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1. Introduction. It is an interesting problem in the non-commutative
integration theory to construct a "measurable operator" without using unbounded
linear operators. From this point of view, we shall extend Berberian's result
on "The regular ring of a finite AW^-algebra" to general AW*-algebras.
5. K. Berberian denned a "closed operator" for a finite AW*-algebra in algebraic
fashion and studied the structure of the "closed operators" [1].

The plan of this paper is as follows. Section 3 is devoted to formulate
the notions of "strongly dense domains" and "measurable operators" with
respect to a given AW^-algebra M. Our definitions are closely related to that
of [1], Along the same lines with [1], we shall construct the algebra C of
"measurable operators" for the general AW^"-algebras and study some preliminary
algebraic properties of C. Section 5 deals with the spectral theorem for
"self-adjoint measurable operators" using the Cayley transform. Theorem 5. 1
gives the necessary and sufficient condition for a unitary element in M to be
the Cayley transform of some "self-adjoint element" of C. In particular,
Lemma 4.1 and Theorem 5.1 play essential roles in our discussions. In section

6, Theorem 6. 2 gives an alternative proof of ([5] Theorem) : If C is regular
([10], Definition 2. 2), then M is finite. Theorem 6. 3 concerns with the polar
decomposition of a "measurable operator" which is one of the main theorems
in this paper. Moreover, we shall show that C is a Baer*-ring in the sense
of [6].

Before going into discussions, the author wishes to express his gratitude
to Prof. M. Takesaki for calling his attention to the reference [1], and he is
also grateful to Prof. J. Tomiyama for useful conversations with him.

2. Notations and Definitions. An AW^-algebra M is a C*-algebra
satisfying the following two conditions :

(a) In the set of projections any collection of orthogonal projections has
a least upper bound.

(b) Any maximal commutative self-ad joint subalgebra is generated by its
projections.
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Denote the set of all self-adjoint elements, projections, partial isometries
and unitary elements in M by Msa, Mp9 Mpi and Mu, respectively.

Let SJJJ be the two sided ideal generated by all finite projections in M,
then Tip contains only finite projections.

If {en} is a sequence in Mp, en \ means en t=k en+ι if moreover sup [en,
n^Ξil} = e, we write en 1 e. The notations en [ and en [ e have the dual
meanings.

The right projection of an element x e M is RP(x), LP(x) is the left
projection; the relation RP(x) ~~ RP(x) will be needed. For a subset SdM,
*S" is the set of all elements of M which commute with each element of S.
If S is a self-adjoint subset, then 5" is an AW^-subalgebra of M(that is, S' is
itself an ATίA-algebra and the least upper bound of orthogonal projections
computed in -S" is the same as computed in M). If S consists of a single
unitary element u, <S" is an AW^-subalgebra of M and S" is a commutative
AW*-subalgebra of M.

3. Strongly dense domains and Measurable operators.

DEFINITION 3.1. ([1], p.228). A sequence {en} in Mp is a strongly dense
domain (SDD), in case en\\ and 1—en € 5Dΐ.

An essentially measurable operator (EMO) is a pair of sequences {xn,en}
with xn Ξ Λf, [en] an SDD, and such that m <C n implies xnem = xmem and
(x Ψe = (x W

For example if xz M, we can take xn — x and en = 1 for all n [xn, en}
is an EMO, written briefly {x,l}.

To introduce the algebraic operations in EMO, we need the following
definition and lemma.

DEFINITION 3. 2. If x € M, and e e Mp, we denote the largest projection
right-annihilating (1 — e)x by x~ι[e] that is, 1—x~ι[e] is the right projection
of (1 - e)x.

LEMMA 3.1. Let {en}, {/n}, {gn} be SDD, and x be any element
of M, then [en Λ /„ Λ Λ gn) and {x'ι[en\\ are SDD.

PROOF. It is sufficient to consider the case of two SDD {en} and {/„}.
Putting gn = en Λ/Λ, ^ = sup{^n, w ^ l } , hn = x'ι[en\ and Λ=sup{/in, n ^ 1}
evidently gn f ^. Since 1-g ^ 1 - ^ = ( l - * n ) v ( l - / n ) , and l - e n , l - / w € 2B,
by ([3], Theorem 6.2), we have ( l - e n ) V ( l - / J ^ ΪK, l-gn and l -^^SR.
By Definition 3.2, (l—ek)hk = 0 and /î  is the largest such projection. If m<n,
then (l-en)xhm = (l-enX±-em)xhm = 0, hence hm^hn. Since l-hn = l-χ-ι[en]
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= RP((l-en)x) ~ LP{(l-en)x) ^ l-en, l-jr-' |> n] e 2R for all w. Noting that
[l-en, 1-/., 1-^., 1-A», 1-0, 1-Λ; « = 1,2, } c ((l-eOVCl-ZOV
(l-/ i l))M((l-e1)V(l-/1)V(l-/ι,)) (Note that this is a finite AW*-algebra),
by ([3], p.248), for the unique normalized center-valued dimension function
D( ) of ((l-e1)V(l-/,)V(l-Λi))M((l-«1)V(l-/i)V(l-λi)), we have

- K) ^ D(l - en),

and

-g) ^ D(l-gn) ^

- Λ) = D(l - g) = 0 result from D(l - en) i 0 and D(l - fn) j 0. This
completes the proof of Lemma 3.1.

