybrid positive definite Rieman-

nian metric gβ, we call such a metric a Hermitίan metric. We call an almost

complex manifold admitting a Hermitian metric an almost Hermitian space.

When the almost complex manifold reduces to a complex manifold an almost

Hermitian space is called a Hermitian space.

In an almost Hermitian space, we put

(1. 27) Fβ = F?g«,

then (1. 7), (1. 25) and (l. 27) give

(1. 28) Fβ = - Fίj9

(1. 29) OH Fcb = 0.

These equations show that Ffi is skew- symmetric and is hybrid.

Raising and lowering indices by use of the fundamental metric tensor gjl9

we can define Fίh and Nβh. These tensors satisfy

(1. 30) Ofa Fba = 0,

(1.31)
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respectively. Thus Flh is hybrid and Njift is pure in i and h.
Following two lemmas will be very useful in the sequel.

LEMMA 1. The operators O£ and *O£ satisfy

(1. 32) O + *O = A, O O = O, O *O = 0,

*0 0 = 0, *0 *0 = *0,

A being the identity operator.

This will be proved by a straightforward calculation.

LEMMA 2. Let RH be pure in j and i and SJί be hybrid in j and i,
then we have

(1. 33) Rβ Sji = 0.

Indeed, under the assumption, we have

*O R = 0 and O S = 0.

From the first of the identities in Lemma 1 and the first of these equations
we find

R = O'R or R» = O^ Rcb,

thus

Rβ S
jί = (0% Rcb)Sjt = Rcb(0% S*) - 0.

Applying these lemmas, we have for example

(1.34) *"#/ = 0, ^ΛJVM-0,

FH being hybrid in j and i and NJih being pure in j and i and also in i and h.
If we denote by V^ the covariant differentiation with respect to Riemannian

connection defined by the almost Hermitian metric gβ, the Nijenhuis tensor N#h

can be written as

(1. 35) NJ = Fja(VaF*

We now define following tensors :

(I- 36) F^ = Vj

(1. 37) Ft = v"Fai,

(I- 38) Gβ

Λ

where

(I- 39) V

α
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We call an almost Kάhler (Tachibana)^ space an almost Hermitian space
in which Fjίh — 0 (G^ — 0) is satisfied. We call a Kάhler (Tachibana) space
an almost Kahler (Tachibana) space in which Nβ

h — 0 is satisfied.

2. Almost Kahler and almost Tachibana spaces. The covariant com-
ponents of the Nijenhuis tensor may be written in the form

(2. 1) Njih = F,aFM - Wα* + 2F?(vM,

from which we have

THEOREM 2.1. In an almost Kahler space, we have

(2.2) ΛU=2ί iAv*^«)

and consequently ^jFt

h is pure in j and i.

THEOREM 2. 2. In a Kάhler space, we have

(2.3) V X - O

and conversely, if (2.3) is satisfied in a Hermitian space, it is a Kahler
space.

On the other hand, the Nijenhuis tensor is also written in the form

(2. 4) ΛΓ/ = - XVjFΛFS + 2Gβ

aFa

h + FfGj - Ft

aGaj\

from which we get

THEOREM 2. 3. In an almost Tachibana space, we have

(2. 5) JV/ - - 4(VjFi*WS

and consequently Vj^ is pure in j and i.

THEOREM 2. 4. In a Tachibana space, we have (2. 3) and consequently
a Tachibana space is a Kahler space.

Contracting Fth to equation (2. 1) we find, by virtue of (1.10) and (1. 34),

0 = NiihF
th = F?FaihF

th + 2FJ9

from which

(2. 6) Fj^F* = 2FaFf.

Equation (2. 6) proves

THEOREM 2. 5. In an almost Kahler space, we have

(2. 7) F, - 0

3) See, S. Tachibana^[5].
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and consequently Fβ is a harmonic tensor.

A skew-symmetric tensor T^.../, is called a Killing tensor (K. Yano and
S. Bochner [8]) when it satisfies

and consequently

Thus in an almost Tachibana space, the tensor Fjt is a Killing tensor and

we have F3 = 0.
By a straightforward calculation, we find

(2. 8) 3Vjί"ίΛ "~ -FjiΛ ^ GW ~~ Giι/Λ,

from which

THEOREM 2. 6. In an almost Tachibana space we have

(2.9) 3VjFih = Fβh

and consequently VjFih is skew- symmetric in all its indices.

