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0. Introduction. In a complex space covered by a system of complex co-
ordinate neighborhoods (2%, 2*)V, the fact that the components (v, v*) of a self-
conjugate contravariant vector field " are analytic functions of complex coordinates
of the form

0.1) v =0%(2"), vf = vz

and the fact that the components (w,, wx) of a self-conjugate covariant vector field
w;, are analytic functions of complex coordinates of the form

(0.2) wy = wi(2),  wi= wiz")

have both a meaning which is independent of the choice of the local complex
coordinates. We call such vector fields a contravariant analytic wvector and a
covariant analytic vector respectively.

In the case where the complex space admits a Kihler metric ds? = 2¢,xdz"d=z*,
equations (0.1) and (0.2) can be written in the form

0.3) Vit =0, v =0
and
0.4) Viw, = 0, V.wz =0

respectively, where v, denotes the covariant differentiation with respect to the
Riemannian connection {;*;} defined by the Kihler metric g,.
Using the tensor

Y 0

©.5) rr=(VT1E 2 ),

0 —&/ =18
we can write (0.3) and (0.4) in the form
(0.6) Fiyd" — Fl 'y =0
and
0.7) Fiv,w, — Fvw, =0
1) In the sequel, the Latin indices A, i, j, ...... run over the range 1,2,...... o715 1,2, . 7,

and the Greek indices «, A, g, ...... over the range 1,2,...... s 1.
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respectively.
In the case where the Kihler space is compact, one of the present authors

has proved (K. Yano [6], [7])”: A necessary and sufficient condition for a
vector v" in a compact Kihler space to be contravariant analytic is

(0.8) g ‘VJV:'U’L + K/™* =0,

where K,; is the Ricci tensor of the space.
Since a necessary and sufficient condition for a vector field " in a compact
orientable Riemannian space to be a Killing vector is that

(O. 9) gjtv"van + K‘hv{ = O, Vﬂ}t = 0,

(K. Yano [7], [8]), we can see from (0. 8) and (0. 9) that a contravariant analytic
vector v" satisfying v,v' =0 in a compact Kihler space is a Killing vector
and that a Killing vector in a compact Kdihler space is contravariant
analytic.

One of the present authors has also proved (K. Yano [6]): A necessary and
sufficient condition for a vector w; in a compact Kdihler space to be co-
variant analytic is

(0. 10) g”VJViwh — K,'w; = 0.

Since a necessary and sufficient condition for a vector w,; in a compact
orientable Riemannian space to be harmonic is given just by (0.10) (K. Yano,
[7], [8]), we see that a necessary and sufficient condition for a vector w, in a
compact Kahler space to be covariant analytic is that w, be harmonic.

The purpose of the present paper is to generalize these results to the case of
the most general almost Hermitian space, that is, to the case of spaces in which
a mixed tensor F}* satisfying

(0.11) F/F" = — A},
A% being the unit tensor, and a Riemannian metric g, satisfying
0.12) 9 = FSFg,
are given.
The Kihler space is characterized by the equation
(0.13) V,F" = 0.
An almost Hermitian space in which we have
(0. 14) ViFy + Vil + ViFy =0,

where F,, = F,"g, is called an almost Kdhler space (K. Yano [7]). The results

2) See the Bibliography at the end of the paper.
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mentioned above have been already generalized to the case of almost Kéihler
spaces by S. Tachibana [4]. S. Tachibana [5] has also generalized these results to
the case where

(0.15) VE' + VF"=0

is satisfied. We shall call such an almost Hermitian space an almost Tachibana space.

In §1 we give some important formulas in the differential geometry of
almost complex spaces and of almost Hermitian spaces. In §2 we give several
formulas which are valid in almost Kihler and almost Tachibana spaces. The § 3
is devoted to the discussions of curvature tensors of these spaces. In §4 and §5
we discuss contravariant and covariant almost analytic vectors in the most general
almost Hermitian space and deduce as corollaries the theorems on these vectors in
almost Kidhler and almost Tachibana spaces.

