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For a point p of a two dimensional Riemannian manifold M, let Q(p) be
the locus of the first conjugate points of p. M is called a Wiedersehensfliche,
if for any point p, Q(p) is a single point.

The following theorem, due to L. W. Green [5], is interesting in the sense
that a Riemannian manifold isometric to a two-sphere is characterized in
terms of conjugate points only :

An orientable Wiedersehensfliche is a sphere of constant curvature.

It is the aim of the present author to generalize the above theorem for
higher dimensional Riemannian manifold, making use of the concept of focal
elements which is firstly introduced in this paper and contains the ones of
conjugate points or focal points in the theory of geodesics.

1. Focal elements. Let M be a complete 7n-dimensional C* Riemannian
manifold. Denote the unit tangent bundle of M by S(M) and its projection
mapping by 7. Furthermore, we denote the bundle of all p-dimensional tangent
subspaces to M by T°(M) whose fibre is the Grassmann manifold G, , of all
p-dimensional subspaces through the origin of R™ and its projection mapping
by m,.

A pair (§,u), E€ T"(M), uc S(M) such that m,(¥)=7(«) and » | & will be
called a p-element of M. For any p-element (§,u) at a point x< M, let o(s)
be the unique geodesic in M, parameterized by arc length, with the initial
conditions ¢(0)=x, ¢'(0)=u and J(& »)* be the set of Jacobi fields X along o
such that

XO)eg, X'(0) 1 & and X'(0) | «.

JE uw)y* is Js* in the notation of W. Ambrose [2] putting S = (S}, S,),
where S, =§¢ and S,|&€ = 0, in other words, which is the boundary condition
corresponding to a p-dimensional submanifold with the tangent subspace &
and totally geodesic at x and the geodesic . We introduce the notations:

JEw) = (XIX € JEwE, X(0) = 0],
JEw, = (X|X < JE ¥, X(©0) =0},
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then we have clearly the direct sum decomposition of J(&,u)*:

DEFINITION. A p-element (€E,u) at x is a focal p-element of a g-element
(n,v) at vy, if the following hold :

(i) The geodesic o, parameterized by arc length, with the initial con-
ditions o(0)=y, ¢'(0)=v passes through x and its tangent vector at x is u.

(i) J, o) N J(x,u)* 0 and CJE u),.

Furthermore, (&, u) is called the first focal p-element of (n,v), if there
exist no focal p-elements along ¢ between y and x.

By means of (ii), it must be 0 = p << n—1 and a focal 0-element is a focal
point (g > 0) or a conjugate point (¢ = 0) in the ordinary sense along o for
the boundary condition corresponding to (3, v).

EXAMPLE. Denoting an Z-dimensional Euclidean space by E! for any
integer 7. Let S" be an n-dimensional sphere in E"*!. Take E**' and E**!
in E**! through the center of S™ and orthogonal to each other, and put
S? = 8" N E**! and S*= S"NE?!, where p>0, ¢ >0 and p+g+1=n. For
yeS? and x<.S? let o be the great circle joining y and x. Let 5 and & be
the tangent spaces to S? at vy and 'S” at x respectively and v and # the tangent
unit vectors to o at y and x respectively. Then the p-element (& «) is a focal
p-element of the g-element (5, v).

For any point x< M, we denote the tangent space to M at x by M,.
At each point o(s) of a geodesic ¢ in M we have the Ricci transformation
R(s) of the orthogonal complement M, of Ro'(s) in M, into itself defined by

R(S) w = Rwo"(s) (O‘,(S)) >

where R, is the curvature transformation (of the Riemannian connection) on
M,,, depending on w and z in M.
Let X be a Jacobi field along ¢ orthogonal to &, then we have

X"(s) = R(s) X(x) ,
and so

% <X, X'>= <X, X'> + <X, RX>.

If the sectional curvature of M is non positive at each point of o, <X, X'>
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is non-decreasing. If X(0) =0 and X'(0)=2:0, then <X,X'> 20 for any
s> 0. Hence we have

PROPOSITION 1.1. For any g-element of a Riemannian manifold with
non positive sectional curvature, there exists no focal p-element.

2. W, ,-condition. For any &< T7(M), we denote the set of all g-elements
(9, v) such that (, —v) has a first focal p-element of the form (& u) by @,(§)
and put

Qo) = {m(m)(n,v) € By)} .

DEFINITION. A complete n-dimensional Riemannian manifold M
satisfies the W, ,-condition if the following hold :

(i) For any g-element (n,v), there exists a uniquely determined first
focal p-element (E,u) of (n,v).

(ii) Any p-element (£ u) is the first focal p-element of a g-elements
(9, v) which is uniquely determined.

(iii) For any EcT’(M), Qu&) is a q-dimensional submanifold, 5 is the
tangent space to Q. & at the point w(n) for any (n,v)<c @y E), and the
mapping @ SO = (ulul Euc S} ~QuE) by ple) = min) is differ-

entiable, where (¢, —u) and (9, —v) are in (ii).