In general the Nijenhuis tensor Njih satisfies

(2. 10) Njih + NjM = - FjiaFh

a - FJfιaF° + 2F/GίΛα.

Thus if, in an almost Kahler space, we have Niih 4- NjM = 0, then we
deduce from it Gjih = 0 and the space is an almost Tachibana space. Thus from

Theorem 2. 6 we find 3^/jFίh = Fjίh — 0 and consequently the space is a Kahler
space. It is evident that in a Kahler space we have Njih -f N)M — 0. Thus we
have

THEOREM 2. 7. An almost Kahler space is a Kahler space if and only if

(2. 11) Njih 4- Njhi - 0,

that is, if and only if Njih is skew- symmetric in all its indices (S. Sawaki and
S. Koto [3]).

Also the tensor G/A satisfies

(2. 12) 2*0$ Gcbh - - (FfFcM + Ft

eFe^Fh*9

from which

THEOREM 2. 8. In an almost Kahler space, the tensor Gjih is pure in j

and i.

From (2. 10) and (2. 12), we have in general
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(2. 13) NβΛ + NiM = 2Ff 0% Gtac

and we get

THEOREM 2. 9. In an almost Tachibana space, the Nijenhuis tensor Njih

is skew- symmetric in all its indices.

For an almost Tachibana space, we have from Theorems 2. 3 and 2. 6

(2.14) ΛU =\FHaFh

a,
ό

or equivalently

(2.15) Fjίh=-^NjiaFh

a.
4

Thus we have

THEOREM 2. 10. In an almost Tachibana space, the tensor Njia Fh

a is
skew- symmetric in all its indices.

3. Curvature tensors. We denote the curvature tensor of the Hermitian
metric gjt by

its covariant components by

(3. 2) -KjtjiΛ = Kicji gajι,

and the Ricci tensor and the curvature scalar by

(3.3) KH = Kan

a and K = y*KJt

respectively. Moreover we put

(3.4) HV=±KVΛF*
£

and

(3. 5) Kjt = - HfrF? or KJa F° = Hjt.

Thus Hji and K*a F" are both skew-symmetric. From (3. 5) we find K*a Ft

a

+ Kΐa Fja = 0, from which

(3.6) Kί^FfFfKά.

Thus if K*i is symmetric then it is hybrid.
Applying the Ricci identity to the tensor F*, we find

(3. 7)
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Contraction with respect to k and h in this equation gives

(3. 8) VaVjF" — KjaF* — Hji — \7jFί9

from which

(3.9) v*G/ - K&F? + KiaF? - (VjFt + VlF>).

Thus

THEOREM 3.1. In an almost Tachibana space, the tensor KjaF? is skew-
symmetric and consequently Kjt is hybrid.

Equation (3. 8) can be written as

(3.10) v«Vj*V + V^i = (K» - K*M*

Thus we have

THEOREM 3. 2. In order that KH = K*i in an almost Hermitian space,
it is necessary and sufficient that

(3.11) V«Vj*V + ViFi = 0.

COROLLARY 1. In order that Kjt = K*i in an almost Hermitian space
with FI = 0, it is necessary and sufficient that

(3.12) VaVjFf = 0.

COROLLARY 2. In order that KH = K*i in an almost Tachibana space,

it is necessary and sufficient that

(3.13) v

aFaih = 0 or vVα^t* = 0.

COROLLARY 3. In a Kάhler space, we have

(3.14) Kόi = K*n.

4. Contravariant almost analytic vectors. Let us consider a self-conjugate

contravariant vector field (vκ, vκ) in a complex manifold. If the components vκ(vκ)

are functions of z\zχ) only, then the vector is called a contravariant analytic
vector (S. Sasaki and K. Yano [2], K.Yano [7]). The condition for vh to be a
contravariant analytic vector is given by

(4. 1) 9^K = 0, 9Λz/* - 0,

where

3λ- = d/dz\ aλ

The condition (4 1) is equivalent to

(4.2) *αs ?,va = o,
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that is to the fact that dbv
a is pure. The condition (4. 2) is .also written as

(4.3) LF? = va-daF? - F4

β3β v* + FfViV* = 0,
V

which is a tensor equation, where £, denotes the Lie differentiation with respect

to the vector field vh (K. Yano [7])".
Thus in an almost complex space, we define a contravariant almost an-

alytic vector field as a vector which satisfies (4. 3), that is, as a vector vh, an
infinitesimal transformation with respect to which does not change the almost

complex structure.
In an almost Hermitian space, the equation (4. 3) may be written as

