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SUBNORMAL OPERATOR WITH A CYCLIC VECTOR
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In this paper, we aim to characterize the non-trivial closed invariant
subspace of a subnormal operator and to study the existence of such subspaces.

An operator A acting on a Hubert space H is said to be subnormal if, on
some space K containing H, there exists a normal operator B such that
Bx=Ax for every x in H; then B is called a normal extension of A.

The normal extension B, acting on K, of a subnormal opsrator A, acting
on H, a subspace of K, is the minimal normal extension of A if the smallest
subspace of K that contains H and reduces B is K itself; Halmos has shown
that any two minimal normal extensions are unitarily equivalent ([3]).

If A is subnormal on H9 we call that a vector x is cyclic with respect to
A if the smallest subspace containing x and invariant under A is H; in this
case we say that H is cyclic with respect to A.

For our purpose, it is natural to assume that the subnormal operator A
on H has a cyclic vector x; because, if \/{Anx; n gr 0} (which denotes the
smallest closed subspace containing Anx; n^O) is properly included in H,
then it is clearly a non-trivial closed invariant subspace of A.

Bram proved in [1] that when A is normal and acts on H, the fact that
H is cyclic with respect to A in the sense just defined is equivalent to the
fact that H is cyclic in the usual sense, i.e., that there exists x in H such
that H is the smallest closed subspace that contains x and reduces A.

It is known that if B is a normal operator on K with a cyclic vector, then
there exists a unitary mapping U of K onto a suitable function space
L\dμ(X);σ(B)) such that UBU'1 has the form of "multiplication by λ" ([2]).

Applying this representation theorem of normal operators to the minimal
normal extension B on K of a subnormal operator Aon i f with a cyclic vector,
we can show that H admits a representation relative to A onto a subspace
H\dμ(X); σ(B)) of L\dμ(X); σ(B)).

In the next section, we show this representation of a subnormal operator
with a cyclic vector and using this, we give the sufficient conditions of the
existence of non-trivial closed invariant subspaces of subnormal operators.

We state here a characterization of subnormal operators given by Halmos
[3] and Bram [1] without the proof.
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THEOREM 1. (Halmos[3]) An operator A on a Hilbert space H is
subnormal if and only if

r

(1) Σ (Anxm, Amxn) ^ 0 for every finite set x0, xu , xr in H, and
m,n=0

(2) there exists a positive constant c such that

ra,n=O τn,π=O

for every finite set xo, ',xr in H.

THEOREM 2. (Bram[l]) Let A be an operator on H, and suppose that
r

Σ iAnxm9 Amxn) i^ 0 for every finite set x0, xly , xr in H. Then
m, n=0

• Σ_ (Anxm,Amxn)

for every finite set xQ,xu ,xr in H.

LEMMA 1. Let H be cyclic with respect to a subnormal operator A on
H, and let B, acting on K9 be the minimal normal extension of A. Then K
is cyclic with respect to B.

PROOF. Let x be a cyclic vector for H with respect to A, i.e., H=
\J{Anx; n^O}. Let M= \J{B*mBnx m, n ^ 0}. Then, since Bnx = Anx for
all n ^ 0, we have HcM; moreover M reduces B. But B is the minimal
normal extension of A so that M=K9 K is cyclic with respect to B.

Let x be a cyclic vector for a subnormal operator A on H, let μ = (E(X)x9x)
where £(λ) denotes the resolution of the identity for the minimal normal
extension B, acting on K, of A and let Dx be the linear manifold in K
consisting of all vectors of the form f(B)x where / is a bounded Borel function
on the spectrum σ(B) of B.

By Lemma 1, Dx is dense in K and we see easily that the operator Vx

from Dλ to L2(dμ; <r(B)) defined by Vxf(B)χ—f has a unique extension V

from the closure DX = K of Dx to the ZΛclosure of the set of all bounded
Borel functions, i.e., to L2(dμ; σ(J3)) and that V is an isometric isomorphism
between K and L\dμ; σ(B)).
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LEMMA 2. If A is a subnormal operator on H with a cyclic vector x
in H and if H\dμ a-(B)) be the L2-closure of the set P of all complex
polynomials in λ, defined on the spectrum σ(B) of the minimal normal
extension B, acting on K, of A with respect to the Lebesgue-Stieltjes measure
dμ = d(E(X)x,x), then H and H'2(dμ;σ(B)) are isomorphic by the mapping
V defined as above.

PROOF. Since H= \/{Anx;n ^ 0 ] , for any y in H, there exists some
sequence pn in P such that y = \im pn(A)x, and since pn(A)x = pn(B)x for all

n-*oo

n^O, we have

J \pn(^)-pm(λ)\2d(E(X)x,x)-^0 as m, n-^oo,

so that there exists a function py in H2(dμ;σ(B)) such that

\Py(X)-PnW\2d(E(X)x,x)->0 as n—oo.

