TOPOLOGICAL NON-DEGENERATE FUNCTIONS

JOHN CANTWELL*)

(Received September 1, 1967)

1. Introduction. The theory of C^{∞} non-degenerate functions has been useful in the study of differentiable manifolds. The theory of topological non-degenerate functions is much less developed. Morse [5] has established the Morse inequalities. Kuiper [3] has shown that any compact n-manifold which admits a topological non-degenerate function with two critical points is homeomorphic to S^n . Eells and Kuiper [2] have studied compact manifolds which admit a topological non-degenerate function with three critical points. In this paper we prove:

THEOREM 1.1. Suppose f is a topological non-degenerate function defined on a compact n-manifold. If [a,b] is an interval of regular values of f then $f^{-1}(a) \times (0,1)$ is homeomorphic to $f^{-1}(b) \times (0,1)$.

THEOREM 1.2. Suppose a compact n-manifold M admits a topological non-degenerate function f such that all the critical points of f of index λ lie at the level λ . Then M admits a cell decomposition with exactly as many cells of dimension λ as f has critical points of index λ .

Theorem 1.1 illustrates some of the difficulties in the theory of topological non-degenerate functions. If [a,b] is an interval of regular values of a C^{∞} non-degenerate function, it is easy to show that $f^{-1}(a)$ is homeomorphic to $f^{-1}(b)$ (Milnor [4], p. 12). Whether or not this is true in the topological case is an open question. Theorem 1.2 is a partial solution of a problem of Eells and Kuiper [2], p. 195. We intend to give a more complete solution to this problem in a future paper.

2. Notation and Terminology. We refer to Morse [5] as a general reference for §2 and §3. We denote cartesian *n*-space by R^n . Let $N^i_{\varepsilon} = \{(z_1, \cdots, z_n) \in R^n | (z_1^2 + \cdots + z_i^2)^{\frac{1}{2}} < \varepsilon \text{ and } (z_{i+1}^2 + \cdots + z_n^2)^{\frac{1}{2}} < \varepsilon \}, i = 0, \cdots, n; \varepsilon > 0$. An *n-manifold* is a separable metric space each point of which has a neighbour-

^{*)} Research supported in part by NSF Grant GP-5337.

hood homeomorphic to R^n .

Suppose f is a real-valued function on M. A point $x \in M$ is a topological regular point if there exists an $\varepsilon > 0$ and a homeomorphism $h: N_{\varepsilon}^{n-1} \longrightarrow M$ such that the image of h is an open neighborhood of x and $f \circ h(z_1, \dots, z_n) = f(x) + z_n$ if $(z_1, \dots, z_n) \in N_{\varepsilon}^{n-1}$. A point $x \in M$ is a topological critical point if it is not a topological regular point. A point $x \in M$ is a topological critical point of index λ if there exists $\varepsilon > 0$ and a homeomorphism $h: N_{\varepsilon}^{n} \longrightarrow M$ such that the image of h is an open neighborhood of x and $f \circ h(z_1, \dots, z_n) = f(x) - z_1^2 - \dots - z_{\lambda}^2 + z_{\lambda+1}^2 + \dots + z_n^2$ if $(z_1, \dots, z_n) \in N_{\varepsilon}^{\lambda}$. It is easy to see that every topological critical point of index λ is indeed a topological critical point. In both of the above cases we refer to the function h as an f-coordinate function and to the open set $h(N_{\varepsilon}^i)$ as an f-neighborhood. The function f is a topological non-degenerate function if every critical point of f is a topological critical point of index λ for some λ $(0 \le \lambda \le n)$. If f is a topological non-degenerate function it is clear that the critical points of f are isolated. If, further, M is compact, they will be finite in number.

We speak of the set $f^{-1}(a)$ as the *f-level a*. We say $x \in M$ is below the *f-level a* if $f(x) \le a$. Corresponding definitions can be given of x is above, strictly above, and strictly below the *f*-level a.