(4. 4) £ F? = t/V.*1,* - Ft

avaτf + Fa\iVa = 0,
v

from which

VaVaFih - F^VΛ ~ -FWi^α = 0,

and taking the symmetric part of this with respect to i and h

(4. 5) O% (VΛ + VΛ) = 0 or 0$ (fc gcb) = 0,
1>

and also

(4. 6) 0& (v V + vsf ") = 0 or OS (£, /s) = 0,
V

where

and

£ / = f W - ίTvαt^ - ̂  «vβV « = - VV -
V

Equation (4. 5) and (4. 6) show that £, gjt and £, gr" are both hybrid for a
V V

contravariant almost analytic vector vh in an almost Hermitian space.
Now by a straightforward calculation we can prove

= 0,

which shows that the tensor

I WFJ + FfF.fi - GH

aFa\
ίί

symmetric in j and i, is pure in j and i. Thus from Lemma 2 and (4. 6) which
shows that £, cf* is hybrid, we obtain
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-l(Wα,* + FΐFj) (L /) - G/FαU /) = 0
£ υ v

or

(4. 7) \F*& fί() = G/F/(VV)

by virtue of £, Ff = 0 for a contravariant almost analytic vector field t>Λ in an
V

almost Hermitian space.
Now applying the operator yc to (4. 4), we find

FΛvW + #V - FΛHf" - G/*V(VV)] = 0,
V

or

(4. 8) vW + «,V - ί f*£ί* - G.^FΛvV) = 0,

or equivalently

(4. 9) v'V v* + ̂ V - F^£^ - ±Ffi\&F") = 0

by virtue of (4. 7).
Equations (4. 7) and (4. 8) or (4. 7) and (4. 9) are necessary conditions for a

vector v* in a general almost Hermitian space to be contravariant almost analytic.
Thus a necessary condition for a vector vh in an almost Kahler space to be
contravariant almost analytic is

= 0, GΛ»(vV) = 0,

and a necessary condition for a vector z>* in an almost Tachibana space to be
contravariant almost analytic is

= o.

If we put

(4. 10) T" =

we have

(4. 11)

and
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(4. 12) vm^Wfil + ΓvW + XiV - Ff&F) - ±F}ί\LF}()
t> L v % υ

Assuming that the Hermitian space is compact, we have from (4. 12)

(4. 13) f Γ { vVX + *»V - ΉUFO - 4-
J^L υ 2

σ = 0,

where dσ deαotes the volume element of the space.
From (4. 9) and (4. 13), we obtain

THEOREM 4. 1. A necessary and sufficient condition for a vector field
vh in a compact almost Hermitian space to be contravariant almost an-
alytic is

= 0.

COROLLARY 1. A necessary and sufficient condition for a vector field
vh in a compact almost Kάhler space to be contravariant almost analytic is

(4. 14) v'ViV* + K& = 0

(S. Tachibana [4]).
Since a necessary and sufficient condition for a vector field vh in a compact

orientable Riemannian space to be a Killing vector field is

V'Vif* + Kfrf = 0, Vί^ = 0

we have

COROLLARY 2. A Killing vector field in a compact almost Kάhler
space is contravariant almost analytic.

This corollary may be proved also in the following way. Since vh is a Kil-
ling vector, we have

£,#4 = 0 and £/ = 0.
V V

On the other hand, it is well known that the Lie derivative of a harmonic
tensor with respect to a Killing vector vanishes in a compact orientable Rieman-
nian space (K. Yano [7]). Since FH is harmonic in a compact almost Kahler
space, we have
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£ Fjt = 0
t>

from which

£ F,Λ = £(F,tf «*) = <),
t) D

which shows that vh is contravariant almost analytic.

COROLLARY 3. A contravariant almost analytic vector field vh satisfy-
ing vX = 0 in a compact almost Kάhler space is a Killing vector.