1. Preliminaries. We consider a 2n-dimensional real differentiable manifold
M of class C covered by a system of coordinate neighborhoods (£"). We can
introduce in this manifold M a system of complex coordinate neighborhoods
(2%, 2%) defined by
(1.1) 2= 18, = E— — 1

If we can cover the manifold M by a system of complex coordinate neigh-

borhoods (2%, £*) in such a way that in the intersection of two complex coordinate
neighborhoods (2%, 2*) and (2, 2*") we have

(1.2) 2= f(2"), 2= f"(")
of
(1.3) o +0,

where f«" are complex conjugate functions of f*, we say that the manifold M
admits a complex structure and call M a complex manifold.
When we write above equations in the form

(1- 4) Eh’z f"‘l(f),
£(&) are real analytic functions of & and

8{"“ 22¢ oz
o = | Z=>0.
o of" oz | | o=

Thus a complex manifold is of class C* and orientable.

The complex structure is also characterized by the existence of a mixed
tensor F,* which has numerical components
)

1.6 F'= .
(1.6) ! 0 —v/—1&
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in all complex coordinate neighborhoods (2%, 2*) and consequently satisfies
(17) thEh = - A,’;’
where A} is the unit tensor.
Indeed the components (1.6) of the tensor in the coordinate neighborhoods

(2%, 2°) and the components

=18y 0 “)

0 -/ =18
of the tensor in the coordinate neighborhoods (2*', 2¢') should be related by equa-
tions of the form

(1.8) FY = (

n’ azh az“ h
¥ o e T
from which we find
o _, o _,
o2 oz

and consequently we get equations of the form (1. 2).

We next consider a 2n-dimensional real differentiable manifold M of class
C= covered by a system of coordinate neighborhoods (£"). If there exists a mixed
tensor F," of class C* which satisfies (1.7), we say that the manifold M admits
an almost complex structure and call such a manifold an almost complex mani-
fold. An almost complex manifold is orientable. If there exists a system of com-
plex coordinate neighborhoods (2*, 2*) with respect to which the tensor F," has
always numerical components (1.6), then we say that the almost complex structure

induces a complex structure.
It is now a well known fact (A. Newlander and L. Nirenberg [1]) that an
almost complex structure F," induces a complex structure if and only if the so-

called Nijenhuis tensor
(1. 9) Nﬁh — Fja<aaFtn — a;Fah) — F‘a(aaF’h . ajFan)

vanishes identically, where 9, denotes partial differentiation with respect to the

coordinate &%
The Nijenhuis tensor N," satisfies the following identities (K. Yano [7]):

(1. 10) N,* =0,
(1.1 NS+ NS =0,
(1- 12) Nlaana _ - NltaFan = - NganFla,

(1. 13) Nﬂh + Flchb Cbh = O, N_ﬂh - F‘bFathba = (.
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We now introduce the following tensors (K. Yano [7]):

(1. 14) on =1Larar— peEM,

ICHIS Y

(1. 15) *Ola = — (A} AL + FPF.).

For a mixed tensor T;" for example we form
(1. 16) on T,

and call it the pure part of the tensor T;". In the case where the almost complex
structure F," induces a complex structure and F,* has numerical components
(1. 6), putting

Ty Ty«
Tih — ( A :\‘ >’
Tx" T;"
we have
on T = ( T\ 0 )
0 Ti*
For a mixed tensor T)*, we form also
(1.17) *On T,

and call it the hybrid part of the tensor T". In the complex case, we have
onte=( 0, ).
5" 0

Similarly O3 T,, is the pure part of the tensor T, and * O}T,, is the
hybrid part of the tensor T,.
Take a general tensor T':;*:. If we have

(1. 18) T =0,

that is, if the pure part of the tensor with respect to the indices 2 and 7 vani-
shes, we say that the tensor T'.'/*.. is hybrid in A and Z. If we have

(1.19) *ORT % =0,

that is, if the hybrid part of the tensor with respect to the indices A and ¢
vanishes, we say that the tensor 7":;*.. is pure in A and i.
Similary if we have

(1.20) OXT o = 0,

we say that the tensor 7°::5.;.. is hybrid in j and 7 and if we have
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(1.21) *ORT oo = 0,

we say that the tensor 7. is pure in j and i.
The almost complex structure F;" satisfying (1.7), we have

(1.22) O F* = (AL AL + FPFF =0,
which shows that F}* is pure in A and :.