If $M=X_n\supset\cdots\supset X_1\supset X_0$ is a sequence of closed subsets of a compact n-manifold M such that X_0 is a finite set of points and X_i-X_{i-1} is the disjoint union of a finite number of open i-cells, $i=1,\cdots,n$, then $\{X_i\}$ is called a *cell decomposition* of M.

3. Level Lowering Homeomorphisms. Suppose $x_0 \in M$ and $h: N_{\varepsilon}^i \longrightarrow M$ is an f-coordinate function such that $h(0) = x_0$. If $z = (z_1, \dots, z_n) \in N_{\varepsilon}^i$, i = 0, \dots , n we agree to write $z = (\zeta_1, \zeta_2)$ where $\zeta_1 = (z_1, \dots, z_i)$, $\zeta_2 = (z_{i+1}, \dots, z_n)$. Note that if i = n, $z = \zeta_1$ and if i = 0, $z = \zeta_2$. We have two cases to consider.

Case 1. x_0 is a topological regular point and i = n - 1. Define a homeomorphism $\rho: N_{\epsilon}^{n-1} \longrightarrow N_{\epsilon}^{n-1}$ by

$$\rho(\zeta_1,z_n)=(\zeta_1,z_n+(1-|\zeta_1|/\varepsilon)(z_n^2/2\varepsilon-\varepsilon/2)).$$

Define $H: M \longrightarrow M$ by:

$$H(x) = h \circ \rho \circ h^{-1}(x) \text{ if } x \in h(N_{\varepsilon}^{n-1})$$
$$= x \qquad \text{if } x \notin h(N_{\varepsilon}^{n-1}).$$

It is clear that H is a homeomorphism and that f(H(x)) < f(x) if $x \in h(\mathcal{N}_{\varepsilon}^{n-1})$.

Case 2. x_0 is a topological critical point of index λ and $i = \lambda$. Define

homeomorphisms $\rho_1, \rho_2: N_{\varepsilon}^{\lambda} \longrightarrow N_{\varepsilon}^{\lambda}$ by

$$\begin{split} \rho_1(\zeta_1,\zeta_2) &= ((2-|\zeta_2|/\varepsilon)\zeta_1,\zeta_2) &\quad \text{if } 0 \leqq |\zeta_1| \leqq \varepsilon/3 \\ &= \left(\frac{1}{2} \left(1+|\zeta_2|/\varepsilon+\varepsilon/|\zeta_1|-|\zeta_2|/|\zeta_1|\right)\zeta_1,\zeta_2\right) \\ &\quad \text{if } \varepsilon/3 \leqq |\zeta_1| \leqq \varepsilon. \\ \rho_2(\zeta_1,\zeta_2) &= (\zeta_1,(|\zeta_2|^2/\varepsilon^2-|\zeta_1||\zeta_2|^2/\varepsilon^3+|\zeta_1|/\varepsilon)\zeta_2). \end{split}$$

Define $H: M \longrightarrow M$ by:

$$H(x) = h \circ \rho_2 \circ \rho_1 \circ h^{-1}(x) \quad \text{if } x \in h(N_{\varepsilon}^{\lambda})$$
$$= x \quad \text{if } x \notin h(N_{\varepsilon}^{\lambda}).$$

It is clear that H is a homeomorphism, that f(H(x)) < f(x) if $x \in h(N_{\varepsilon}^{\lambda})$, $x \neq x_{0}$, and that H maps $\{h(\zeta_{1}, \zeta_{2}) | |\zeta_{1}| \leq \varepsilon/3, \zeta_{2} = 0\}$ homeomorphically onto $\{h(\zeta_{1}, \zeta_{2}) | |\zeta_{1}| \leq 2\varepsilon/3, \zeta_{2} = 0\}$.

In both cases we refer to H as the f-homeomorphism corresponding to h. We need two lemmas. Hereafter we assume M is a compact n-manifold and f is a topological non-degenerate function on M.