From (4. 7), (4. 8) and (4. 13), we have

COROLLARY 4. A necessary condition for a vector field vu in an almost
Tachibana space to be contravariant almost analytic is that

vW + Ki v = o, Wfc**) = o
V

and a sufficient condition for vh in a compact almost Tachibana space to
be contravariant almost analytic is

= o.
2

5. Covariant almost analytic vectors. In a complex manifold, a self-
conjugate covariant vector field (wλ, w^) is said to be covariant analytic when its
components w^(w^) are functions of zκ(z*) only. The condition for (z#λ, zvd to
be covariant analytic is given by

(5. 1) d-wi = 0, aμwχ = 0

or

(5. 2) *OJ 3C wδ = 0

or

(5. 3) [O,/O - O4F/)]tt;β - F,adawt + F^wa - 0,

which is easily verified to be a tensor equation.
Thus in an almost complex space we define a covariant almost analytic

vector as a vector field wt which satisfies (5. 3).
In an almost Hermitian space, the equation (5. 3) may be written as

(5. 4) [(v îα) ~ (Vi^/XK - F/v.w. + FiaV,u>a = 0,

from which, taking the symmetric part with respect to j and ί, we find

(5. 5) *0$? (Vc^6 ~ Vδ^c) = 0,

which shows that V.W ~~ Vίwj ^ P^e for a covariant almost analytic vector
in an almost Hermitian space.
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Contracting ykF
Ji to the equation (5. 4), we find

(5.6) (V^*)(V^ιV» = 0

for a covariant almost analytic vector field wt.

Now we define tensors PSi and Q3i by

P» = (VjFf - v,*y>β, QH = F^awt - Ffvfoo.

respectively. Then for a covariant almost analytic vector field wt> we have

PίtP» = 2(F}ia - v

or

by virtue of (5. 6) and

P»Q* = F,*(v.w, + Vitf»)(G*"

Thus in an almost Kahler space we have PJiP
H = 0 for a covariant almosi

analytic vector wi from which we obtain

P» = o, Q}t = o.
But in an almost Kahler space, we have

Thus Pji = 0 gives

wβV«^i ^ 0.

On the other hand, in an almost Tachibana space, we have, following The-
orem 2. 6,

and consequently (5. 6) may be written as

FjibF
j{awa = 0,

from which

(FjiW^) (FHaWa) = 0,

and consequently Fόi

awa = 0, that is,

by virtue of



40 K.YANO AND M.

Thus in an almost Tachibana space, we have PjtQjt = 0 and the equations
P» = Qa and PβQ

jί = 0 give PH = 0, QH = 0, that is,

wβV«** = 0, QH = 0

for a covariant almost analytic vector in an almost Tachibana space. Thus we
have

THEOREM 5. 1. A necessary and sufficient condition for a vector field
Wι in an almost Kάhler or an almost Tachibana space to be covariant
almost analytic is that

(5. 7) ™αV A = 0,

(5 8) ίVv«Wι ~ Ffvpua = 0.

For a covariant almost analytic vector field wt in an almost Hermitian space,
we have

that is,

(5. 9) N^wh = 0

by virtue of (5. 4) and (5. 5).
For such a vector, we have also

by virtue of

vW - vW = Ooi (
derived from (5. 5). From this we have
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and consequently

(5. 10) (V^
α - V.O (vV)Fβ»w4 = 0,

by virtue of (5. 9), for a covariant almost analytic vector field Wι in an almost

Hermitian space.
If we suppose that wt is a contravariant and at the same time covariant

almost analytic vector field in an almost Hermitian space, then adding

ti/Vα*? - Fj\aw
h + 7VVX = 0

or

^VA - FjaVaWi - Ft\jWa = 0

and

(VjFta - VΛ«X - *7V«Wi + FfVflVa = 0,

we find

(5. 11) Fjίαte;α - 2F3

a^awi = 0.

In an almost Kahler space, equation (5. 11) reduces to

Fί*VaV>l = 0.

In an almost Tachibana space, (5. 11) is also written as

Stl/Vα*1* ~ 2F°VaWί = 0

or

*yv«Wf - o
by virtue of w\aFji = 0 in Theorem 5. 1. Thus

THEOREM 5.2. J/, /w an almost Kahler or almost Tachibana space, twi

is a contravariant and at the same time covariant almost analytic vector
field, then it is covariantly constant.

The equation (5. 4) is written as

(5. 12) VjWi -

where

(5. 13) SB* = F4

aze;a.

The equation (5. 12) may also be written as

(5. 14) - (VjWi
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The equations (5. 12) and (5. 14) give

THEOREM 5. 3. If a vector field ivt in an almost Hermitian space is
covariant almost analytic, then the vector field wt — F"wa is also covariant
almost analytic.

If vectors wt and wt are both closed, then equation (5.12) is satisfied. Thus
we have

THEOREM 5. 4. If vectors Wi and wt = F^wa in an almost Hermitian
space are both closed, then they are both covariant almost analytic vectors.

