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1. In the theory of the structure of von Neumann algebras, a great deal
of discussions has been devoted to the algebraic invariants. Recently,
J. Schwartz [6], has shown a new behavior of the hyperfinite factor by
introducing a new property, called property P, and proved the existence of
new algebraic type of continuous finite factor. Very recently, one of the
authors has proved that property P is an algebraic invariant [2] and it makes
us to have some interest that the main results of the papsr [6], espzcially
the key results [6: Cor. 6 and Lemma 7], can be deducsd only from the
point of view of the existence of a projection mapping of norm one.

Thus we shall investigate in the following the algebraic version of property
P as an extension property of the commutant of a given von Neumann
algebra. We shall also study this extension property as the proparty of the
commutant itself. These properties will turn out to be algebraic invariants and
it is proved that our extension property can be defined space-freely in a form
very similar to the usual extension property of Banach space. Relationships
between tensor products of von Neumann algebras and these properties are
also studied.

2. In the following we denote by (), the algebra of all bounded linear
operators on a Hilbert space §. We shall define the extension property of
a von Neumann algebra U as follows.

DEFINITION 2.1. A von Neumann algebra ¥, acting on a Hilbert space
9, has extension property, if there exists a projection of norm one from

2(P) to A

If we consider this extension property as the property of the commutant
A, of U, we get an algebraic version of the property P in Schwartz [6].

DEFINITION 2.2. A von Neumann algebra % is called to have abstract
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property P, abbreviated hereafter property AP, if the commutant %' has
extension property in the above Definition 2.1.

As we said already in the introduction, the crucial point in the result of
[6] is simply that property P implies the above property AP and the group
von Neumann algebra A(®) of a free group ® having two generators has

not property AP.
‘We shall show in the following steps that both of these properties are

algebraic invariants.

LEMMA 23. If U has extension property then tensor product AR XR)
has the same property.

PROOF. Let = be a projection of norm one from 2($) to ¥, and
(T.).cc; be the matrix representation of a bounded operator T on HQ R

according to the decomposition of H Q@ & into > H, (H. =) T. are all

el
bounded operators on §. For arbitrary finite subset J of I, we denote by
E, the projection to the subspace > 9. Let wi(T) = (@u(J) m(T.)),ccr Where

ved

1 for (,e)ed X J

add) = 0 for (4, )& X J.

nAT) is a bounded operator on H® R. It is clear that =, is a linear self-
adjoint projection mapping from PORRK) to E (AR LRK)] E;. Suppose T is
a positive operator on ORRKR), then E,TE, is also positive and by [8:
Theorem 1] and [3: Theorem 5] one can easily see that m;(T) = 0. Moreover
the positiveness of the operator |7T'|E;— E,TE,, implies

""'J(“T“EJ) — mE,TE;) = HT”EJ —m(T)=0,
and
(D = IITIEs | = T -
Moreover, by Theorem 1 in [8], a simple calculation shows that

wAE,SE,;TE;SE,) = E,SEmT)E,SE; for arbitrary S,S ¢ A® &) and
T<2HRR).

Therefore

m(T—mfT))*(T—n,T)) =0 implies,
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w(T*T) — wy(T)* m(T) = 0. Hence for an arbitrary bounded operator T’
on PRQR. We have

l7mAT)N* =l TY*ms(T)| = | mo(T*T)| = | T*T| = | T71° .

Hence |m(T)|| = |T). Thus for a fixed operator T, {ms(T)}sc; is a bounded
family of operators in A® LR). Put 7(T) = lirln 7,(T) (operator Banach

limit of =;(T) cf. [6]). Then as shown in [6] 7(T") is an opsrator of AR ZR)
and |7(T)| = |T). Moreover, one can easily see that 7 is a projection
mapping from LHRK) to AR L(R). q.ed.

For a von Neumann algebra % on § and a projection E in 2(9) we
denote by %; the restricted von Neumann algebra of % to E. If E< ¥, Ay
consists of all elements 7" in U with ETE=T.

LEMMA 24. If U has extension property then Uy (E<N) has the same
. property.

PROOF. Let 7 be a projection of norm one from 2(9) to ¥, then the
restriction of 7 to the algebra ER(H) E=L(ED) is a required projection as we
see from Theorem 1 in [8].

LEMMA 25. Let A, B and UARB be von Neumann algebras and their
tensor product as von Neumann algebras. Let ¢ and ~y be normal states
on U and B, then there exist linear mappings of norm one L, and R,
from ARB to A and B such that L (TRQI) =T and R,(IRS)=S, for Te A
and Se®B. '

PROOF. We proceed along with L,. For an arbitrary element > T,®.S,
i=1

in the algebraic tensor produt B()®, we put

Ly (Z T,® Sz) = Z <S,¥>T;.
i=1

i=1
n

Take an element T in AR B and suppose that T, = D T*® S converges o-
=1

weakly to T with |T,| =|7). Then for a o-weakly continuous linear

functional @ on U, we have

Im <> TR S5 p® > =lim <LyT.), o> = <T, p @ ¥>

i=1
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and

|<T, 9@ ¥>| =lim [T.||o] <[Tllel.