The equations (1.13) may respectively be written as
(1 23) . *03? Ncbn =0, O%,‘ ija =0,

which shows that N,," is pure in j and ¢ and is hybrid in A and 7.
Now we can introduce in the differentiable manifold M of class C~ a posi-
tive definite Riemannian metric a, of class C*. From this we form

1 ¢ c
(1' 24) gji = _2"(ajt + FJ Ftbacb) = * J‘i; Qcpy
then the g, thus defined is also positive definite and satisfies
(1.25) gn = FSF'g.,
that is
(1. 26) O3 9.0 =0,

which shows that the covariant tensor g, is hybrid in j and 7.

When an almost complex manifold admits a hybrid positive definite Rieman-
nian metric g,, we call such a metric a Hermitian metric. We call an almost
complex manifold admitting a Hermitian metric an almost Hermitian space.
When the almost complex manifold reduces to a complex manifold an almost
Hermitian space is called a Hermitian space.

In an almost Hermitian space, we put

(1.27) F, =Fgu,
then (1.7), (1.25) and (1.27) give

(1.28) F,=—F,,
(1.29) % F., = 0.

These equations show that F,, is skew-symmetric and is hybrid.
Raising and lowering indices by use of the fundamental metric tensor gy,
we can define F** and N,. These tensors satisfy

(1. 30) w F** =0,
(1.31) *O Npa =0
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respectively. Thus F™ is hybrid and Ny, is pure in ¢ and A.
Following two lemmas will be very useful in the sequel.
LEMMA 1. The operators Ot and *O0: satisfy

(1.32) O+ *0 = A4, 0-0=0, 0-*0 =0,

*0-0 =0, *0-*0 = *0,

A being the identity operator.

This will be proved by a straightforward calculation.

LEMMA 2. Let R, be pure in j and i and S"* be hybrid in j and i,
then we have

(1.33) R, S*=0.
Indeed, under the assumption, we have
*O-R=0 and O-S=0.

From the first of the identities in Lemma 1 and the first of these equations
we find

R=0OR or R,=O0%R,,
thus
R, 8% = (0% R,;)S" = R,,(O% §") = 0.
Applying these lemmas, we have for example

(1.34) F*N," =0, F" Ny, =0,

F* being hybrid in j and 7 and Ny, being pure in j and 7 and also in ¢ and A.

If we denote by v, the covariant differentiation with respect to Riemannian
connection defined by the almost Hermitian metric ¢,, the Nijenhuis tensor N,"
can be written as

(1- 35) Njin = Fja(VaFih - ViFah) - Fia(Vaan - VjFah)-

We now define following tensors :

(1. 36) Fu = ViFu + Vil + ViFy,
(1.37) i = V'Fa,

(1.38) G, = v,F + wF,,
where

(1.39) v = g"v.
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We call an almost Kihler (Tachibana)® space an almost Hermitian space
in which Fy, = 0 (G," = 0) is satisfied. We call a Kihler (Tachibana) space
an almost Kihler (Tachibana) space in which N;" = 0 is satisfied.

2. Almost Kahler and almost Tachibana spaces. The covariant com-
ponents of the Nijenhuis tensor may be written in the form
@1 Nuw = F'Fopn — F'Fop + 2F(ViFia),
from which we have
THEOREM 2.1. In an almost Kihler space, we have
(2.2) Ny, = 2FXViFia)
and consequently v,F," is pure in j and i.
THEOREM 2.2. In a Kahler space, we have
(2.3) v,k =0
and conversely, if (2.3) is satisfied in a Hermitian space, it is a Kaihler
space.
On the other hand, the Nijenhuis tensor is also written in the form
2.4 N, = — &V, FOF + 2G,F, + F,/G," — F"G,,,
from which we get
THEOREM 2.3. In an almost Tachibana space, we have
@.5) Ny = — a(y,FOF.!
and consequently v,F," is pure in j and i.

THEOREM 2.4. In a Tachibana space, we have (2.3) and consequently
a Tachibana space is a Kihler space.