From (5. 12) we have by contractions of FH and of gjί

(5.15) F*VjS>t = 0 and Fjc(v^* - Vi^j) = 0

respectively. Thus applying gr*Vj to wt = F^Wa, we find

(5.16) fl^VjWi - Ftwt = 0.

If a covariant almost analytic vector field wt is closed, we have from (5. 12)

(5. 17) Vjw4 ~ Vi®j = 0.

Thus from (5.16) and (5.17) we have

THEOREM 5. 5. If, in an almost Hermitian space with F* = 0, a co-
variant almost analytic vector wt is closed, then wt is harmonic (S. Tachibana

M, [5]).

Thus Wi is covariant almost analytic (Theorem 5. 3) and is closed and we
have

THEOREM 5.6. If, in an almost Hermitian space with Fl = 0, a co-
variant almost analytic vector field wt is closed, then it is harmonic.

Now applying ίVv* to (5. 4) and changing indices, we obtain

(5.18) v

βVαWi - (2K*» - K»W + FW(Fcbaw
a)

+ (vc^δ)Gcδ«*r + F/Wv^α + Ftfw*} = 0.

For the tensor TH defined by

(5.19) Tόi = (VjFt

a - ViF°)wa - FfVaWt + Ft

a

Vjwa9

we have the identity

(5. 20) v*( Wwβ) + [vβV.Wi ~ (2«; -

+ Wα^w") + (
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+ — T*TΛ = 0.
LJ

Thus, in a compact almost Hermitian space, we have

(5. 21) £[ ί V°VαW. - (2KJ, - *ΛV + WC*1...™0

+ (Vu?)GetaFt

a + ΉVVΛ +

and consequently

THEOREM 5. 7. .A necessary condition for a vector field wt in an
almost Hermitian space to be covariant almost analytic is that (5. 10) and
(5. 18) are satisfied and a sufficient condition for Wι in a compact almost
Hermitian space to be covariant almost analytic is

(5. 22) v'VαW, - (2KI - K}l)w> + Ft

ev\Fetaw
a)

6)̂ " = 0.

COROLLARY 1. A necessary condition for a vector field wt in an almost
Kάhler space to be covariant almost analytic is that

(5.23) (VαF^CyW^W^O

and

(5. 24) V

βVαW* - (2/ζR - ̂  V + (vβw6)Gc6«ί;β = 0

αr^ satisfied and a sufficient condition for wt in a compact almost Kάhler
space to be covariant almost analytic is

(5. 25) yβVαWi - (2KJΊ - K» V

+ (v^^c^i" + (VαFcδ)(vc^)^α = 0.

The equation (5. 24) can be written as

V

αVαWί - ^X - 2(Kl - /ΓΛW + (v'w*) ,̂̂ - = 0.

On the other hand, taking account of (3. 10) and (5. 7), we have



44 K.YANΌ AND M.AKO

and consequently

by virtue of (5. 10). Thus the integral formula (K. Yano [7])

Π l
(VαVαwi ~~ Kjίw^w1 Λ

2

shows that

Vjw, - ViWj = 0, Vi^' = 0,

that is, Wi is harmonic. Thus we have

COROLLARY 2. A covariant almost analytic vector in a compact almost

Kάhler space is harmonic.

For a covariant almost analytic vector field wt in an almost Tachibana space,

taking account of (3. 10) and of (5. 7), we have

= (VjF
δα) (vΛαV = 0,

that is, K*i wf = KHw*. And consequently, from Theorem 5. 7, we have

COROLLARY 3. A necessary condition for a vector field wt in an almost

Tachibana space to be covariant almost analytic is that

(5.26) (VjFί

α)(vW)FαX = 0

and

(5. 27) VβV«w - *W = 0

satisfied and a sufficient condition for Wi in a compact almost Tachibana

space to be covariant analytic is

(5. 28)

From (5. 27) we have

COROLLARY 4. A covariant almost analytic vector in a compact almost
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Tachίbana space is harmonic.

By a similar computation, we can prove the following integral formula which

is valid in a compact almost Hermitian space :

(5. 29)

+ (v'w'XJe**1," + JVWvΛ +

- 0,

from which we have

THEOREM 5. 8. A necessary and sufficient condition for a vector wt in

a compact almost Kάhler space to be covarίant almost analytic is

(vc^)GcδαίV = 0.
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