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1. Introduction. S.I Goldberg has proved the following theorems [4];

THEOREM. If a compact, simply connected regular Sasakian space®
has positive sectional curvature and constant scalar curvature, then it is
isometric to a Euclidean sphere of the same dimension.

THEOREM. If a compact regular Sasakian space has positive sectional
curvature, then its second Betti number vanishes.

For the proofs of these theorems, the assumption of regularity of the
contact structure is inevitable. Without the assumption of regularity of the
first theorem we have proved the following [6]

THEOREM. If a complete 2m+1(= 5)-dimensional Sasakian space has
sectional curvature > 1/2m, then the second Betti number vanishes.

On the other hand, M. Berger proved the following [3]

THEOREM. If a complete, Kihler-Einstein space has positive sectional
curvature, then it is isometric to a complex projective space with a metric
of constant holomorphic sectional curvature.

In a former paper [2], he has proved the following theorem as a special
case of this theorem.

If a 4-dimensional compact Kihler-Einstein space has non-negative sectional
curvature, then it is a locally symmetric space.

To exclude regularity condition of the second theorem of Goldberg, we
apply the Berger’s method to 5-dimensional Sasaki-Einstein space and obtain

1) In this note, manifolds are assumed to be connected and C~-differentiable.



104 Y. OGAWA

THEOREM. If a b5-dimensional compact simply connected Sasaki-
Einstein space has sectional curvature =1/3, then it is a Euclidean sphere
of 5-dimension.

2. Preliminaries. Let M be an n-dimensional Riemannian space. We
denote by M, its tangent space at p, and by ¢, the Riemannian structure
of M. If we denote by R,,° the Riemannian curvature tensor, the sectional

curvature at p with respect to a 2-plane spanned by the orthonormal vectors
X,Y € M, is defined by

pX,Y) = —Rume X'Y*XY" .

The Ricci tensor Ry, is defined by Ry, = >_ R.°. If the relation Ry, = kg,

holds for a scalar %, then the Riemannian structure is called an Einstein metric.
This scalar % is necessarily constant provided that the dimension>2.
A Riemannian space with a unit Killing vector field Z=(»") such that

VAV = mudrw — MG

is called a Sasakian space.

In the following we only consider an n-dimensional Sasakian space M.
It is known that M 1is orientable, and 7 is necessarily odd: n=2m+1. We
define tensor fields @y, @4 by

P = Vam, @f=pung*,
then the following formulas are valid :
?7\”¢vﬂ — __SAM + 77177“’
P = 0, Pap = —Pur -

For any vector X = (X"), we mean X the vector (g} X*). As for the
curvature tensor, we have [5]

(2. 1) Rhuvw 770, =MGw — M,
(2. 2) ¢AE Rsppa‘ == ¢p€R5Apa + ¢7pl gau, - ¢p[.b 9.71 + ¢au gph - ¢U7L gpp. ’
(2 3) ¢7,,LB¢A4 Raﬁum - RMLw.u + PP — PorPu + Jor Juo — Gor G -

2) Indices A, p,+++ run from 1 to z.
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From (2.1), we have
(2. 4) /X, 2) =1

for any vector X which is linearly independent to Z on M.

For any point p of M, we can take an orthonormal basis X, X+, -,
Xy Xwy X = Z, (Xi» = X)), and with respect to this basis, the component
of the tensors g, @i, and 7 are given by

G = BML )

1 if N=i, p=7*,
Prp = -1 if 7\,:1:*, f.l,:i,

0 otherwise,

771:(0,-..,0’1)‘

We call such an orthonormal basis an adapted basis.
By virtue of (2.2) and (2.3), we have the following formulas® with respect
to the adapted basis.

(2.5) Ry = — Ry + Gru—1),
(2 6) Rluh’u' = Rlpl" + (1_8lp,) ’
(2. 7) RA”qu“n = RAM"AIJ' .

If a Sasakian space is an Einstein space at the same time,
(2 8) Rlﬂ = kghlt >
then the constant % is equal to n—1.

3. Lemmas.

LEMMA 1. In a 5-dimensional Sasaki-Einstein space, if we take an
orthonormal basis (X, X,, X;, Xy, Xs=2Z) of M, for any pe M, then we have

Xy, X)) = p(Xs, Xo) .

PROOF. From (2.8) and (2.4) we have

3) S.Tachibana and Y.Ogawa [6].
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P(Xy, Xo) + p(X, Xs) + p(X;, Xy) =3,
P( Xy, X1) + (X, Xo) + p(X,, Xy) =3,
P(Xs X)) + p(Xs, Xo) + p(X,, Xy) =3,
P(Xy, X)) + p(Xy, Xs) + p(Xy, Xs) = 3.
Hence it can be easily deduced that 2p(X;, X,) — 2p(X;, X,) = 0.