For such M, £ is called a center element of Q,(&).

By virtue of (i) of the W, ,-condition, it must be p <n—1. When p=g¢
=0, Q,(x) is identical with Q(x) in L. W. Green [5].

If M satisfies (ii) of the W, ,-condition, for any p-element (£, «), let o be
the geodesic, parameterized by arc length, with the initial conditions &(0) = m,(§),
a’(0)=wu, let (g, v) be the g-element such that (&, —#%) is the first focal p-element
of (9, —v) and put I = f(§,u) be the least value such that 7, (n)=o0o(l).

LEMMA 2.1. Let M be an n-dimensional complete Riemannian manifold
satisfying the W, ,-condition, then q =n—p—1 and for any &< T?(M), the
Sunction flE,u) depends only on E.

PROOF. By (iii) of the W, ,-condition and the Gauss’ lemma, we get
easily this lemma.

For M as in Lemma 2.1, we put f{& u) = f(€).

COROLLARY 2.2. The diameter of Q&) =2f(§).
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For a submanifold N of M and a normal unit vector # to NN at a point
x< N, we denote the boundary condition corresponding to N and « in the
sense of W. Ambrose [2] by (N; z, »).

LEMMA 23. Let M be a Riemannian manifold as in Lemma 2.1 and
let a p-element (&, —u) at x< M be the first focal p-element of a q-element
(9, —v) at ye M. Then we have

JE u)y C J(Qu&);3,v)*.

PROOF. By Lemma 2.1, all geodesics emanating from x and orthogonal
to & are orthogonal to Q,(&) at the points of length f(¢) measured from =z
along them. Hence, denoting the boundary condition (Q,(&);y,v) by (T, T,)
according to Ambrose [2], for any X e J(§ u), we have X())e 5, X'(1)— T,X({)
€ gL, where [ = f(§), that is X e J(Q,(&);y, v)*. q.ed.

COROLLARY 24. For any Xe J(x,u)* N J(y,v)*, T.X(1) =0.

PROOF. Since J(x,u)*NJ(n,v)*CJ(E u),, for Xe J(x,u)*NJ(n,v)* we
have X'(0)—T,X(l)ent and X'())en- hence we get T, X()en-. On the
other hand X(/)en and T,X() <y, it follows T,X()=0.

COROLLARY 25. {X|X()=0, X< J(E u)} CJ(y,v), and the dimension
of the left hand side is equal to n—p—q—1.

PROOF. The first part is clear from the lemma. Since {X(/)|X e J(&, u),}
=7 and dim 7=g¢, we have

dim {X|X() = 0, Xe J(& u),} =n—p—q—1.

3. W ,-condition.

DEFINITION. A complete n-dimensional Riemannian manifold M satisfies
the W *-condition if the following hold :

(1) M satisfies the W, ,-condition, where q=n— p—1.
(i) Let (¢, —u) be the first focal p-element of a q-element (n, —v). Then

J(z, u)* 0 J(n, v)* = JE u), -

By means of (i), it must be 0= p<n—1.
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THEOREM 31. Let M be an n-dimensional Riemannian manifold
satisfying the Wj-condition. For any E< T®(M), the second fundamental
Jorm of Qu-,-(€) at y with respect to v, where y=m,_, (1), (5, V)€ @p_p,_,(&),
vanishes.

PrROOF. Let (¢, —u) be the first focal p-element of (y, —v), ¢ = n—p—1,
and (T,,T,) be the boundary condition corresponding to Q,(§) and v. For
any X< J(§ u),, parameterized by arc length measured from x = m,(§), along
the geodesic o such that ¢(0)=x, ¢'(0)=u, we have

X e n, TX0 =0

by Corollary 2.4 and (ii) of the Wj-condition. By Corollary 2.5, we have
{X(D)|XeJE u)} =79 Hence we have T,|»=0, in other words, the second
fundamental form of Q. (§) at y=m,() with respect to the normal unit vector
v vanishes. q.ed.

THEOREM 3.2. Let M be an n-dimensional Riemannian manifold
saitsfying the W-condition. For any point x€ M, Q,_,(x) is totally geodesic.

DEFINITION. An n-dimensional Riemannian manifold M satisfying the
Wi-condition is said to satisfy the W ,-condition if for any &e TP(M),
Qn-p-1(8) s totally geodesic.

When p=0, by Theorem 3.2 the W§-condition implies the W -condition.

LEMMA 3.3. Let M satisfy the W ,-condition. For any E< T?(M), take
a g-element (5,v) € OyF), g=n—p—1, and a unit normal vector v to n. Let

(E, — %) be the first focal p-element of (n, —v), then Q. (&)= Q. (%).

PROOF. 7 is the common tangent space to Q,(&) and Q. (&) at y=m,(y).
By the definition, Q. (&) and Q. (Z) are totally geodesic. Since M is complete,
hence Q. (&) = Q. &).

LEMMA 3.4. Let M satisfy the W ,condition (0 < p <<n—1). For EE
such that Q. (&) = Q.&), we have f(§) = fIE) and the diameter of Q) is
218).