LEMMA 3.1. If a < c < d < b and [a,b] is an interval of regular values, then there exists a homeomorphism $D: M \longrightarrow M$ such that D(x) = x if $f(x) \ge b$ or $f(x) \le a$ and $f(D(x)) \le c$ if $f(x) \le d$.

PROOF. Let h_1, \dots, h_q be a set of f-coordinate functions such that the f-neighborhoods $\{h_i(N_{\varepsilon_i}^{n-1})\}$ form an open cover of $f^{-1}([c,d])$ and do not meet $f^{-1}((-\infty,a]\cup[b,\infty))$. Let H_i be the f-homeomorphism corresponding to h_i , $i=1,\dots,q$. Define a homeomorphism $E:M\longrightarrow M$ by $E=H_q\circ\dots\circ H_2\circ H_1$. Clearly if $x\in f^{-1}([c,d])$ then $x\in h_i(N_{\varepsilon_i}^{n-1})$ for some i so that f(E(x))< f(x). Furthermore if $f(x)\geq b$ or $f(x)\leq a$ it is clear that $H_i(x)=x,i=1,\dots,q$ so that E(x)=x. By compactness there exists a positive integer m such that $f(E(x))\leq f(x)-(d-c)/m$ for every $x\in f^{-1}([c,d])$. Let $D=E^m$. Clearly D is a homeomorphism and D(x)=x if $f(x)\geq b$ or $f(x)\leq a$. It is also clear that $f(D(x))\leq d-m(d-c)/m=c$ for all $x\in f^{-1}([c,d])$. We have established Lemma 3.1.

LEMMA 3.2. There exists a homeomorphism $D: M \longrightarrow M$ such that:

- i) f(D(x)) < f(x) if x is a topological regular point;
- ii) for each critical point $\xi \in M$ of index λ $(0 \le \lambda \le n)$ there exists an

 $\varepsilon > 0$ and an f-coordinate function $h: N_{\varepsilon}^{\lambda} \longrightarrow M$ such that $D(h(\zeta_1, 0)) = h(2\zeta_1, 0)$ if $|\zeta_1| \leq \varepsilon/3$.

PROOF. Let h_1, \dots, h_q be a set of f-coordinate functions such that the f-neighborhoods $h_i(N_{\varepsilon_i}^{j(i)})$ cover M. Suppose that $h_1(0), \dots, h_p(0)$ are regular points and that $h_{p+1}(0), \dots, h_q(0)$ are critical points. Suppose further that the h_i have been chosen so that $h_i(N_{\varepsilon_i}^{n-1}) \cap \{h_k(\zeta_1,0) \mid |\zeta_1| \leq 2\varepsilon_k/3\} = \emptyset$, $i=1,\dots,p$; $k=p+1,\dots,q$. Let H_i be the f-homeomorphism corresponding to h_i , $i=1,\dots,q$. Define $D=H_q\circ\dots\circ H_2\circ H_1$. Clearly f(D(x))< f(x) if x is a topological regular point. If ξ is a topological critical point there exists k ($p+1 \leq k \leq q$) such that $h_k(0)=\xi$. Then $D(h_k(\zeta_1,0))=h_k(2\zeta_1,0)$ if $|\zeta_1|\leq \varepsilon_k/3$. Lemma 3.2 is proved.

4. Proof of Theorem 1.1. We first prove:

THEOREM 4.1. If [a,b] is an interval of regular values, then there exists a homeomorphism K_{∞} from $f^{-1}(b) \times (0,1]$ onto $f^{-1}((a,b])$ such that $K_{\infty}(x,1) = x$ for all $x \in f^{-1}(b)$.