Contracting F** to equation (2.1) we find, by virtue of (1.10) and (1. 34),
0 = NyF® = F'F,, F* + 2F,,
from which
(2.6) FuF" = 2F ,F"
Equation (2. 6) proves
THEOREM 2.5. In an almost Kahler space, we have
@.7 F,=0

3) See, S. Tachibana![5].
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and consequently F, is a harmonic tensor.

A skew-symmetric tensor T,...;, is called a Killing tensor (K.Yano and
S. Bochner [8]) when it satisfies

VjTilz---ip + ViTjiz..-ip =0

and consequently

a

V Laigeet, = 0.

Thus in an almost Tachibana space, the tensor Fj is a Killing tensor and
we have F; = 0.
By a straightforward calculation, we find

(2.8) 3VsFu = Fin = Gun — Gip,
from which
THEOREM 2.6. In an almost Tachibana space we have
2.9) 3V = Fyn
and consequently v,Fy, is skew-symmetric in all its indices.
In general the Nijenhuis tensor N, satisfies
(2.10) Nyn + Ny = — FuoF" — FpoF)' 4+ 2F"Gp.

Thus if, in an almost Kdhler space, we have N, + N, = 0, then we
deduce from it G, = 0 and the space is an almost Tachibana space. Thus from
Theorem 2.6 we find 3y,F;, = F,, = 0 and consequently the space is a Kihler
space. It is evident that in a Kéhler space we have Ny, + Nj,; = 0. Thus we
have

THEOREM 2.7. An almost Kahler space is a Kahler space if and only if
(2. 11) Ny + Ny =0,

that is, if and only if Ny, is skew-symmetric in all its indices (S. Sawaki and
S. Koto [3)).

Also the tensor G," satisfies
(2- 12) 2*0%’ Gcbh = (FJCFL‘M + Fic cbj)th:

from which

THEOREM 2.8. In an almost Kahler space, the tensor G, is pure in j
and 1.

From (2.10) and (2.12), we have in general
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(2- 13) Nlth. + Nmt = 2F;c ?1? Gbac

and we get

THEOREM 2.9. In an almost Tachibana space, the Nijenhuis tensor Ny,
is skew-symmetric in all its indices.

For an almost Tachibana space, we have from Theorems 2.3 and 2.6
(2 .14) Ny = %F,-mF,.“,
or equivalently
(2.15) F = — %N,-mF,:‘.

Thus we have

THEOREM 2.10. Irn an almost Tachibana space, the tensor Ny, F," is
skew-symmetric in all its indices.

3. Curvature tensors. We denote the curvature tensor of the Hermitian
metric g;; by

@.1) K" = 9’6{;% A {kha}{;i} - {jhaH:iL
its covariant components by

3.2) Kusin = Kun"Jans

and the Ricci tensor and the curvature scalar by

3.3) K; = K,;" and K = ¢"K;

respectively. Moreover we put

(3.4) H,, = %Kkﬁ,. F*

and

(3.5) K}, = — H,F" or K, F'=H,.

Thus Hj and K} F,* are both skew-symmetric. From (3.5) we find K7 F*
+ K% F," = 0, from which

(3.6) K% = F'FP K%,

Thus if K}, is symmetric then it is hybrid.
Applying the Ricci identity to the tensor F)*, we find

3.7 VeV F" — ViViF, = KkjahF w — K F, .
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Contraction with respect to k£ and % in this equation gives

(3.8) VoVl = K F\* — Hy — v,F,,

from which

(3.9 VaGi' = KiuF\* + Ko F* — (V,F; + v.F)).
Thus

THEOREM 3.1. In an almost Tachibana space, the tensor K, F," is skew-
symmetric and consequently K, is hybrid.

Equation (3.8) can be written as
(3.10) VaViF" + ViF = (Kjo — KI)F.
Thus we have

THEOREM 3.2. In order that K;, = K} in an almost Hermitian space,
it is necessary and sufficient that

(38.11) v.v;F" + v,F, = 0.

COROLLARY 1. In order that K; = K% in an almost Hermitian space
with F, = 0, it is necessary and sufficient that

(3.12) vav,F® = 0.

COROLLARY 2. In order that K, = K% in an almost Tachibana space,
it is necessary and sufficient that

(3.13) VFar =0 or V'y.Fy, =0.
COROLLARY 3. In a Kihler space, we have
(3- 14-) Kﬂ = K;t .