LEMMA 2. Let M be a 5-dimensional Sasaki-Einstein space. Then we
can take for any pe M an adapted basis (X, X, = pX,, X;, X,=pX,, X;=2)
of M, such that

(1)  Riaz = Ry (=a), Risis = Rosss (=), Ryyis = Razes (=0),
Risoe = b+1, Ryyy = c+1, Rygyy = b+c+2, Rysy = —1 (i=1,--+,4),
and all the other Ry, = 0.

(1) p(X,, Xo) = 2{p(X,, X;5) + p(X; X,)} — 3.

PROOF. Let W, be an orthogonal hyperplane to Z in M,. We select
a unit vector X, such that

p(Xy, X)) = l}/z?vx P(X, pX).

Let V, be an ortho-complementary subspace to {X;,#X,} in W, Then V,
is spanned by some unit vectors Y and @Y. Therefore, for the symmetric
quadratic form on V, defined by

MX,Y) = —Rin X; X0 X*Y*, X, YeV,,
there exists a unit vector X; in V, such that
h(X3’ ¢X3) = 0 .
Now this orthonormal basis {X,, X, = X, X;, X, =X, X; = Z} of M, is
a desired one.
In fact, taking account of Lemma 1, we have

R1212 = R3434 ) R13l3 = R2424 s R1414 = R2323 .

From (2.6) and (2.5), it holds
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R = Rigprgr = Risys + 1,
Ryyy = —Ryges = Ry + 1.
By virtue of (2.1), we have easily
Risis = —8;, (G,j= Le--,4).

From the selection of the vector X,, we have R,;;, =0. From (2. 8), we have
R,35,=0. Hence applying (2.7) to R,;, and Ry, we see Ry =0, Rz = 0.
Next we consider the sectional curvature

plaX, + BX;, plaX, + BX,))
= (a?+ B2 {Aa* + BBR* + 2Ca?B? + 2Da’*B + 2EaB®}

where a, 8 are any real numbers and A=p(X,, X,), B=p(X,, X,), C=p(X,, X;)
+3p(X,, X,)—3, D=—2R4,4, E=—2R;;;,. From the choice of X, and Lemma
1, we have :

a*B(C — p(X,, X,)) + a*BD + aB*E =0

for any real @, 8. If we substitute —8 for 8 in it, and adding these two
inequalities, we can get C—p(X,, X,) =0. If a8 > 0, then we have

(C—pX,, Xy)aB=a’D + BE= —(C—p(X,, X,)) aB.
From this we have easily D=E=0. Therefore we have R,;;;, = Ry, = 0 and
p(X,, X,) = p(X,, X;) + 3p(X,, X,) — 3. By the same process for p(aX,+8X,,
p(aX,+BX,)), we have

Risis = Ryys = Rysus = Ry =0,
P(Xl» X2) = 3P(X1, Xa) + P(Xb X4) —3.

Hence we have p(X;, X,) = 2{p(X,, X;) + p(X,, X,)} —3. This proves the
lemma.

4. Proof of the theorem. It is known that in a compact orientable
Einstein space M, if the scalar

K(P) = Z { - Rhuuv lepcr R;u.»pa + _;* Rluvto Rvn'pa’ Rp:rlu + 2leuo R}Lp;w Rva}
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satisfies K(p) =0 for all pe M, then M must be a locally symmetric space
(Lichnerowicz [8]). In our 5-dimensional Sasaki-Einstein space, taking the
basis of Lemma 2, we can calculate K(p) explicitly as follows:

- Z RlvuvRM)pa' R;,uopo‘ =32 {42 + 3(b2+62) + 6(b+€) + 2bc+8},

1
7 Z Rllwm Rvmpa' Rpa-ly
= 8{a® + 3a(b+c+2) + 4(b°+c*) + 6(b*+c?) + 3(b+c) — 2},
2 z le.m) Rlp[w Rva
= 24{2a(2bc+b+c+1) + (a+b+c) — 2(b+c+2)(2bc+b+c)} .

Now we have
a+b+c=-3.
Defining £=>b+c and y=bc, we can calculate directly
—K($)/32 = 52 + 15x + (9 +22)y + 6.
By virture of (ii) of Lemma 2, we get
b+c=-2.

Moreover, if the Sasakian space in consideration has sectional curvature =8,
then it satisfies that 6+¢ = —238. Therefore the range on which (z, y) exists
is

D={-2=x=-2 8=y=2/4}.

If we put f(x,y) the right hand side of the above equation, then for (z,y) e D,
we have

3 9 1
= 9 e Y (5—_1_ 2
fa )= Br+2)(z+2f = — (8- 1 )+2)
Hence if § = 1/3, then we see that f(x,y) =0 and K(p) =0 for all (x,y) < D.
This means that M is a locally symmetric space. On the other hand, it is
known that a locally symmetric Sasakian space is a space of constant curvature
(M. Okumura [7]). Hence M is a space of constant curvature, we get our

theorem.
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REMARK. If 8> 1/3, then we can conclude immediately the theorem
from the fact that K(p) =0 if and only if a=b=c=—1 and Ri,. has the
properties showed in Lemma 2.
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