PROOF. Since a and b are both regular values, $f^{-1}(a)$ and $f^{-1}(b)$ are both locally flat (n-1)- manifolds in M. Therefore by a result of Brown [1], $f^{-1}(a)$ and $f^{-1}(b)$ are both collared. Thus there exist homeomorphisms $H: f^{-1}(a) \times [0,1] \longrightarrow f^{-1}([a,b])$ and $K: f^{-1}(b) \times [0,1] \longrightarrow f^{-1}((a,b])$ such that H(x,0)=x for all $x \in f^{-1}(a)$, K(x,1)=x for all $x \in f^{-1}(b)$, and $H(f^{-1}(a) \times [0,1]) \supset f^{-1}([a,a+\varepsilon])$, $K(f^{-1}(b) \times [0,1]) \supset f^{-1}([b-\varepsilon,b])$ for some $\varepsilon > 0$. By Lemma 3.1 there exists a homeomorphism $D: M \longrightarrow M$ such that D is the identity outside $f^{-1}((a,b))$ and D moves the set $f^{-1}(b-\varepsilon)$ strictly below the f-level $(a+\varepsilon)$.

Let $K_0 = D \circ K$ and $H_0 = H$. Then $H_0: f^{-1}(a) \times [0, 1] \to M$ and $K_0: f^{-1}(b) \times [0, 1] \to M$ are homeomorphisms, $H_0(x, 0) = x$ for all $x \in f^{-1}(a)$, $K_0(x, 1) = x$ for all $x \in f^{-1}(b)$, $H_0(f^{-1}(a) \times [0, 1)) \cup K_0(f^{-1}(b) \times (0, 1]) = f^{-1}([a, b])$, and there exists c_0 $(0 < c_0 < 1)$ such that $H_0(f^{-1}(a) \times [0, 1]) \cap K_0(f^{-1}(b) \times [c_0, 1]) = \emptyset$.

If 0 < c < d < 1 and $k: f^{-1}(a) \times [0, 1] \rightarrow M$ or $k: f^{-1}(b) \times [0, 1] \longrightarrow M$ is a homeomorphism into, define a homeomorphism $E(c, d, k): M \longrightarrow M$ by:

$$E(c, d, k)(k(x, t)) = k(x, c + (1 - c)(t - d)/(1 - d)) \text{ if } d \le t \le 1$$

= $k(x, ct/d)$ if $0 \le t \le d$,
 $E(c, d, k)(y) = y$ if $y \notin \text{image } k$.

We proceed to define a sequence of real numbers c_m and a double sequence H_m and K_m of homeomorphisms using induction. Our inductive hypothesis is:

 P_m : There exists a real number c_m $(0 < c_m \le (1/2)^m$ and $c_m < c_{m-1})$ and homeomorphisms $H_m: f^{-1}(a) \times [0,1] \longrightarrow M$ and $K_m: f^{-1}(b) \times [0,1] \longrightarrow M$ such that $H_m(x,0) = x$ for all $x \in f^{-1}(a)$ and $K_m(x,1) = x$ for all $x \in f^{-1}(b)$ and:

- i) $K_m(f^{-1}(b) \times [0, c_m])$ lies strictly below the f-level $a + (1/2)^m$;
- ii) $K_m(f^{-1}(b)\times 0)\subset H_m(f^{-1}(a)\times [0,1))$;
- iii) $H_m(f^{-1}(a) \times [0,1]) \cap K_m(f^{-1}(b) \times [c_m,1]) = \emptyset$.

We first establish P_1 . Choose $0 < d_1 < e_1 < 1$ such that $H_0(f^{-1}(a) \times [0, d_1])$ lies strictly below the f-level a + 1/2 and $K_0(f^{-1}(b) \times 0) \subset H_0(f^{-1}(a) \times [0, e_1])$. Define $K_1 = E(d_1, e_1, H_0) \circ K_0$. Clearly $K_1 : f^{-1}(b) \times [0, 1] \longrightarrow M$ is a homeomorphism such that $K_1(x, 1) = x$ for all $x \in f^{-1}(b)$, $K_1(f^{-1}(b) \times 0)$ lies strictly below the f-level a + 1/2, $K_1(f^{-1}(b) \times 0) \subset H_0(f^{-1}(a) \times [0, 1])$, and $H_0(f^{-1}(a) \times [0, 1]) \cap K_1(f^{-1}(b) \times [c_0, 1]) = \emptyset$. Choose $c_1(0 < c_1 \le 1/2)$ and $c_1 < c_0 > 0$ such that $K_1(f^{-1}(b) \times [0, c_1])$ lies strictly below the f-level f-level