4. Contravariant almost analytic vectors. Let us consider a self-conjugate
contravariant vector field (v*, v*) in a complex manifold. If the components v*(v*)

are functions of 2(z") only, then the vector is called a contravariant analytic
vector (S. Sasaki and K. Yano [2], K.Yano [7]). The condition for v" to be a
contravariant analytic vector is given by

(4.1 7" =0, Qwr=0,
where
o = o/oz, o = 9/02\.
The condition (4.1) is equivalent to
(4.2) %Ol 9" = 0,
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that is to the fact that ©,v" is pure. The condition (4. 2) is also written as
(4.3) LR =v"0,F—F'3,v" + F,'3,v*" =0,

v
which is a tensor equation, where £ denotes the Lie differentiation with respect

v
to the vector field »* (K. Yano [7]).
Thus in an almost complex space, we define a contravariant almost an-

alytic vector field as a vector which satisfies (4.3), that is, as a vector v", an
infinitesimal transformation with respect to which does not change the almost

complex structure.
In an almost Hermitian space, the equation (4.3) may be written as

(4.4) £ F = v'v.F — Fly.0" + F,'lyv* =0,
from which
'UaVaF w — F iaVa'Un - F hthva =0,

and taking the symmetric part of this with respect to 7 and A

(4.5) 0% (Vevy + Vov) =0 or OF (:,E, ges) =0,
and also

(4.6) 2V + v)=0 or O} (% 9 =0,
where

3%/ g = 'UaVag;'z + gaiV.iva + gjth'”a = V¥ T Vi
and
£ 7" = UVag" — T — gV = — v — P
Equation (4.5) and (4.6) show that j;-,, gs and fv, g"* are both hybrid for a

contravariant almost analytic vector v" in an almost Hermitian space.
Now by a straightforward calculation we can prove

L@SFL + FOF) - GO
+ FOR? [% (F2F" + FAF,") — GE,,“F,,"] =0,
which shows that the tensor
Lrr + FOR) - GoF,

symmetric in j and 7, is pure in j and 7. Thus from Lemma 2 and (4.6) which
shows that £ ¢’ is hybrid, we obtain
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S PR + FOFS) (& ¢") = G FE g =0
or
4. 7) %F jt”(fv, FY) = szaF ah(Vj'Ui)

by virtue of £ F,* = 0 for a contravariant almost analytic vector field " in an
v

almost Hermitian space.
Now applying the operator y* to (4.4), we find

F, ah[VtVt'Ua + Kia'vt - F iadva ¢ - GjtbF ba(Vj'U‘)] =0,
or
(4.8) v've" + K" — F"& F — G,*F,(v'7') = 0,
or equivalently
(4.9) V' + Kt~ PR — L FNEF) =0

by virtue of (4.7).

Equations (4.7) and (4.8) or (4.7) and (4.9) are necessary conditions for a
vector v" in a general almost Hermitian space to be contravariant almost analytic.
Thus a necessary condition for a vector v* in an almost Kihler space to be
contravariant almost analytic is

vve' + K" =0, G"(v'") =0,

and a necessary condition for a vector v* in an almost Tachibana space to be
contravariant almost analytic is

v'vir" + K" =0, F. nn(fv/F ") = 0.

If we put
(4. 10) T% = g""(g?,F )
we have
4.11) % Tj”I'ji = % 'vc'vb(VcFﬂ)(Vijt) - 'UC(VcFﬂ)Fjb(Vb'Ut)

+ V(W F)F (0% + (V) (V500
— F'F, bi(Vc'vt) (Vj'Ub)

and
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(412)  VIERFOFS +[vva' + KM — FEF) — LRGP,
Y
+5 T Ty =0.

Assuming that the Hermitian space is compact, we have from (4.12)

(4.13) f [{ Vv + KM — FHEFY) — %F,./'@Fﬂ);v,.
M v v
+ % T”T,.i]da ~0,

where do denotes the volume element of the space.
From (4.9) and (4. 13), we obtain

THEOREM 4.1. A necessary and sufficient condition for a vector field
V" in a compact almost Hermitian space to be contravariant almost an-
alytic is

V‘V,‘vh + Kinvt - Fih(ﬁ’u/ Ft) - El‘Fjih<£”,F":) = O.