Since the existence of py is independent of the choice of the sequence pn

in P, the operator V denned by Vy = py is well-defined and clearly V is an
isometry from H into H\dμ <r{B)).

Conversely, by the definition of H2(dμ;σ(B)), for any p in H\dμ;σ(B)),
there exists a sequence pn in P such that

2d μ —> 0 as n —> oo.

Hence, {pn(B)x} is a Cauchy sequence in H, and hence there exists a vector y
in H such that \\pn(A)x—y\\-+0 as n—>oo. This means that the operator V is
an isometry from H onto H\dμ <r(B)), and the proof is completed.

THEOREM 3. If A is a subnormal operator on H with a cyclic vector
x in H and if T is a bounded linear operator on H which commutes with
A, then T is subnormal and there exists a Borel measurable function
in

H~{dμ σ(B)) = H\dμ <r(B)) Π L\dμ

such that Ty = pτ{B)y for all y in H, where B denotes the minimal normal
extension of A and dμ=d(E(X)x7 x), E(X) denotes the spectral measure of B,
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PROOF. Since H=\/{Anx;n^0}, Tx = \im pn(A)x for some sequence

{pn(A)}, pnzP and since pn(A)x=pn(B)x, we have

f I A(λ)-AM 12d(E(λ)x, x) -* 0 as m, n->oo,

so that there exists a Borel measurable function pτ in H2(dμ σ(B)) such that

J \pτ(\)\2d(E(X)x,x)<oo andJ\pT(X)-pn(X)\2d(E(X)xyx)->0

as ft—>oo(see [5; page 348]) and hence

x <= D(pτ(B))= [yzK J \pτ(X)\2d(E(X)y,y) <oo} and pn(A)x=pn(B)x->pτ(B)x

from which we have Tx = pτ(B)x.
Since T commutes with A, for any p in P, we have Tp(A)x = p(A)Tx

= p{B)pτ{B)x = pτ(B)p(B)x = pτ(B)p(A)x. Hence, if y € / / , and gn(A)r->;y
with gw in P, then pτ(B)qn(A)x = Tqn(A)x -» T3/ because T is bounded, and
since pτ(B) is closed, it follows that Hc.D(pτ(B)) and pτ{β)y = Ty for all 3/ in
//. Hence, also, since THcH, we have H<zD(pτ{B)n) = D(pτ(B)*n) for all
non-negative integers n, and pτ(B)ny = Tny for all 3/ in if.

Let i V ^ V ί M ^ ) ^ ; ^ ^ ^ ^ ^ 0 } ^ Λen clearly we have HcNcK. If
^OJ^U * * >yr

 m ^> then we have

m,n=0 m,n=0

Σ Pτ(B)*nyn
n=0

Hence, by Theorem 1 and 2, T is subnormal. By Theorem 2, it follows that
for any finite set yQ,yu ,yr in H, we have

m,n=0

i e , Σ (ΛίBJ^^M^^'yJ^imi 1- Σ {PλB)myn,Pτ{B)nym\
m,n=Q m,n=Q

or \\pτ(B). Σ MVTyJ* ^ I|T||2.|| Σ Mm*»y»V,
n=0 n=Q
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which shows that pτ(B) is bounded on a dense linear subset of N.

Since pτ(B) is closed, Nc.D(pτ(B)) and \\ρτ(B)y\\ ̂  | |Γ|| \\y\\ for all y in
N, We observe that N reduces pτ{B) and also B. Hence, by the minimality of
B,N=K and K=D(pτ(B)). This implies that pτ(B) is bounded on K and
hence pτ(X) <= L°°(dμ;σ(B)) which completes the proof.

COROLLARY 1. If A is a subnormal operator on H with a cyclic
vector and if T is a bounded linear operator on H which commutes with
A and A*, then T is normal.

PROOF. By Theorem 3, T and T* are subnormal. Since every subnormal
operator S on H is hyponormal (i.e., ||)Sf.r||§^||3f"*r|| for all x € H), T is normal.

As the consequence, we see easily that if A is a subnormal operator with
a cyclic vector and if R(A)' is the commutant of the von Neumann algebra
R(A) generated by a single operator A, then R(A)' is abelian, in particular, if
A is normal, then R(A) is maximal abelian.