Now suppose P_m is true. Choose $0 < d_{m+1} < e_{m+1} < 1$ such that $H_m(f^{-1}(a) \times [0, d_{m+1}])$ lies strictly below the f-level $a + (1/2)^{m+1}$ and $K_m(f^{-1}(b) \times 0) \subset H_m(f^{-1}(a) \times [0, e_{m+1}])$. Define $K_{m+1} = E(d_{m+1}, e_{m+1}, H_m) \circ K_m$. $K_{m+1} : f^{-1}(b) \times [0, 1] \to M$ is a homeomorphism such that $K_{m+1}(x, 1) = x$ for all $x \in f^{-1}(b)$, $K_{m+1}(f^{-1}(b) \times 0)$ lies strictly below the f-level $a + (1/2)^{m+1}$, $K_{m+1}(f^{-1}(b) \times 0) \subset H_m(f^{-1}(a) \times [0, 1])$, and $H_m(f^{-1}(a) \times [0, 1]) \cap K_{m+1}(f^{-1}(b) \times [c_m, 1]) = \emptyset$. Choose $c_{m+1}(0 < c_{m+1} \le (1/2)^{m+1}$ and $c_{m+1} < c_m$) such that $K_{m+1}(f^{-1}(b) \times [0, c_{m+1}])$ lies strictly below the f-level $a + (1/2)^{m+1}$. Define $H_{m+1} = E(c_{m+1}, c_m, K_{m+1}) \circ H_m$. Clearly $K_{m+1}(f^{-1}(b) \times 0) \subset H_{m+1}(f^{-1}(a) \times [0, 1])$ and $H_{m+1}(f^{-1}(a) \times [0, 1]) \cap K_{m+1}(f^{-1}(b) \times [0, 1]) \cap K_{m+1}(f^{-1}(b) \times [0, 1])$. We have proven P_{m+1} . Note that K_{m+1} is defined so that $K_{m+1}(x,t) = K_m(x,t)$ if $c_m \le t \le 1$.

We define $K_{\infty}(x,t)=\lim_{m\to\infty}K_m(x,t)$. For $t\geq c_m$, $K_m(x,t)=K_{m+1}(x,t)=\cdots$. Therefore this limit exists for all $(x,t)\in f^{-1}(b)\times (0,1]$ and $K_{\infty}(x,t)=K_m(x,t)$ if $t\geq c_m$. Thus $K_{\infty}:f^{-1}(b)\times (0,1]\longrightarrow M$ is a one-one continuous map. Clearly $K_{\infty}(x,1)=x$ for $x\in f^{-1}(b)$. Further, if $y_0\in f^{-1}((a,b])$ then there exists an m such that y_0 is strictly above the f-level $a+(1/2)^m$. Thus there exists $(x_0,t_0)\in f^{-1}(b)\times (c_m,1]$ such that $y_0=K_m(x_0,t_0)=K_{\infty}(x_0,t_0)$. Therefore K_{∞} maps onto $f^{-1}((a,b])$. Further, if V is a neighborhood of (x_0,t_0) we may assume $t>c_m$ if $(x,t)\in V$. Therefore $K_{\infty}(V)=K_m(V)$ is a neighborhood of y_0 . Therefore K_{∞}^{-1} is continuous at y_0 so K_{∞} is a homeomorphism. Theorem 4.1 is proved.