COROLLARY 1. A necessary and sufficient condition for a wvector field
v" in a compact almost Kihler space to be contravariant almost analytic is
(4. 14) Vv + K =0
(S. Tachibana [4]).
Since a necessary and sufficient condition for a vector field " in a compact
orientable Riemannian space to be a Killing vector field is
vivie" + K" =0, vt =0

we have

COROLLARY 2. A Killing wvector field in a compact almost Kdihler
space is contravariant almost analytic.

This corollary may be proved also in the following way. Since v* is a Kil-
ling vector, we have

£9g:=0 and £ ¢g*=0.

On the other hand, it is well known that the Lie derivative of a harmonic
tensor with respect to a Killing vector vanishes in a compact orientable Rieman-
nian space (K. Yano [7]). Since F}; is harmonic in a compact almost Kzhler
space, we have
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:% Fiy=0
from which
LR =£(Fag™ =0,
which shows that v" is contravariant almost analytic.

COROLLARY 3. A contravariant almost analytic vector field v" satisfy-
ing vt =0 in a compact almost Kihler space is a Killing vector.
From (4.7), (4.8) and (4. 13), we have
COROLLARY 4. A necessary condition for a wvector field v" in an almost
Tachibana space to be contravariant almost analytic is that
V‘V;'vh + Kinvt = 0, Fjin(f,F”) = 0

and a sufficient condition for v" in a compact almost Tachibana space to
be contravariant almost analytic is

vviv" + K — —;—F,-/‘(%F"‘) =0.

5. Covariant almost analytic vectors. In a complex manifold, a self-
conjugate covariant vector field (w,, wy) is said to be covariant analytic when its
components w,(wy) are functions of 2“(2*) only. The condition for (w., wx) to
be covariant analytic is given by

5.1) S;wy =0, owwr =10

or

(5.2) *05% 2. w, = 0

or

(5.3) [(Q;F) — (0.F)]ws — F*2.w;, + F"9;w, = 0,

which is easily verified to be a tensor equation.

Thus in an almost complex space we define a covariant almost analytic
vector as a vector field w, which satisfies (5. 3).

In an almost Hermitian space, the equation (5.3) may be written as

(5.4) [(v,F") — (W.F " Nwe — Fivaw,; + Fi'yw, = 0,
from which, taking the symmetric part with respect to j and 7, we find
(5 5) * 52 (Vcwb - wac) = O:

which shows that y;w, — y,w; is pure for a covariant almost analytic vector w;,
in an almost Hermitian space.
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Contracting v,/ to the equation (5.4), we find
(5.6) (VuF") (v, F, w, =0

for a covariant almost analytic vector field w;.
Now we define tensors P;; and Qj by

Py = (v,F" — ViF " )w,, Qi = Fy'vaw, — F'y;wa
respectively. Then for a covariant almost analytic vector field w,, we have
Py = Qy,

PP = 2Fys — VoF s XV'F ") w,

or
PyP" = 2F,"(V'F"w,w,
by virtue of (5.6) and
Pin” = F]'b(wai + Viwb) (Gﬂa - ZV‘Fja)wa‘

Thus in an almost Kihler space we have PP’ = 0 for a covariant almost
analytic vector w,; from which we obtain

P, =0, Q,=0.
But in an almost Kihler space, we have
v, — wiF = — v'Fy
Thus P;; = 0 gives
w'y, Fy = 0.
On the other hand, in an almost Tachibana space, we have, following The-
orem 2.6,

1
ViFu = ‘3‘ Fin

and consequently (5.6) may be written as
F,,F"w, = 0,
from which
(Fi'wy) (F'"w,) = 0,
and consequently Fj"w, = 0, that is,
(V;Fw, =0 or w'y,F; =0,
by virtue of v;F,, = V.Fj.



