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1. Introduction. Let f(x) be integrable (— 7r, 7r) and be periodic with
period 27Γ, and let

c o s n x

We denote the Riesz typical means of the above series by

then the following results are known [A. Zygmund [6] and G. Sunouchi-C.
Watari [5]).

(1°) \f(x) — XXx)\ = o(n~k) uniformly, implies that/Or) is a
-constant.

(2°) \f(x)-Xl(x)\ =O(n-k) uniformly, implies
\fik)(x)\ ^ M (when k is an even integer)

\f{1c\x)\ ^ M (when k is an odd integer).
(3°) If |/ ( f c )Cz)| : < M (when k is an even integer)

|/ ( f c ) 0r) | <; M (when k is an odd integer),

\f(x)~ Xk(x)\ =O(n~k) uniformly.

We denote the Riesz means of the Λ-th2) order of the Fourier series of

Ax) by

xγ*\χ) = Σ. Mx) (i - f/rtr,

then we have proved the same results. In fact, the propositions (l°) and (2°)

1) Research supported in part by the National Science Foundation (U.S.A.).

2) We assume a is a positive integer. X%(*)(x) is different from ordinary Riesz means

which have a continuous parameter n. But (C, α)-summability implies X*» (*>-summability.

See M. Riesz [3].
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are proved in the paper of Sunouchi-Watari [5] and (3°) is proved in the
following way. When a = 2,

say. J, = O(tΓ*), by (3°) and

I/. I =

v-0

Since Σ ^fc^4/α:) is the Fourier series of fik)(x) or fw(x) according to an
even k or an odd k, we get I2 = O(n~k). Repeating this argument, we get the
desired properties.

But if we consider the local approximation, there is an essential difference
between X^*\x) {a < k) and X%<«\x) (a > *).

If

\XV«\χ)-f(χ)\ =0(0,

uniformly in an interval, then it is necessary to be

an = O(n-*+a), K = O(n-k+«).

This is a modification of the well-known limitation theorem of Rieszian
means (Chandrasekharan-Minakshisundaram [l], p. 13).

Hence if we consider the local saturation problem,we have to take X^'(α) (x)
means for cί > k. In this paper we shall confine ourselves to X* (fc)(^:)-means
only. The case cί > k is similar.

2. A lemma.

LEMMA I. (1°) If k is an even integer and fw(x) is continuous over
,[— 7r, TΓ], then

lim nkiX%™(x)-f(x)\ = (- kf«\x)

boundedly.

(2°) If k is an odd integer and fik)(x) is continuous over [ — TΓ, TΓ], then

lim «»{X5 W (*) -f(x)\ = ( - lf?
n->-oo

boundedly.
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The case k = 1 has been proved previously by the author [4].

PROOF. In the first place, we consider Xl(x)> where k is even. From the
formulas of Zygmund [6, pp. 698-700],

Xl(x) -fix) = — Γ I fix + u/n) +f(x - u/n) - 2f{x)}\(u)du
ΊΓ J

where

u

Let us set

Λ0(w) = λ(w), A » = Γ

then

A,(0) = τr/2, Λ3(0) = Λβ(0) = = Λ^^O) = 0

and

Λ*+1(0) = Γ Ak(t)dt = ( - I F " 1 -^-.

By the successive integration by parts,

Xl(x)-f{x)

irn Jo I \ n

and

Now we shall show that the first term of the right-hand side tends to zero.
Since Λk(u) is absolutely integrable (0, °°), for a given 6 we can take a

such that

Γ \Ak(u)\du < €,

and split the integral into two parts,
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J %8

o

say. We denote by M the maximum of \f(7c)(x)\, then

|/ 2 | ^2SM.

Next we take 72 so large that

I f»(x + _«_) + /*>(.* - J L ) - 2/w(x) | < ε,

then

Jo Jo

Hence we get

lim τ?[Xl(x) -f(x)-] = ( - ίp

Concerning with the X%ω(x), we proceed

= J, + J2

say We have proved already

lim Jt = ( - ly

Since

and f^Xx) is continuous,

lim Λ = (- lp-y^Gr

Hence

^{XS (2>U)-/(^)| =2( - I F
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Repeating this argument, we get

7?{X5*Xχ) -f{χ)} = ( - I F " 1 kf(x).

In the case k is odd, interchanging the role fix) and fix), we have
(Zygmund [6], pp. 702-703),

Xftr) -fix)

= _L r\f(x + JL) -f(x - Jί-)Uu)ju

V ΠK )f
-7rn Jg I \ n ' \ n

where

U

and

Mo(«) = K«), M » = Γ°° Mv.λ{t)dt.

Hence, arguing to the similar with the first case, we get

lim n*{XykXx) -fix)} = (-1 f^kfκ\x).

That is

lim n^X^ix) -fix)} = (- lj^kfmix).