We can now prove Theorem 1.1. By Theorem 4.1 there exists a homeomorphism K_{∞} from $f^{-1}(b) \times (0,1]$ onto $f^{-1}((a,b])$ such that $K_{\infty}(x,1) = x$ for

all $x \in f^{-1}(b)$. Similarly there exists a homeomorphism K_{∞}^* from $f^{-1}(a) \times [0, 1)$ onto $f^{-1}([a, b))$ such that $K_{\infty}^*(x, 0) = x$ for all $x \in f^{-1}(a)$. Then F defined by $F(x, t) = (K_{\infty}^*)^{-1}(K_{\infty}(x, t))$ for $x \in f^{-1}(b)$ and 0 < t < 1 is a homeomorphism from $f^{-1}(b) \times (0, 1)$ onto $f^{-1}(a) \times (0, 1)$.

5. Proof of Theorem 1.2. Let $D: M \longrightarrow M$ be the homeomorphism whose existence was established in Lemma 3.2. Let ξ_1, \dots, ξ_p be the critical points of f of index ≥ 1 . Let $\lambda(i)$ be the index of ξ_i , $i = 1, \dots, p$. Then there exist $\varepsilon > 0$ and homeomorphisms $h_i: N_{\varepsilon}^{\lambda(i)} \longrightarrow M, i = 1, \dots, p$, such that $h_i(0) = \xi_i$, $h_i(z_1, \dots, z_n) = f(\xi_i) - z_1^2 - \dots - z_{\lambda(i)}^2 + z_{\lambda(i)+1}^2 + \dots + z_n^2$, and $h_i(\zeta_1, 0) = h_i(2\zeta_1, 0)$ if $0 \leq |\zeta_1| \leq \varepsilon/3$. For $i = 1, \dots, p$ define $H_i: R^{\lambda(i)} \longrightarrow M$ by:

$$\begin{split} H_{\iota}(x) &= h_{\iota}(x,0) & \text{if } 0 \leq |x| \leq 2\varepsilon/3 \\ &= D \circ h_{\iota}(x(1-\varepsilon/3|x|),0) & \text{if } 2\varepsilon/3 \leq |x| \leq \varepsilon \\ &\vdots \\ &= D^{m} \circ h_{\iota}(x(1-m\varepsilon/3|x|),0) & \text{if } (m+1)\varepsilon/3 \leq |x| \leq (m+2)\varepsilon/3 \\ &\vdots \end{split}$$

Let X_0 be the set of critical points of f of index 0. Let $X_j = X_0 \cup (\cup \{H_i (R^{\lambda(i)}) | \lambda(i) \leq j\})$. If $y \in M$, by a compactness argument, there exist $N \geq 0$ and a critical point ξ_k such that $D^{-m}(y)$ lies within ε of ξ_k for all $m \geq N$. Thus $y \in H_k(R^{\lambda(k)})$. Therefore $X_n = M$. Clearly H_i is a homeomorphism. If y is a limit point of $H_i(R^{\lambda(i)})$, then so also is $D^{-m}(y)$, $m \geq N$ (N as above). Thus if $y \notin H_i(R^{\lambda(i)})$ then $y \in H_k(R^{\lambda(k)})$ with $\lambda(k) < \lambda(i)$. Therefore X_j is closed and $X_j - X_{j-1}$ is the disjoint union of open j-cells. Theorem 1.2 is proved.

REFERENCES

- [1] M. Brown, Locally flat embeddings of topological manifolds, Topology of 3-Manifolds and Related Topics, Prentice-Hall, Englewood Cliffs, N. J., 1962.
- [2] J. EELLS AND N. H. KUIPER, Manifolds which are like projective planes, Public de l'Institut des Hautes Etudes Scientifiques, 14(1962), 181–222.
- [3] N.H. KUIPER, A continuous function with two critical points, Bull. Amer. Math. Soc., 67(1961), 281-285.
- [4] J. MILNOR, Morse theory, Princeton University Press, 1963.
- [5] M. MORSE, Topologically non-degenerate functions on a compact n-manifold M, Journ. d'Analyse Math., 7(1959), 189-208.

DEPARTMENT OF MATHEMATICS SAINT LOUIS UNIVERSITY SAINT LOUIS, MISSOURI, U.S.A.