Let A be a subnormal operator on H with a cyclic vector x, B its minimal
normal extension and let cί{A) be the set of all bounded linear opsrators on H
which commutes with A, then, by Theorem 3, for any T in cί(A), there exists
a Borel measurable function pτ(X) in H°°(dμ;<r(B)) such that Ty — pτ{B)y for
all y in H. Let LaU) be the set of all functions pτ(λ>), T^cc(A)9 then we can
show

LEMMA 3. LaU)=H°°(dμ;σ(B)).

PROOF. If peH°°(dμ;σ(B))y then, by the definition of H°°(dμ σ(B)), there
exists a sequence pn in P such that

/
2d(E(X)x, x) -> 0 as n ->oo

Since pζL°°(dμ; σ(B)), we can define the bounded linear operator p{B)
on K such that \\pn(B)x-p(B)x\\-+0 as n-^oo and p(B)x z H. (because
ρn(B)x = pn(Λ)x <= H). Since H = V {An.r w ̂  0} and for any q in P,
p[B)q(A)x = p[B)q(B)x = q(B)p{B)x = q(A)p{B)xeH, by the boundedness of
/>(ΰ), we have p(B)y e H for all y z H. Therefore the restriction p{B) \ H of
p{B) on its invariant subspace H clearly commutes with A, i.e., p(B)\Hz <x(A)9

and, by the definition of La(A), pzLa{Ay The converse inclusion is clear by
Theorem 3.
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Let ro(p (A)) be the uniform closure of the set ro(σ(A)) of all rational
functions with no pole in the spectrum σ(A) of an operator A. If r(λ) € ro(σ(A)),
then r{A) £ cc(A) and hence, if A is a subnormal operator on H with a cyclic

vector, then, by Theorem 3 and Lemma 3, r(λ) € H°°(dμ σ(β)). However, it
might not be true that ro(σ(B)) c H°°(dμ,; <r(B)) where B is the minimal normal
extension of A.

THEOREM 4. //"A zs α subnormal operator on H with a cyclic vector
and if B is its minimal normal extension on K, then ro(σ(J5)) c H°°(dμ o'(B))
if and only if σ(A) = σ(β).

PROOF. Since rU(σ(A))c H°°(dμ; σ(B)), we have only to show that τζ(σ{B))
C.H°°(dμ;σ(B)) implies σ(A) = σ(J5).

It is known that σ(J3)c<r(A) by Halmos [4] and that σ(A) c <r{B) U h(B) by
Bram[l], where h(B) denotes the union of all holes of σ(B). Hence we have

only to show that ro(σ(B))cH°°(dμ;σ(B)) implies h(B)cρ(A), where ρ(A)
denotes the resolvent set of A.

If λ0 is an arbitrary point in h(B) and if r(λ) = (λ — λo)"1, then r(λ) € ro(σ(B))
and hence r(λ) € H°°(dμ; σ(B)). Therefore, by Lemma 3, there exists an operator
T in OL{Λ) such that Ty = r{B)y for all y € H. Hence, for any y € H, we have

(A - X0I)Ty = 7XA - λo/)y = r(B)(B - X0I)y

= J r(λ)(λ -

This means that A—λ0/ has a bounded inverse T, i.e., Xozp(A). Therefore
h{B)cp(A).

EXAMPLE. TO show that a subnormal operator A need not be normal
even when A has a cyclic vector and σ(A) = σ(J3), where B is the minimal
normal extension of A, let Z) be the closed unit disk, μ the normalized Lebesgue
measure in D, K=L\dμ;D),B=L2, i.e., LJ(z) = zf(z) for all f(z)zL\dμ; D).
Let H be the L2-closure of the set P of all complex polynomials in z, defined
on D, with respect to μ, and set A = LZ\H, then clearly A is a subnormal
operator on H with a cyclic vector u(z) = l and its minimal normal extension
is B on X. Since σ(B) = D,h(B)= 0. And hence, by the same reason as in the
proof of Theorem 4, σ(A) = σ(B).

If we set z=r exρ(z^), then dμ(z)— r dr dθ; and hence,

/ zzndμ(z)= — I r»+
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1 r1 r2π

= — rn+2dr- eί(n+1)θ dθ = O
* Λ JQ

for all n^O. This implies that zl^H and zzK. Therefore H^K and A is
non-normal by the minimality of B.

THEOREM 5. If B is the minimal normal extension of a subnormal

operator A on H and if ro(σ(B))Πro(σ(B))Φ{c 1} (the bar denotes the
complex conjugate), then there exists a non-trivial closed invariant subspace
of H for A-

PROOF. For any fixed non-zero vector x in H, we may assume that
H=\J{Anx;n^0}, because if y{Anx; n ̂  0} ̂ H, then \/{Anx;n^0} is
clearly a non-trivial closed invariant subspace of A.