PROOF. Let (§, —u) be the first focal p-element of (7, —v)<c @,(§) and
put m,(n) =y, m,(§)=x. Let v, be a unit normal vector to 5 depending on a
parameter «, (&, —u,) be the first focal p-element of (3, —v.) and (%4, v.) be
the g-element of @y (¢)=0,(£.) (by Lemma 3.3) corresponding to (&., —u.). Let
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oo (=1l — M, I, = flE,), be the geodesic such that ¢4(0) = x, = 7, (&),
6,(0) = u,. If v, is differentiable on «, x, and wu, are also differentiable on
a (L. N. Patterson [3]). Since o, cutting Q,(€) orthogonally at y, = m,(7.), we
have f(&,)=f(& by Gauss’ lemma.

Now, let ¥,y € Q (&) be the two points such that

dis (v, ) = diam Q,(&) .

By the completeness of M, let o be a geodesic segment joining y and y. Let
v and 7 be the tangent unit vector to ¢ and the tangent space to Q,(£) at y.
Then, v | 5. We may put (§, —«) be the first focal p-element of (5, —v).
We have clearly dis (y,y) = length o = 2f(€). Hence making use of Corollary
2.2, we have diam Q&) = 2f(%). g.ed.

Now, we denote the locus of the supporting points of center element &

of Q,(&), for a fixed £< T?(M), by Q,(&).

THEOREM 35. Let M be an n-dimensional Riemannian manifold
satisfying the W ,-condition (0 <p<n—1). For £cT*(M) at x< M and
(9, v) e By §), g = n—p—1, we have the following:

(i) Putting = {wlwe My, wln, lwl =1}, where y=mdy) and
l=fl§) and denoting the boundary of ni- by Oni, the exponential mapping
Expy is locally regular on op- and Exp, (o) = Q,#).

(i) I, 0)o © J(Qy&) 5 2, w)* .

PROOF. By virtue of Lemma 3.4. we have easily

Q,(&) = Expy ont-.

Let v, be a one-parameter family of unit normal vectors to 5 at y=m,(n) and
a(a, t) be the corresponding geodesic such that o(a,l) =y and o'(a,]) = v..
Putting X = 95/0a] .-, we have

X0 =0, XU < 4,

hence X ¢ J(p,v),, We may put X'({) 0. If X(0) =0, we have X< J(x,u)*
NJd(n,v)*. By (ii) of the W-condition, we have Xe J(&, u),. By Corollary
2.5, it must be X=0 which contradicts to X 0. Hence we have X(0)=¢0.
This shows that the exponential mapping Exp, is locally regular on 9.
(ii) is clear from (i). q-ed.
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COROLLARY 3.6. J(Q,(&); z,u)*=J(n, v)o+J(& u)o=J(Q,&); z,u)+J( u)
=J(n, v)*¥, where “+” denotes the direct sum.

From Theorem 3.5 and J(3, v)* DJ(§, u),, these equalities are clear.

LEMMA 3.7. Let M be an n-dimensional Rimannian manifold satisfy-
ing the W ,-condition. For any £ T?(M) and any point z< M, we have
dis (2, Q&) = f18), p=n—p—1.

PROOF. There exists a point y of Qq(&) such that dis(z,y) = dis(z, Q,(§)).
Let g be a geodesic segment joining z and y with length dis(z,y) and 5 be
the tangent space to Q,(§) at y. The tangent unit vector v to g at y is
orthogonal to 5. Let (¢ —u) be the first focal p-element of (y, —v) and put
x=m,(€). Let o be the geodesic parameterized by arc length with the initial
conditions ¢(0)=x, o’(0)=u. It is clear that z is on ¢ between x and y by the
well known property of focal points. Hence we get

dis (2, Qu(§) =) . q.ed.

This lemma and Lemma 3.4 imply immediately

COROLLARY 3.8. Let M be an n-dimensional Riemannian manifold
satisfying the W ,-condition, we have diam M = 4f(§), for any &< T°(M).

4. Manifolds satisfying W, ,-condition. For a complete Riemannian
manifold M and any ue S(M), denote by o(s,u) and y«(u) the geodesic para-
meterized with respect to arc length with the initial conditions ¢(0, %) = (),
a'(0,u) = u and the length from 7(x) to its first conjugate point on this
geodesic. In the following, using the notations in §2, let M be an 7n-dimensional
Riemannian manifold satisfying W, ,-condition. A O-element (x, %) is a focal
O-elemant of a O-element (y,v) if x and y are conjugate points each other on
the corresponding geodesic o with the tangent vectors # and v at x and y
respectively. For any point x <€ M, Q,(x) is a point because it is 0-dimensional
and connected by (iii) of Definition in §2. Hence M is a generalization of
Wiedersehensfliche of L. W. Green [5].

The following Lemmas 4.1~4.4 are included in [5] for Wiedersehensfliche.

LEMMA 4.1. Every geodesic of M is closed.