40 K.YANO AND M.AKO

Thus in an almost Tachibana space, we have P,Q" =0 and the equations
Pji = Qﬂ and Pjt i = 0 giVe Pﬂ = O, jS = 0, that iS,

anuF,n =0, sz =0

for a covariant almost analytic vector in an almost Tachibana space. Thus we
have

THEOREM 5. 1. A necessary and sufficient condition for a vector field
w; in an almost Kihler or an almost Tachibana space to be covariant
almost analytic is that

(5.7 w'yFy =0,
(5- 8) Fjavaw, - Fianwa = O.

For a covariant almost analytic vector field w; in an almost Hermitian space,
we have

Ny'wy = [FX(VF" — WiF.") — FA(VF}" — viF)lw,,
= F(Fvow; — F{v,w,) — FF/vaw; — F{V.aw,)
= — (viw, — viw;) — FF(v.w, — V,w,)
= — 2%05 (Vew, — Vo),
that is,
(5.9 N,/ w, =0

by virtue of (5.4) and (5.5).
For such a vector, we have also

(V,F" — V.F ) V'w)F,"
1

I

o= N

(V;F* — W.F (V'w' — v'w')F, .

(V:F:" — viF)04 (V' — v'w')F,"

= %[(VCF,,“ — VoF.%) — FIFAV,F® — vF v w’)F"
by virtue of
V' — v = 0h (v'w' — v'w’)

derived from (5.5). From this we have
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a a ) 1
(v;F" — wF") (Vuh)F, . = — ? jzh(V"wt)

and consequently
(5. 10) (V,F" — F) (Vw)F, w, = 0,

by virtue of (5.9), for a covariant almost analytic vector field =, in an almost

Hermitian space.
If we suppose that w; is a contravariant and at the same time covariant

almost analytic vector field in an almost Hermitian space, then adding

anath — Fjava,wh + Fahvjwa — O

or
anath - FjaVa'w,- - F{anwa =0
and
(ViFia — ViFs)w® — Fi'vaw;, + F'vw, = 0,
we find
(5- 11) ijwa - 2FjaVa'w1 = 0.
In an almost Kihler space, equation (5.11) reduces to
F JaVawt = 0.
In an almost Tachibana space, (5.11) is also written as
3'anaFﬂ e 2FjaVa'wi = 0
or

F jaVawi = 0
by virtue of w"y,F; = 0 in Theorem 5. 1. Thus

THEOREM 5.2. If, in an almost Kihler or almost Tachibana space, w;
is a contravariant and at the same time covariant almost analytic wvector
field, then it is covariantly constant.

The equation (5.4) is written as

(5.12) ViW; — Viw; = Fi(Vaw; — Viwa),
where
(5. 13) W, = F,"w,.

The equation (5.12) may also be written as
(5.14) — (Viw, — Viw;) = F(Va®; — ViWa)-
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The equations (5.12) and (5. 14) give

THEOREM 5. 3. If a vector field w, in an almost Hermitian space is
covariant almost analytic, then the vector field 0, = F,"w, is also covariant
almost analytic.

If vectors w; and w; are both closed, then equation (5.12) is satisfied. Thus
we have

THEOREM 5. 4. If vectors w; and w; = F"w, in an almost Hermitian
space are both closed, then they are both covariant almost analytic vectors.

From (5. 12) we have by contractions of F* and of ¢"
(5. 15) F'va, =0 and F*yw, — viw;) =0
respectively. Thus applying ¢"v; to @, = F,"w,, we find
(5.16) g'viw, — Flw, = 0.
If a covariant almost analytic vector field w; is closed, we have from (5.12)
(5.17) viw; — vaw; = 0.
Thus from (5. 16) and (5.17) we have

THEOREM 5.5. If, in an almost Hermitian space with F'=0, a co-
variant almost analytic vector w; is closed, then W, is harmonic (S. Tachibana

(4], [5D-

Thus 7, is covariant almost analytic (Theorem 5.3) and is closed and we
have

THEOREM 5.6. If, in an almost Hermitian space with F'=0, a co-
variant almost analytic vector field w; is closed, then it is harmonic.

Now applying F,’v* to (5.4) and changing indices, we obtain

(5.18) V'Vew; — 2K*; — Kp)w' + F'9 (Fopaw®)
+ (V"G oo F + FA(w'voF, + F,V'w,) = 0.

