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1. Introduction. S. I. Goldberg has proved the following theorems [4]

THEOREM. If a compact, simply connected regular Sasakian spaced
has positive sectional curvature and constant scalar curvature, then it is
isometric to a Euclidean sphere of the same dimension.

THEOREM. If a compact regular Sasakian space has positive sectional
curvature, then its second Betti number vanishes.

For the proofs of these theorems, the assumption of regularity of the
contact structure is inevitable. Without the assumption of regularity of the
first theorem we have proved the following [6]

THEOREM. If a complete 2m + lQ^5)-dimensional Sasakian space has
sectional curvature > l/2m, then the second Betti number vanishes.

On the other hand, M. Berger proved the following [3]

THEOREM. If a complete, Kdhler-Einstein space has positive sectional
curvature, then it is isometric to a complex projective space with a metric
of constant holomorphic sectional curvature.

In a former paper [2], he has proved the following theorem as a special
case of this theorem.

If a 4-dimensional compact Kahler-Einstein space has non-negative sectional
curvature, then it is a locally symmetric space.

To exclude regularity condition of the second theorem of Goldberg, we
apply the Berger's method to 5-dimensional Sasaki-Einstein space and obtain

1) In this note, manifolds are assumed to be connected and O-differentiable.
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THEOREM. If a ^-dimensional compact simply connected Sasaki-
Einstein space has sectional curvature ^1/3, then it is a Euclidean sphere
of ^-dimension.

2. Preliminaries. Let M be an n-dimensional Riemannian space. We
denote by Mp its tangent space at p9 and by g\tP the Riemannian structure
of M. If we denote by RχμV

ω the Riemannian curvature tensor, the sectional
curvature at p with respect to a 2-plane spanned by the orthonormal vectors
X,Y € Mp is defined by

KX, Y) = -RλμvωXΎμXΎω .

The Ricci tensor Rλμ, is defined by Rλμ = ^ Rω\μω. If the relation Rλβ = k gλμ

holds for a scalar k, then the Riemannian structure is called an Einstein metric.
This scalar k is necessarily constant provided that the dimension>2.

A Riemannian space with a unit Killing vector field Z=(ηλ) such that

VλVμty; = Vugλv - Vvgλμ,

is called a Sasakian space.
In the following we only consider an n-dimensional Sasakian space M.

It is known that M is orientable, and n is necessarily odd: w = 2m + l. We
define tensor fields <pλμ, φ\ by

then the following formulas are valid:

<pλ

Vηv = 0 , ψλμ= —<Pμλ.

For any vector X = (Xλ), we mean φX the vector (<pβ

λXμ). As for the
curvature tensor, we have [5]

(2.

(2.

(2.

1)

2)

3)

R

Ψi xpσ

Si ω

— ηx gμv —

= Ψ R^ ~T~ τ^pX g^μ

ψvXψμω —

- ψpμgσX

ψωXψμv 4

2) Indices λ, μ, run from 1 to rc.



ON 5-DIMENSIONAL SASAKI-EINSTEIN SPACE 105

From (2.1), we have

(2.4)

for any vector X which is linearly independent to Z on M.

For any point p of M, we can take an orthonormal basis Xl9- X^, ,

Xm, Xm*, Xn — Z, (Xί* = φXi), and with respect to this basis, the component

of the tensors gλμ, φλμ and ηλ are given by

1 if X = i, μ=i¥r

 9

0 otherwise,

We call such an orthonormal basis an adapted basis.

By virtue of (2. 2) and (2. 3), we have the following formulas3) with respect

to the adapted basis.

(2. 5) Rλμ*λ*μ — —Rλμ,*λμ + (δλμ — 1 ) ,

(2. 6) Rλμλ μ* = = Rλμλμ + (1 — Sλμ) ,

(2. 7) Rλμ*λ*μ* — Rλμ*λμ -

If a Sasakian space is an Einstein space at the same time,

(2.8) Rλμ = kgλμ,

then the constant k is equal to n — 1.

3. Lemmas.

LEMMA 1. In a 5-dimensional Sasaki-Einstein space, if we take an

orthonormal basis (Xu X2, X3, X4, X5 = Z) o/ Mv for any pe M9 then we have

PROOF. From (2. 8) and (2.4) we have

3) S. Tachibana and Y. Ogawa [6].
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U X2) + P{XU X3) + p(Xu X4) = 3 ,

29 X0 + P(X2, X.) + XX2, X4) = 3,

s, X.) + p(Xs, X4) = 3,

4, X2) + />(X4, X.) = 3 .

Hence it can be easily deduced that 2p(Xu X2) — 2/>(X3, X4) = 0.

LEMMA 2. Let M be a ^-dimensional Sasaki-Einstein space. Then we
can take for any pz M an adapted basis (X1? X2 = φXi, X3, X 4 =^X 3 , X5 = Z)
of Mp such that

(ί) -Rl212
 =
 -K3434 ( —

 a
\ ^1313

 =
 -R2424 ( — ̂ )j -Rl414

 =
 -R2323 (

 = ί7
)>

l , i ? 2 3 4 1 = c + l , i ? 1 2 3 4 = & + c + 2, i ? 5 i 5 i = - 1 ( i = l , , 4 ) ,

μv = 0.