Hene fry(@) = <T, 9 ® > is a bounded linear functional on %y, the space
of all o-weakly continuous linear fun.tionals on . Therefore there exists
an element L,(T)ec U with the property

<L T), p> = fry(p) for all e Uy (cf. [1: p. 40]).

Thus we can define the mapping L, from A® B to 2 which is clearly seen
as an extension of the above defined mapping, and

1= |LlIs@ )| = | Lol = sup | LuT)| = sup | <L(T), >|

EAES
=“§1[1l_l<T,<p® > =1.
llol

The argument for R, is almost similar.

IAILTDS

An isomorphism from a von Neumann algebra % on § to AR Iy on HRXQK
is cz2lled ampliation, where I means the identity operator on .

LEMMA 2.6. A wvon Neumann algebra U has extension property if
and only if its ampliation AR Iz has extension property.

PROOF. Let %A (on ) have extension property, i.e. there exists a
projection 7 of norm one from 2(9) to A. Let § be the ampliation, then one
easily sees that for a normal state 4 on g 6-7-L, is a projection of
norm one from LaIJIR) = LB)RLAR) to AR Ip.

Conversely, if AR Iz has extention proparty and 7 is a projection of norm
one from 2HRK), the mapping O-'-7-0 is a projection of norm one from

) to A
THEOREM 2.7. Extension property is invariant under isomorphism.

PROOF. Let 2, B are isomorphic von Neumann algebras on 9,, 9,
respectively. If U has extension property, its ampliation A® Iz has the same
property by the above Lemma 2.7. Let & be a Hilbart space whose
dimension is high enough for the dimension of §, and $,. Then the theory
of spacial invariants tells us that UA® Iy is spacially isomorphic to BR Ie
(cf. [9: Theorem 2]). Therefore BR Iz has extension property, and § has the
same property.
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THEOREM 2.8. Property AP is invariant under isomorphism.

PROOF. Let % and B be mutually isomorphic von Neumann algebras
and U has property AP. By [1: Chap. I, §4, 4, Théoréme 3], it is sufficient to
consider only the following cases; =UAR Ia or B=U, where E is a projection
of A'. However both case are treated already in Lemma 2.3 and Lemma 2.4.

q.e.d.

All von Neumann algebras of type I have extension property and property
AP and a continuous hyperfinite factor has also both properties. In fact, in
case of algebras of type I, we may assume without loss of generality that
their commutants are commutative and since commutative von Neumann
algebras have usual extension properties as Banach spaces, they have property
AP. A continuous hyperfinite factor has property P, hencz property AP.
And as we shall see later (Theorem 4.2), generally speaking, extension
property and property AP are seen equivalent properties for semi-finite von
Neumann algebras in the sense that if the algebra has the one it has always
the other.

One interesting conclusion of this observation is the following fact which
is proved at first by Sakai [11]. As it is well known there exists a projection
of norm one from a continucus hyperfinite factor to any von Neumann
subalgebras of it, so every subfactor of a continuous hyperfinite factor have
extension property. On the other hand there exists a factor of type II, which
does not have extension prcperty ([6]). Hence we can see that the following
question raised in Sakai’s lecture note ([5; §3. 85, question 3]) is negative;

can we construct for any finite factor 9, a hyperfinite factor %, such that
BcA .

3. For the tensor products of von Neumann algebras, if ¥ and B have
property P then UA®B has the same property [2]. We shall show in the
following that our extension property and property AP are almost compatible
with the tensor products of von Neumann algebras.

LEMMA 31. Let  (resp. @) be a normal state on LK) (resp. XH)),
then the mapping L, (resp. R,) maps (UAQB) onto A (resp. B').

PROOF. We notice at first that the definition of the mapping L, shows
the relation

SILy(TS = Ly((SRI)-T- (S ® D))

for every operators S, S Q) and T e LHPR &). Hence if S and
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Te(UARVB) we have
S[LT)] = L(SRI)-T) = L(T-(S® I)) = [L(T)]S,

which shows that L,(T') belongs to %'. It it clear that L, is an onto-mapping.
q.e.d.

THEOREM 3.2. Let A and B be von Neumann algebras, then ARYB has
property AP if and only if both N and B have property AP.

PROOF. Suppose that A and B have property AP. By Lemma 2.3 there
exists a projection 7, (resp. m,) of norm one from LHRIR) to A'RLR) (resp.
H)RY'). Put w=mm, We assert that 7 is a projection of norm one from

LHRRK) to
AR R) N LUAHHRXB =AR V).

In fact, take an operator T < {HRKR) and Se I ® B. By Theorem 1 in [8],
the identity

S(T) = Smy(m(T)) = w(Smy(T)) = mi(m(T)S) = my(mo(T))S = w(T)S
holds since Se A RLR) and m(T) ¢ IHR V). Hence
mT)eA @R NYAH)HPB =ARY) .
Clearly m(T)=T for arbitrary T < (A®P) and
1=zl == = |ml-|m| =1.

Thus AR VB has property AP.