PROOF. Let o is a geodesic parameterized with respect to arc length.
Put ¢(0)=x, f(x) =1 and y = Q\(x), Ay) =m. Q,:M— M is involutive and
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differentiable by the property of conjugate points. Since /= m, for any &> 0,
Qo(a(8)) = o(l+¢€,) and Q,(c(I+€&)) = o(2l+§,), for some positive & = &(&) and
& = &(8). & (&) and &,(€) are monotone increasing continuous functions of &.
Since Qy(Qo(0(€))) = o(€) = (2] + &,(&,(€))), for sufficiently small & the arcs
corresponding to [0, €] and [2/, 2]+ &,(6,(6))] of o coincide. This shows that
o is closed and f(x) is constant on . q.ed.

COROLLARY 4.2. M is compact.

COROLLARY 4.3. (u) is finite and constant on S(M).

PROOF. Suppose M satisfy the W, ,-condition. For any u< S(M), we
have Y(u) = f(x), x = 7(u), by Lemma 2.1. Since M is complete, any two
points x and y lie on a geodesic o. Hence f(x) = f(y) and so Y«(v) is constant
on S(M).

LEMMA 4.4. When Q, x 1, Q, is an isometric involution.

LEMMA 45. If M is simply connected, M is homeomorphic to the n-
sphere.

The proofs of these lemmas are evident and analogous to the ones of
Corollaries 2.3 and 2.4 of [2].

For a fixed point x € M and positive 7, let N@-)=N{r, x)= {o(r, €), e S(M),
7(e)=x} and put [ = f(x).

LEMMA 46. If M is simply connected, any closed geodesic of M inter-

sects at least two points with N <17> as point sets.

PROOF. A homeomorphism of the n-sphere onto M is given by means of
the polar coordinates of an n-sphere of radius //7 and the exponential mapping

Exp,: M, — M. Hence N <_l277> divides M into the two regions containing x

and y=Q,(x) respectively. Q, transforms the regions each other onto and any
closed geodesic of M is invariant under Q,. This yields the lemma. q.ed.

In the following, we denote by V, the measure on Borel sets of m-
dimensional Riemannian manifolds and by ¢, the total measure of the unit
m-sphere. Let & be the 2n—1 dimensional measure on S(M) induced naturally
from the metric of M. )
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THEOREM 4.7. If M is a simply connected n-dimensional W, ,-manifold
. . l .
and any closed geodesic of M intersects N (7> at two points or tangent to
it without intersections, then

Vo, (N<17>> _ n2~11 RRLEE )

Cn—2

PROOF. Put N=N (%) and denote the regions of M divided by N by

G,>x and G,>y = Q4x), then M =G, + N+ G, (disjoint sum). Putting
A={c'(s,v)|ve S(V), 0 =s < 2/}, since

dmA = {2(n—1)—1} + 1 = 2(n—1) <dim S(M) = 2n—1,

the measure of the set of all unit tangent vectors of closed geodesics of M
intersecting N is identical with the total measure of S(M).

Putting E = {v|ve v (N),o(s,v)e G, for 0<s <!}, we can apply the
formula (8) in Appendix for this E, we have

~ _ Cn-s .
F(\JE)= 25 Va2
Making use of the involutive isometry Q,, we get
BSAM) = "= Vard(N) - 1x2 = V(M) X €y s
hence

n—1 cuq
aq e, V.(M). q.ed.

Vn—l(N) =

THEOREM 48. Let M be a simply connected n-dimensional W, -
manifold. If any closed geodesic of M intersects N(r), 0 <r <lI, at two
points or tangent to it without intersections, then

VasNE) = Vaa(NG), 0 <ry <ry =5

PROOF. For a fixed positive r,0 <r él?, denote the regions of M
divided by N(r) by G,(r) >x and G,(r) >y=Q,x). Putting
E@r) = {v|ve T U(N{)), o(s,v)e Gy(r), for 0 <<s <l},
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we can apply the formula (8) in Appendix for this E(r) from the assumption
of the theorem, hence

7 (\J B = S22V, (N6 -1 O

o<t<it

Let 0 <r, <1y é—lz—. For any v, € E(r,), let g be the closed geodesic o(s, v,),
0=s=2l. ¢ has common points with N(r,) and N({—r,). Let 2, = o(s,,v,)
be the first common point with N(r,) along ¢ starting at 2, = 7(v,) and v, be
the tangent vector to g at z,. Putting v, = ¢(v,) and s, = A(v,), @ and N are
clearly continuous on E'(r;) = E(r,) — @ '(S(N(r,))). Since

dim {o’(s,v)|ve S(N(r,)), 0 <s <l} = 2n—2,

we have

7 (U @) = 5 EC)).

o<t<i o<t<t

For any v, € E'(r,), we have
dQy(a’'(s,v,)) = a'(l + 5,v,).