(ii) K^ί, X.) ^ 2 {̂ X,, X.) + XX, X4)} - 3 .

PROOF. Let Wp be an orthogonal hyperplane to Z in Mp. We select
a unit vector Xx such that

Let y p be an ortho-complementary subspace to [Xl9 φXx] in Wv. Then Vp

is spanned by some unit vectors Y and φY. Therefore, for the symmetric
quadratic form on Vp defined by

, Y) = -Rλμv(ύ

there exists a unit vector X3 in Vp such that

Now this orthonormal basis {Xu X2 = φXu X3, X4 = <pX3, X5 = Z} of Mp is
a desired one.

In fact, taking account of Lemma 1, we have

•^M212 = ^3434 9 -iVl313 = = -^2424 > -^1414 = = -^2323

From (2. 6) and (2. 5), it holds
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-*M324 — ^131*3* = -*M313 + 1 9

^2341 = --^13*1*3 = -*M414 + 1

By virtue of (2.1), we have easily

From the selection of the vector X3, we have J?1314 = 0. From (2. 8), we have
^2324=0. Hence applying (2.7) to i?1314 and i?2324, we see i?a 4 1 4 =0, i?1332 = 0.
Next we consider the sectional curvature

= (a2+β2)-2{Aa* + Bβ* + 2Ca2β2 + 2Da*β + 2Eaβ3}

where a, β are any real numbers and A = p(Xu X2\ JS = p(X3, X4), C=ρ(Xu X3)
+ Sp(Xu X4) —3, D= —2i?1214, E= —2i?3414. From the choice of X1 and Lemma
1, we have

aW(C - P(XU Xt)) + a?ΘD + aβ'E ^ 0

for any real a, β. If we substitute —β for β in it, and adding these two
inequalities, we can get C—p(Xι, X2) ^ 0 . If aβ>0, then we have

(C-KX,, X0) «β ̂  α2Z) + |82£ ^ -(C-p(Xu Xf)) «/9.

From this we have easily D = E = 0. Therefore we have i?i2u = i?34u = 0 and
/>(Xl5 X2) g p(X!, X3) + 3KXi, X4) ~ 3. By the same process for
φ{aXx-\-βX^\ we have

-^1213 = ^ 3 4 1 4 = XV4 2 4 3 = XV2 4 1 4 = 0 ,

u X2) i> 3KX1? X3) + p(Xu X4) - 3 .

Hence we have p(Xu X2) ̂  2{KX1? X3) + p(Xly X4)} - 3. This proves the
lemma.

4. Proof of the theorem. It is known that in a compact orientable
Einstein space M, if the scalar

2 j {— Rλvμv Rλωpσ Rμωpσ + ~^~ Rλμvω RVapr Rprλμ + 2i?λ y μ ω i?λpμσ i?υpωσ}
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satisfies K(p)^0 for all pe M, then M must be a locally symmetric space
(Lichnerowicz [8]). In our 5-dimensional Sasaki-Einstein space, taking the
basis of Lemma 2, we can calculate K(ρ) explicitly as follows:

- Σ. Rλv,vRλωpσR»ωpσ = 32 [a2 + 3(62 + c2) + 6(b + c) + 26*+ 8},

o ~ / f -K-λμvω -K-vωpσ -K-pσλμ

= 8{α3 + 3aφ+c+2)2 + 4(b3 + c3) + 6(b*+c*) + 3(b+c) - 2} ,

^ / , -t^λvμω -Kλpμσ -t^vpωσ

= 24{2a(2bc + b + c + l) + (a + b+c).-

Now we have

Denning x = b + c and y = bc, we can calculate directly

-K(j>)/32 = 5x2 + l&r + (9^ + 22)3; + 6.

By virture of (ii) of Lemma 2, we get

b + c^ - 2 .

Moreover, if the Sasakian space in consideration has sectional curvature ^ δ,
then it satisfies that b + c rg — 28. Therefore the range on which (x, y) exists
is

D = [-2 ^ α: ̂  -2δ, δ2 ^ 3 ; ^ ^2/4} .

If we put f(x, y) the right hand side of the above equation, then for (x, y) € D,
we have

f(x, y) ̂  -f- (3^ + 2)(α: + 2)2 ^ - - | - (δ - - |

Hence if δ ̂  1/3, then we see that f(x9 y)^0 and K(j>) ̂  0 for all (x, y) z D.
This means that M is a locally symmetric space. On the other hand, it is
known that a locally symmetric Sasakian space is a space of constant curvature
(M. Okumura [7]). Hence M i s a space of constant curvature, we get our
theorem.
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REMARK. If δ > 1/3, then we can conclude immediately the theorem
from the fact that K(p) = 0 if and only if a—b—c—— 1 and R\μvω has the
properties showed in Lemma 2.
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