3. Local saturation of Rieszian means.

THEOREM 1. (1°) If

X^k\x) — f(x) = o(n~h) uniformly in \a>b\ then f{x) or f(x) is at most
a (k — l)-th polynomial in [afi] according to an even k or an odd k.

(2°) If XknΛk\x) - fix) = O(«-*) uniformly in \a,b\ then fk\x) or

fw(x) is bounded in \afi\ according to an even k or an odd k.

PROOF. We denote by C0

(fc) the class of functions g(x) such that g{x)—Q
outside of [a, i ] and gw(x) is continuous in [0, 2ττ] when k is even.

From the hypothesis of (1°), we have
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lim nh{XV*Xx,f)-f(x)\ = 0,
n-*oo

uniformly in [a, b\ and

lim Γnh\XY«XxJ) -f(x)}g(x)dx - 0
J

for all g(x)€Cik\

Since X£(*%r,/) has a symmetric kernel representation,

= Γn«{XY*Kx,g)-g(x)}f(x),dx.

Lemma 1

lim n*{Xy*Xx,g) - g{x)} = (- ΐpr'1 kf\x)

J0

Since we have from Lemma 1

we get

Γf{χ)φn\χ)dχ = 0.

Hence by the well-known lemma (Courant-Hilbert [2], p. 201), f(x) is a polyno-
mial of (k — l)-th degree.

In the case k is odd, we have

Γf(x)?k\x)dx = 0r -
by the same argument, and this is equivalent with, by the Parseval relation,

Γ F(x)g°e+ιKx)dx = 0
Jo

where F(x) is an indefinite integral of f(x). Hence we get fix) is at most a
polynomial of (k — l)-th degree.

(2°) If

»»{X5«W)-/&r)J =0(1)

uniformly in la, b\ by the weak compactness of the space LJ[a, b\ we can
take a subsequence nv and a function h(x) € Loc(<2, έ) such that

lim Γnv\X^h\xJ) -f{x)} gix)dx



Γ

326 G SUNOUCHI

= Γh(x)g(x)dx.

But the right-hand side is equal to

Γ
and the left-hand side is equal to

Γ Hk(x)g™(x)dx

where Hk(x) is a £-th integral of h(x).
Hence

Hk(x)-f(x)

is at most a polynomial of (k — l)-th degree and fiΊc)(x) is bounded in [a, b\
The case where k is odd, is proved in the same way.

THEOREM 2. (1°)///(#) € L(0, 2τr) and fk)(x) orfk\x) is vanished in
[a, b] according to an even k or an odd k, then

XV*Xx) -fix) = oin-1)

uniformly in {a 4- δ, b — δ] for any δ > 0.

(2°) Iffilc)(x) or f{1c\x) is bounded in [a,b] according to an even k or
an odd k, then

X^\χ) -fix) = O(«-fc)

uniformly in [a 4- δ, b — δ] for any δ > 0.

PROOF. (1°) Suppose that k is even, f(x) € L(θ, 2π) and f(x) is a
polynomial of (k — l)-th degree in \a, b] and set

f(x)~Σ,AXx).

Now we consider a trigonometric series

and another function g(x) which is a constant in [0, 2τr]. We denote by F2(x)
and G2(x) the second integrals of f(x) and g(x) respectively. Then, since
^2^) — G2(x) is at most a polynomial of (k 4- l)-th degree and the coefficient
St is o(wfc), we can conclude that *S'1 is uniformly summable (C, k) to zero in
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[a + δ, b — δ] (See Zygmund [7] p. 367). Hence Sx is uniformly (R, nk, £)-sum-

mable to zero in [a + δ, b — $]. That is

v = ι \ Π

uniformly in [a'9 b'\

We set vhAv(x) - Bv(x), ( l - - ζ - Y = T*.

and

Then

~

«*

nk-(n-lf τ

say. Summing up this from ΛΓ to Λf, and set

then

PM(X) - PN(

Ίc-\ , rpTc-2 rp J^ A_ T T^'2 4-

1 _ 1 1 , SJjB)
_

- 1)* iV*(iV-1)*
Since
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we have

Sn(B) = o(nk)

and

, <<Λf) o(N*)

Letting M-> °o, we get PM(X) -> f(x) and

uniformly in [a 4- δ, b — δ]. Thus we prove the proposition (l°). Another cases
are proved in the same way.

From this, we can get the following theorem concerning with local
saturaiton.

THEOREM 3. The local saturation class and order of Rieszian means, is
\f(x) is a polynomial of (k — l)-th degree, f{Ίc\x) is bounded, n~lc\,t

twhen

k is even and \f(x) is a polynomial of (k — ί)-th degree, f(1c\x) is bounded,
n~k], when k is odd.

REMARK. Results analogous to Theorem 1, 2, 3 hold for approximation in
mean.
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