In the case where σ(A) = σ(B), for any r(λ) in ro(σ(B)) Π ro(σ(B)), r(λ)=£ol,
we have r(A), r(A)* e oί(A) and r(A)Φc I; and hence r(A) is normal by
Corollary 1. In this case, clearly, A has reducing subspaces.

In the other case, we have σ(A) Π h(B) Φ 0 by the same reason as in the
proof of Theorem 4. Since Ayn-yyn = Byn-yyn for all yn in H, <rap(A)c<rap{B)
and easily we have <rp(S) u <rc(S) C o ap(S) for any bounded linear operator S,
where <rp(S), <rc(S) and σap(S) denote the point spectrum, the continuous
spsctrum and the approximate point spectrum of S, respectively. From this,
we have 7 € σΓ(A) if γ £ σ(A) Π h(B), where σr(A) denotes the residual spsctrum

of A. Hence ~γ € σp(A*). Let M= [y € H; A*y = yy}, then the subspace HQM
is clearly a non-trivial closed invariant subspace of A.

It is known that if σ(B) has two dimensional Lebesgue measure zero, then

ro(<r(B)) = C(<r(B)), where C(<r(B)) denotes the set of all continuous functions on

σ(B) (see[7]). Hence, we have

COROLLARY 2. (Wermer [6]) If B is the minimal normal extension of a
subnormal operator A and if the spectrum σ{B) has two dimensional
Lebesgue measure zero, then there exists a non-trivial closed invariant
subspace of A.

REMARK 1. It is clear that £[00(dμ;σ(B)) = L00(dμ;σ(B)) if and only if A is

normal and also that H°°(dμ σ(B)) Π Ή°°(dμ σ(J5)) ={c l] if and only if the von
Neumann algebra R(A) generated by a single operator A is the full operator
algebra on H.
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As an application of the representation theorem of a subnormal operator
A on H with a cyclic vector, we can give the description of the existence of a
non-trivial closed invariant subspace of A in terms of L2{dμ σ(B)), H2(dμ; <r(Bj)
and Hx(dμ <r(B)) as follows:

A subnormal operator A on i f with a cyclic vector x in H has a non-
trivial closed invariant subspace if and only if

(*) there exists a function g, not identically zero, in H2(dμ; σ(J3)) such that

[L\dμ σ{B))QH-{dμ;σ(E)j- g] Π ί*V/* cr(5))* {0},

where the bar denotes the complex conjugate and B is the minimal normal
extension on K of A.

As special cases of the condition (*), we have
(case 1) there exists a function q in H\dμ; σ(£)) such that

qΠ [L2(^;σ{B))QH\dμ',σ(B))\ Φ {0} and
(case 2) there exists a function g in H2(dμ; <r(Bj) such that

Ή\d~MB)) g Π ίfV/,; σ(β))* {<;. g}.
In the case 1, the subnormal operator A has a non-trivial closed invariant

subspace M such that M is the closure of the range of some operator T in cί(A).
In fact, by the assumption, there exists a non-constant function p in H°°(dμ;σ(B))

such that ]> qζ[Lχdμ;<r(B))OH2(dμ;σ(B))]; and hence, for a vector 3/ in fί
corresponding to q by Lemma 2 and an operator />(£) IH in Λ(A) corresponding
to p by Lemma 3, (p(B)\H)*y = 0. Let HQM={yzH-, (p(B)\H)*y = 0}, then
M is the desirous subspace.

In the case 2, the subnormal oparator A on i ί has a non-trivial closed
invariant subspace M such that M={y e H;\\Ty\\ = \\T*y\\} for some T i n
ct(A). Hence, we have

THEOREM 6. If A is a subnormal operator on H and if there exists
a non-zero vector y in H such that \Ty\ = \T*y\ for some T in <X(A),
OφTΦc /, then A has a non-trivial closed invariant subspace.

PROOF. We may assume that A has a cyclic vector and that T is non-
normal. Let M= [y € H;|| jpy|| = ||T^y||}, then M is non-trivial by the assumption.
Since, by Theorem 3, T is subnormal and hence T is hyponormal, i.e.,
(S=)T*T-TT*^0. Therefore M is the null space of the non-negative self-
ad joint opsrator S and is a closed subspace of H. Let B be the minimal normal
extension on K of A, then, by Theorem 3, there exists a function pτ(S) in
H°°(dμ;σ(B)) such that Ty — pτ{B)y for all y in H. The invariantness of M,
under A, follows from pτ(B)*Ay = ρτ(B)*By = Bρτ(B)*y=Apτ(B)*yeHίσr all
y in M because, for any y in H, ρτ{β)*y € H if and only if ||Ty|| = ||T*ty||.
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