Hence, putting Q = U ET)), Q@ = {o(s,v)|v, € E(ry), 0<s <N7w,)}, we

o<t<l
have

dQo() +(Q—Qy) = U (P(E (7)) -

o<t<t

Since Q, is an isometry on M, we have
ﬂ(ﬂ) = :‘7'(01 =+ (‘Q— Qx)) = :‘Z(on(Ql) + (Q—Ql))

and so from these relations

# (U @) = 5 @Ee).)

o<t<l o<t<t

=a(\J B

o<t<l

By (1) and this we get

Vn—l(N(rl)) é Vn—2(N(r2)) . q.e.d.
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THEOREM 4.9. Let M be a simply connected n-dimensional W, ,-
manifold. If the hypersurface N(—!Z——, x) = {Expx —-lé*e[e € '-r“(x)}, xe M,

is always totally geodesic, then M is isometric to an n-sphere with radius
l/m.

PROOF. When n=2, this is true according to L. W. Green [5]. Assume that

. . . . l .
this theorem is true for the dimension n—1. N (—ZA, :1:) is simply connected
and satisfies the W, ,-condition from the assumption. Hence, it is isometric
2
with an (n—1)-sphere with radius [/m. Its sectional curvature is T and

lZ
equal to the one of M, since N <—é*, x) is totally geodesic. This holds for any

point x< M. Hence, M has constant sectional curvature =?/[%2. Accordingly,.
M is isometric to an z-sphere with radius /. q.ed.

THEOREM 4.10. If M satisfies the condition in Theorem 4.8 for N(r)
=N, x), 0 <r <l, with any center x< M, then N (é*) is totally geodesic.

PROOF. Let g be any closed geodesic of M such that x € g. Let 2,¢€ g
be a point such that r,=dis(x,g). We may assume that g is given by of(s),
— 1 =s=1! and 2,=0(0). Let g, be the geodesic through x and z,. We have

max dis(x,o(s)) =1 — r,.

If r,= lZ" gC N(lzﬁ, x) Suppose 0 < r, <~12<. Since ¢ is invariant under

Qo y = Qu(x)€g. Putting o(s) = a(r(s), e(s)), e(s) e 77 (x), o =r(s) =1 — 71y <L
Let g, be given by a(s, &), e, = €(0).

For any s, —I =s =/, there exists a point on ¢, with the same distance
to z, and a(s), because [—r, = [—7r(s). Let o(r,+ p(s), €,) be the first such point
along g, starting from z, for 5= 0. p(s) is differentiable and 0 < p(s) = I—r,.
From the assumption, N(p(s), o(r, + p(s),e,)) can not intersect ¢ at o(s).
Hence the geodesic joining o(s) and o(r, + p(s), €,) is orthogonal to g. If p(s)
is not constant, there exists s, such that p(s,) 0. Then, for s sufficiently
near to s,, the family of geodesics joining o(s) and o(r,+ p(s), €,) envelops a
subarc of g,, this implies z,=0o(s). Hence p(s) is a constant. By Lemma 4.6,

it must be 12—.

Now, let g be tangent to N <~~12~v,:c0> at 2, and g, be the geodesic joining
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xz, and z,. If we take a point x on ¢, near to z, such that dis(z,z,) = dis
1

2 >
xo) is totally geodesic at z,. q.ed.

(x, g), the above consideration can be applied. Hence gC N(—ZZ—,xo). N (

This theorem and Theorem 4.9 give immediately

COROLLARY 4.11. Let M be a simply connected n-dimensional W, ,-
manifold. If amy closed geodesic of M intersects N(r,x), 0 <r <lI, at two
points or tangents to it without intersections, then M is isometric to an n-
sphere with radius /.

5. Manifold satisfying the W -condition.

DEFINITION. An n-dimensinal Riemannian manifold M satisfies strongly
the W -condition if the following hold :

(1) M is a W,-manifold.

(ii) For any (n—p—1)-element (n,v) and the geodesic o parameterized
by arc length such that (0) = 7(v), o’ (0)=vwv, take any X < J(y,v)*¥,X x 0, then
X(s)>=0 for 0 <s <!, where o(l) is the supporting point of the first focal
p-element of (n,v).

By virtue of the definition for the W-condition in §3 and Theorem 3.2,
an n-dimensional W,-manifold M has the following property : For any (n—1)-
element (5, v) and its first focal O-element (x, v), it must be

J(zx,u)* = J(n,v).

LEMMA 51. For a manifold satisfying strongly the W,-condition, the
W, 0-condition holds.

PROOF. Let M be an n-dimensional manifold satisfying strongly the W -
condition. For any u < v x), x< M, let (»,v) be the (n—1)-element such that
(x, —u) is the first focal O-element of (5, —v) and let (z, %) be the one of
(9,v). By Theorem 3.2, Q,_.(x) and Q,_,(Z) are totally geodesic and tangent
at y = m,_,(n) each other. Hence Q, () = Q,_,(z). Accordingly, all geodesic
rays emanating from x meet again at z. The point z is the first conjugate
point of x along any geodesic through x, since M satisfies strongly the
W ,-condition. q.ed.