For the tensor T, defined by
(5.19) Ty = (V,;F" — viF " Yw, — F*Vaw; + F V5w,
we have the identity
(5.20) VA(TwF'w®) + [V'vaw, — K5 — Kiw’

+ F V' (Foaw”) + (V')Genal
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+ Fia(wabFa + Fbvbwa)
= (VeFoa — VoF o) (Vw')F T

+ %T”Tﬁ — 0.
Thus, in a compact almost Hermitian space, we have
G.20) [ | 1v'vaws = @KS = Kw' + FOv (o)
M
+ (Vc'wb)GcbaF ia + F ia(wabF e T F bv”wa)
- (Vcha - Vcha.) (Vcwb)Fia}wt
+ iTﬂTﬁ] do = 0,
2

and consequently

THEOREM 5.7. A necessary condition for a vector field w; in an
almost Hermitian space to be covariant almost analytic is that (5.10) and
(5. 18) are satisfied and a sufficient condition for w, in a compact almost
Hermitian space to be covariant almost analytic is
(5' 22) VaVawi - (ZK’ItL - ji)w, + Ficvb(Fcbawa)

+ (V)G ooFy* + FH(w'V,Fo + FyV'w,)
— (VeFoa — VoF o) (VW')F,* = 0.

COROLLARY 1. A necessary condition for a vector field w, in an almost
Kabhler space to be covariant almost analytic is that

(5. 23) (VaF3) (Vw)F, w" = 0
and
(5 24) VaVa,wi - (ZK;.; - Kji)wj + (Vcwb)GcbaFia = O

are satisfied and a sufficient condition for w; in a compact almost Kaihler
space to be covariant almost analytic is

(5.25) V'Vaw; — (2K — K/’
+ (V)G + (VaF o) (Vw')F" = 0.
The equation (5.24) can be written as
V'Vaw; — Kyw’ — 2K, — Kp)w' + (V)G ooy = 0.
On the other hand, taking account of (3.10) and (5.7), we have
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— 2K} — Kp)w' + (V)G ooF*
= — 2F{(vav;F )W + FV*w)Gay
= 2F{(ViF.0) (V') + F (V') (VaF i + ViFa)
= F'(V'w') (VaFy — ViFa)
and consequently
(V'Vaw; — Ky = — FA(V @ ) VaFy — ViFa)w' =0
by virtue of (5.10). Thus the integral formula (K. Yano [7])

[ vaws = Kyt + L (7! = ') (00 = wiw)
n

+ (V') (viw‘)} do =0
shows that
viw: — vaw; = 0, v’ = 0,
that is, w, is harmonic. Thus we have

COROLLARY 2. A covariant almost analytic vector in a compact almost
Kahler space is harmonic.

For a covariant almost analytic vector field w; in an almost Tachibana space,
taking account of (3.10) and of (5.7), we have

— (K% — Kpw' = (v;F**) (WiFpa)w’ = 0,
that is, K} w’ = K,w’. And consequently, from Theorem 5.7, we have

COROLLARY 3. A necessary condition for a vector field w; in an almost
Tachibana space to be covariant almost analytic is that

(5.26) (V,F") (V' )Fw, = 0
and
(5.27) Vvaw, — Kjw' =0

are satisfied and a sufficient condition for w, in a compact almost Tachibana
space to be covariant analytic is

(5.28) V'Vaw; — 2K} — K;)w' + F, LV (Fepaw”)
= 2(V.Fya) (Vw")F = 0.
From (5.27) we have

COROLLARY 4. A covariant almost analytic vector in a compact almost
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Tachibana space is harmonic.

By a similar computation, we can prove the following integral formula which
is valid in a compact almost Hermitian space :

(5.29) f [W“Vawi — (2K} — Kp)w' + F'V'(F.paw”)
"

+ (Vw")GopaFi* + F ('Y Fy + Fv'wa)lw'
- *;“ Ftc{wb(Vch) + Fth‘wc + Foov'w®)} w* + “;“ T”Tj,

SV~ V) (9, — V) + (7.3} |de =0,

from which we have

THEOREM 5. 8. A necessary and sufficient condition for a vector w; in
a compact almost Kahler space to be covariant almost analytic is

VVaw; — @K} — Kp)w' + (V'w’)GowoF® = 0.
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