Conversely, let AR B have property AP, then there exists a projection
of norm one from Z(HPRR) to (AR B). Let 6, (resp. 6,) be the ampliation
of &(D) (resp. {R)) to LD)R I (resp. IHR X(R)). Then from Lemma 3.1 we
can easily see that the mapping L,-7-6, (resp. R,-7-6,) is a projection
of norm one from 2(P) (resp. LR)) to W(resp. B) where Y (resp. @) is a
normal state of R) (resp. &(D)).

On the contrary, the result for extension property is not completely
satisfactory one.

THEOREM 33. If UARYB has extension property, then both N and B
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have extension property. The converse holds for semi-finite von Neumann
algebras.

PROOF. Let n be a projection of norm one from LHRXR) to AR V.
Using the same notations as in the proof of Theorem 3.2, it is seen without
difficulty that the mappings L,-7-6, and R,-w-6, are projections of norm
one to A and B respectively. Next, suppose that A and B are semi-finite
and both have extention property. This means that A’ and B have property
AP, hence W'®B has also property AP by the above theorem. Thus
A'RB) =AR VB has extension property.

It is to be noticed that these results simplify considerably well the
discussions in Schwartz [7] for finding the third factor of type III. In fact,
all we must do in this case is to find a factor of typz Il having property
AP. Once it is found, we can easily construct from this factor, say %, the
triplet of factors of type III which are not mutually non-isomorphic in the
fcllowing way. Let 8 be continuous hyperfinite factor and A(®) the group
von Neumann algebra of the free group ® having two generators. Then
ARB, ARQLBRQ)X A(®) and a fzctor of type III constructed in Pukanszky [4],
which has not property L are required triplet since A®B has both property
AP and L ([5; p. 3. 83]) while ARVBR A(P) has property L([5; p. 3. 83]) but
not property AP.

4. In this section, at first we shall show that the extension property of
von Neumann algebra can be characterized as an extension property free
from the underlying Hilbert space. Let A be a C#*-algebra and @ a state of
A. By @, we shall denote the canonical representation of A induced by @
and its representation space will be written by $,. We shall mean by T,
the canonical linear mapping from A to a dense subspace of §, (cf. [1]).

THEOREM 4.1. Exiension property of a von Neumann algebra U is
characterized as the following general extension property:

(*) For any C*-algebra A containing ¥, there exists a projection of
norm one from A to . 4

PROOF. Let % have extension property and {@.} be a total family of
normal states of A. Let @, be the state extension of @, to A and consider

the representations ®=3"®, of % and ®=3 ®; of A. Then one sees without
difficulty that the restriction of &) to the subspace D @ (@7, ()5 (D)] is

spacially isomorphic to a von Neumann algebra ®®) by an isomorphism
6, where I means the unit of A. Let E be the projection to the subspace
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> @ (DA I'; (I)]. We can see from Theorem 2.7 that &) has extension

Srcperty hence ED()E has extension property. There exists a projection
of ncrm one from ES(Z ) @;a)E = S(E(ZGB Lﬁ;a)) to E®@)E. Consider

the mapping 7, from A to U defined by my(a) = &' -6+ w(ED(a) E),

o - T 6 P!
ie. A D(A) E®(A)E —— EDE B oA,

Clearly =, is a projection mapping with its norm not exceeding one. Since
other implication is trivial, this concludes the proof. g.e.d.

We must notice that a slight modificaton of the above proof shows, of
couse, that there exists always a projection of norm one from a C*-algebra
A to a C*-subalgebra B of A which is isomrphic to 2. Therefore, for example,
any representing image of a contitnuous hyperfinite factor has extension
property whatever the image becomes a von Neumann algebra or not on that
acting space.

The theorem shows that our extension property of von Neumann algebras
is very similar to the usual extension property of Banach spaces. Finally we
shall show that extension property and property AP are equivalent for semi-
finite von Neumann algebras in the sense that if the algebra has the the one
it has always the other.

THEOREM 4.2. Let U be a semi-finite von Neumann algebra, then U
has extension property if and only if W has property AP.

PROOF. Let 2 have extension property. Since % is semi-finite, there
exists a standard von Neumann algebra 8 on § such that % is spacially iso-
morphic to (BR In); where Ec B ®L®R), and the mapping BRIz — (BRIn)e
is an isomorphism. Since B is standard, there exists a canonical involution
mapping J in its acting space § such as JBJ =%B". By Theorem 2.7, B has
extension property. Let 7 be a projection of norm one from () to B.
Then an easy calculation shows that the mapping T e &(§) — Jn(JTJ) J is
a projection of norm one to ¥, and B’ has extension property. Therefore,
by Lemma 2.3 and Lemma 2.4 (B'®L(R)), has extension property, that is,
(BR Is)r has property AP.

Suppose U has property AP, i.e. A has extension property. Then U’
has property AP by the above argument, that is, (A") = % has extension
property. g.e.d.
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The above theorem is likely to hold even in case of U being of type III,

however, we dcn’t kncw the exact consequence. Of course, we can find an

example of a facter of type IIl having both preperties.

For this purpose, it

is sufficient to choose simply a known factor of type III having canonical
involution mapping J and go along the same line as in the proof of the above

theorem.
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