THEOREM 5.2. A simply connected n-dimensional manifold satisfying
strongly the W -condition is isometric to an n-sphere.
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PROOF. Let M be a simply connected n-dimensional manifold satisfying
strongly the W-condition. By Lemma 5.1 and Lemma 4.5, M is homeomorphic
to an n-sphere. For any point x< M, using the notations in §4, Q,_.(x) is
also homeomorphic to an (z—1)-sphere. Q,_,(x) is totally geodesic by Theorem
3.2. As an (n—1)-dimensional Riemannian manifold, Q,_,(x) satisfies the same
conditions as M. This theorem holds for n=2, by virtue of Green’s theorem
[5]. For n>2, inductively, we assume that this theorem is true for (z—1)-
dimensional manifolds. Q,_,(x) is isometric to an (n—1)-sphere for any x< M.
Accordingly, every geodesic on Q,_,(x) is closed and has the same length.

For any two closed geodesics passing through any point ye M, there exists
a point x such that Q,_,(x) contains these geodesics. Hence, they have the
same length. Since M is complete, every closed geodesic on M has the same
length, i.e. 2/. Accordingly, the sectional curvature of M is constant and equal
to w?/l*. M is isometric to an n-sphere. q.ed.

LEMMA 53. Let M be an n-dimensional Riemannian manifold satisfy-
ing strongly the W ,-condition (0 < p <n—1), then for any &< T?(M), Q4 &)
is a g-dimensional Riemannian manifold satisfying strongly the W \-condition,
g=n—p—1

PROOF. Let 5 be the tangent space to Q) at a point y and v be a
normal unit vector to 7. Let (¢ u«) be the p-element such that (¢ —u) is the
first focal p-element of (, —v). Take any (¢—1)-dimensional subspace & of 9
and let v, be a normal unit vector to ¢ in 7. (See Fig. 1.) Putting 7, = {Uwv,

Fig. 1

let (¢, —u,) be the first focal p-element of (7, —v,). Let o and o, be the
geodesic segments joining x = 7(x) and x, = ™(,) to y given by o(s, %) and
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a(s,u,) respectively. Since Q,(§) is totally geodesic, o, C Q4 (&).
Since M satisfies the W-condition, we have

J(x, u)* 0 Iy, 0)* = J(Eu)s -
Putting L(oc)=! and L(o,)=/,, for any X e J(&,,u,),, X0, we have
X0)=0, X(O)e&, X(l)en, XU)en

and X(7,)x0, for otherwise X< J(5,,v,), which implies X = 0 by means of
Corollary 3.6, where L denotes the arc length. Since M satisfies strongly the
W ,-condition, X(s) >0 for 0 <s </,.

Now, if X(/,)< ¢, the Jacobi field X can be constructed from a family of
geodesics of M emanating from x,, which are also geodesics of Q. (§). Since
Q,(&) is totally geodesic, we may regard X as a Jacobi field along the geodesic
o, in the g¢-dimensional Riemannian manifold Q,(&). Hence, putting v, = oi(l,,
u,), (x;, —u,) is the first focal O-element of the (¢—1)-element (£, —v;) in Q. (§).
From these considerations, Q,(§) satisfies strongly the W,-condition. q.ed.

LEMMA 54. Assume that M satisfies strongly the conditions in Lemma
5.3, then all geodesic of M are closed.

PROOF. When ¢=1, Q,(¢) is regular at each point and closed. From the
definition of the W ,-condition, Q,(¢) is geodesic.

When ¢>1, the universal covering Riemannian manifold Q *(&) of Q. (&)
satisfies strongly the W-condition and is homeomorphic to a g-sphere. Hence,
by means of Theorem 5.2, Q/*() is isometric to a g-sphere. Accordingly,
any geodesic of Q. *(€) is closed and the same fact holds for Q,(&). For any
geodesic g in M, there exists a Q&) containing ¢g. Hence ¢ is a closed
geodesic. q.ed.

THEOREM 5.5. Let M be a simply connected n-dimensional Riemannian
manifold strongly satisfying the W ,-condition (0 <p <<n—1), then M is
isometric to an n-sphere.

PROOF. Case 0 < p<n—2. For any & TP(M), take two independent
unit tangent vectors v,, v, € n=(Q,(£)), at any point y € Q,(&), where g=n— p—1.
Denoting the sectional curvatures for the tangent space spanned by v, and v,
of M and Q. & by R(v,,v,) and Riv,,v,) respectively, we have R(v,,v,)
= Ri(vy, v,), since Qu (&) is totally geodesic. By the definition of the W, ,-
condition in §3, the universal covering Riemannian manifold Q *(¢) of Q,(§)
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is homeomorphic to a g-sphere. By Lemma 5.3 and Theorem 5.2, Q./*(&) is
isometric to a g-sphere. Hence, denoting the measure of the radius of Q/*(&)
by r;, we have

Ri(vi,v) = (1/7p)*.

On the other hand, the length of any closed geodesic of Q. *(€) is equal to
2mry. According to Lemma 5.4, let g, be the closed geodesic in M tangent
to v, and ¢ be a lift of ¢, in Q.*(&), then L(¢) = mL(g,), m = an integer.
Hence, from these considerations, we have

27 \?
R(v,,v,) = (mL(gl)> .
This shows that for all tangent 2-planes of Q,(§) containing tangent vectors
of g, the sectional curvature of M is constant. We may regard 5 as any g-
plane at ye M and join any two points in M by a geodesic segment, hence
the sectional curvature of M is everywhere constant. Since M is simply
connected, M is isometric to an n-sphere.

Case p=n—2 (n>3). For any &< T°(M), Q,() is a closed geodesic by
Lemma 5.4. Let (9,v) and (3,v) be 1-elements such that (¢, —u«) is the first
focal (n—2)-element of (5, —v) and (§, ) is the one of (7, —7). Put y = 7(v)
and y = 7(v). By Corollary 3.6, we have

J(,v)e C JQy®); x,w)* = J(n,v)* = J(7,0)* .

Putting f(§) = [, this yields that : For any X< J(y,v), (that is X(I) = 0, X'({)
€ p-Nvt), it must be X(—/)e 5. Since M satisfies strongly the W ,-conditoin,
for the 1-element (»,v) and (7,7) it must be

X(s) %0, for 0<|s|<1.

Furthermore X(0) 0, for otherwise X ¢ J(x,w)* and so Xe J(& u), by (ii) of
the first definition in §3, which implies X = 0 by Corollary 3.6.
On the other hand, we have easily

dim (X|X(=0) =0, Xe Jip,v)} =n—2— dimn=n—3>0,

hence there exists a Jacobi field X € J(»,v), such that X(—1) =0 and X x 0.
Accordingly, ¥ is the first conjugate point of y on the geodesic o(s,«) towards
the direction of —wv at y. For, as is well known, on the geodesic ray o(s, —v),
the conjugate points of y are isolated. The points y as the first common
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point of the fixed geodesic ray o(s, —v) and the variable geodesic ray o(s, w),
<v,w> = 0, depend continuously on w. Hence, ¥ is a fixed point for y, and
so this shows that y is the first conjugate point of y on (s, —v).

The length 27 of its subarc between y and y is equal to the diameter of
Q,(¢) by Lemma 34. By Lemma 5.4, all geodesics of M are closed. We may
consider any closed geodesic g as Q,(§) in the above consideration. Making
use of the function ¥: S(M)— R defined in §4, Y is constant for unit tangent
vectors of M normal to g. Since 7> 2, moving 7, we see that ¥ depends
only on the supporting points of unit tangent vectors to M. Since any two
points of M can be joined by a geodesic segment by the completeness of M,
hence Y must be a constant on S(M), which implies f: T°(M)— R is also
a constant / and Y=2/. From those, we see that at any point x < M, for any
two wy,u,€ 7 (x) such that <<w,,u,> =0, it must be o(2/,u,) = o(2],u,).
Furthermore, since n > 2, this is true without the condition: <u,,u,> = 0.
Hence, M satisfies the W, ,-condition. From the fact that Q,(¢) = {o(l,)|u
€ S(M), u_| £} is a closed geodesic of M, all N(I, x) are totally geodesic. By
means of Theorem 4.9, M is isometric to an n-sphere.

Case n = 3, p=1. Using the notations in the previous case, for £ T'(M),
Q,(¢) is a simple closed geodesic. For the geodesic rays o(s, —v) and o(s, w),

Fig. 2

0 =<s, we, the point ¥ is the first common point. The length of the subarc
of the ray o(s, —v) between y and ¥ is 2f(£) which is the same value for v
orthogonal to 7 at y by Lemma 3.4. Accordingly, considering them in exchange
of their stand-points, it must be that the points y and ¥ divide Q,(§) into two
geodesic segments with the same length. Hence, all geodesic rays emanating
from y orthogonal to Q,(£) pass through the same point y and the length
of their subarc between y and ¥ is the common value 2f(¢). By means of
the same consideration of the previous case, we can show that M is isometric
to a 3-sphere. q.e.d.
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Appendixes

Let M be an n-dimensional manifold with line element ds*= g;;(x) du'du’.
Geodesics in M are given by the equations:

d’ du"
(1) ALy ) DA,

where T', are the components of the Levi-Civita’s connection of M. Let (¢, v)
be the local coordinates of T(M) as v'0/cu’ represents a tangent vector of M.
In terms of the local coordinates (u,v%), let X be a tangent vector field on

T(M) given by
(2) @)=, @)= —Thwv'v".
Since we have

X(gis(w) v'v’) = X(gis) v’V + 2¢5; v X (V)

89“
T out

v vt — 29T 000 = 0,

X is tangent everywhere to the hypersurface g¢;;(x)v’'v’ = constant, especially
the unit tangent bundle S(M). Hence, the integral curves of the field X lie
in these hypersurfaces. When M is orientable, by means of the volume
element of M:

(3) AVu=x/g du' N+ N\ du', g=det((g:)

and the (n—1)-form giving the (n—1)-dimensional angular volume on fibres of

S(M):
(4)  doyy=x"g 2 (=1 do' Nver Adv'TI AU\ e A dO,
i=1

define an (2n—1)-form on T(M) by
(5) dig=dV,A\de,,

= gz (=1 tdul A+ - - NduP N\ dote -« NdUTI N DU A - - AdU

i=1

In Appendixes, T'(M) represents the tangent bundle of M.
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Making use of (2), (5) the Lie derivative of diz with respect to X is given by

Ologg

LX(dﬁ') = u"

"di
< ) A
—dVux (J g S (—1)t %kv”v"dv‘/\---/\dv‘/\---/\dv")

_ 2 ) 2N _
+ (=1 («/ g Z(—l)’“‘vidu‘/\- <o Ndut - --/\du") AN g (dv' N\ - NdV")

-1

_ " ) ay
‘_2/\/ g dVM/\{g(—l)lvl‘viZd‘vl/\-O-Ar‘ikvhd‘vk/\.../\dv"/\..o/\d-v"

Jj=1
+ > (=1 30 dot A ./\c?;i/\- o Ao doF A - -/\dv”} ,
i=1 J=i+1

where “” denotes the omission of the symbols under it. By some calculations,
the expression in the braces of the last equation can be written as

,;'Ljvh, Z(_l)i—lvid,vl /\. .o /\d.vi—l/\d.vi+1/\. .o /\d.vn

i=1

— 2 (=1 Do v dov' Av o« AP Ado?* A e e o do”

Jj=1

and, as is well known, we have I'j;= %logJ g - Hence it must be
(6) Lz(dr)=dVxN (J?Z(—l)t—lmkvnvkdvl Aeos /\j.;t/\ .o /\dvn)
i=1

+ (—1)*! (J?Z(—l)i“vidul N /\c/h\ﬁ INEE /\du")
i=1

AW g dot A-e+ Advm).

LEMMA 1. Let X and 6 be a wvector field and a 1-form on an n-
dimensional differentiable manifold such that 6(X)= <6, X>=0. Then, the
(n—1)-form:

n

(7) o= (~D) X@)du A - Nd NN e A du

i=1

vanishes under the condition: 6 = 0.
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fidut

n

n-1
PROOF. Putting 6 = )_ fidu', f, >0, we substitute du" = — 3
i=1

into ®, then

® = i(—l)i“X(ui)dul/\- . '/\d/;i Av oo Adut' A (_ - fjdu">

i=1

+ (=1 X(w)ydu' A -+ A\ dur?

= (=1)"* {ifz%ﬁ‘]) + Xt du N Ndu"t =0, q.e.d.
L j=1 n

Now, the right hand side of (6) can be written as
- j - ~ N
Lydg)=(-1)""g (Z(—l)“x(u’)dul/\--- AAU N+ Ndut Ndot A\ - - - Ado"
i=1

(DR Ao N A d e N o

i=1

and for the 1-form d(g;;v'v’) on T(M) we have
X(gyv'v') = <d(g;v'v), x> = 0.
Hence, by Lemma 1, we get the following

LEMMA 2. When M is orientable, on each hypersurface g;;v'v’=constant
of T(M), we have Lx(d)=0, that is the (2n—1)-dimensional volume in the
hypersurface is invariant under the flow of the integral curves of X.

On S(M), diz is called the kinematic density and the flow of the integral
curves of ¥ is the geodesic flow of M.
The following result is a generalization of Liouville’s theorem.

LEMMA 3. Let N be an orientable hypersurface in an n-dimensional
orientable Riemannian manifold M. Let @,: SIM)— S(M) be the one-
parameter group defined by the geodesic flow. If E is the set of unit vectors
on N and pointing toward one side of N in M, then

®  #UB)-[ a-fvemnr,

<t<T
o<t<T

provided E,NE, x & for 0<t <t <T, where c,-, is the volume of the unit
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(n—2)-sphere, V,_(N) is the (n—1)-dimensional volume of N and E,=q@/(E).

PROOF. Introduce local coordinates in U E,=B as: To ec B,e=p,§)

o<t<T
= Expté Ec E,7(E) = x, let correspond the triple (¢, x,E). Let » be the field
of normal unit vectors to N contained in E, then the kinematic density di
can be written on E as

dpp = <n,&>dt NdVy \Ndo,_, ,

where dV 5 denotes the volume element of N. Since oyt x,&) = (¢+s, x, &)
and di is invariant under @, by Lemma 2, the above expression for di is
true in B. Hence we have

BB = [ <ty>dipdVapdo,
B

= f {f <£, n> dmn—l} dt A dVy
O0,T)xN Enti(x)

On the other hand, we have

T

2
f <&n>do, = Cn_gf cos G-(sin §)* "2 df = Ln=p
0

]
EaTi(z) n—1

hence we obtain

A(B) = <=2V (N)-T. q.ed.

n—1
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