Suggested by ([9], Corollary 5.1), we introduce an equivalence relation
in the set of all EMO:

DEFINITION 3.3. ([1], Definition 2.2) Two EMO {xny en} and [yn,fn]
are equivalent, denoted by {xn, en] = {yn,fn}, if there exists an SDD {gn}
such that xngn~=yngn, (xn)*gn = (yn)*gn for all ?ι. The SDD {gn} implements
the equivalence.

It is immediate that the relation just defined is indeed an equivalence
relation. The next remarks, which are easy to verify, will be used frequently.

REMARK. If {xn, en] is an EMO and [fn] is any SDD, then [xn, en/\fn]
is an EMO, and [xn, en} = {xn, enf\fn}. If an SDD [gn] implements [xn,
en} = {yn,fn}> and hn = en Λ fn Λ gn, then {xn, hn] and [yn9 hn} are EMO,
and SDD [hn] implements [xn, hn} = {yn^hn}.

DEFINITION 3.4. ([1], Definition 2.3) Let [xn, en} be an EMO and [xn,
en] be its equivalence class. [xn, en] is said a "measurable operator" (MO).
Denote the set of all MO by C and we use letters x, y, z, for the elements
of C.

After suitable operations are defined, C is the Baer*-ring promised in the
introduction, and x —> [x, 1] is the imbedding of M in C.

Now we are in the position to define the operations in C. If {xn, en] and
{yn>fn} a r e EMO, and λ is a complex number, we define X{xn, en} = [Xxn, en},
{xn, en} + {yn,fn} = {xn +yn, enAfn] and {xn, en}* = {(xn)*> en} the right-
hand members of these definitions are easily seen to be EMO. Set gn — en/\fn/\
((yn)~ιί^n\) Λ (((XnTY^fnΐ) I it is straightforward to verify that {gn} is an
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SDD, and that if m < n, then (xnyn)gm = (xmym)gm and ((^»)*(^»)*)^m
= ( ( ^ m ^ Λ , that is, (xnyn)*gm = Or™^™)*̂ - This implies that { rwj>n,
^n} is an EMO, and this is our definition for [xn, en] {yn,fn}. Mereover, if
[xn, en] = {xn,e'n} and {ynjn} = {y'n,fn}, then \{xn,en} = X{xn, e'n], {xn,en}

= {xn, e'n] {y'n, fn]. Thus if x = [xn, en] and y = [yn,fn], the definitions
λx = [λ>xn, en], x + y = [xn + yn, en Λ/wL x*=[(xn)*> en\> and xy~[xnyny <7n1>
are unambiguous. With these definitions, C becomes an associative algebra
over the complex numbers, with involution * : x** = X, (x + y)* = x* -f y*,
(λx)* = λx* and (xy)* = y*x*. If *r, 3; £ Λί, and λ is a complex number,
clearly {x, 1} + {y, 1} = [x + 3;, 1}, λ{.r, 1} = [Xx, 1}, [x, 1}* = {x*, 1], and
{x, 1} {y, 1} ΞΞΞ {xy, 1} passing from { , } to [ , ], [x, 1] + [y, 1] = [x+y, 1],
λ[α:, 1] = [λx, 11, [J:, 1]* = [#*, 1], and [x, l][y, 1] = [̂ ry, 1], thus the mapping
x—> [x, 1] (̂ c€ M) is a ^--isomorphism of M into C\ for if [Λ:, 1] = [y, 1], then
{x, 1} = {3;, 1}, so there exists an SDD {en} such that (x — y)en = 0 for all
n. The result follows from ([31, Lemma 2. 2).

Summarizing the above results, we have

THEOREM 3.1. The set C of all MO is an associative algebra over the
complex numbers, with involution *, with respect to the operations

[xn. en] + [yn,fn\ = [xn + yn, enAfn],

λ[.rw, en] = [Kxn, en],

[xn, en*\* = [(xn)*> en]

and
\ ηr P Λ \ \1 ~P Λ — Γ T* \) Π Ί

where {gn} is the SDD such that gn — enAfnA^yn)"1^^) Λ (((^n)*)"1!!/^])-
TΛ^ mapping x (x € M) —> [α:, 1] z"s α ^-isomorphism of M into C, and [1, 1]
z"s <z wwzY element for C.

To simplify the notations, we shall denote [x, 1] by x then Γ is the
unit element of C, which we condense further to 1. M is the image of M in
C.

REMARK. Let x = [xn, en] be in C: for any fixed index m, [xn^n]^m

—&mβm F o f (e>m)~ι\.en\ is the largest projection right-annihilating (1 — en)emy

noting that (l-en)emen = (l-en)enem=O, we have (em)'ι[en]^en9 {xn, en}{em,l}
= [xnem, en}. On the other hand, by Definition 3.1, we have for n> m,
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and for n ^ m,

r p p zzz Ύ P "= T P = T P P

This implies that the SDD {en} implements the equivalence [xn, en] [em9 1}
= {xmem,l}. It follows that if [xn, en] = [yn,fn], then xm(em/\.fm)=ym(em/\fny
for all ?n, thus the equivalent "linear operators" [xn, en] and {yn,fn} agree,
so to speak, on their largest possible common domain.

If M is a W^-algebra ([8]), it is easy to see from ([9], Corollaries 5.1
and 5.3) that the ^-algebra C just constructed is *--isomorphic with the *--algebra
of measurable operators in the sense of [9], in such a way as to preserve the
elements of M. Because of the inherent nature of the above construction, we
have as an immediate corollary a theorem of Ogasawara and Yoshinaga :

THEOREM 3. 2 ([1], [7]). Let M and N be AW*algebras, CM, CNy their
^-algebras of measurable operators. There exists a one to one correspondence
between the ^-isomorphisms Φ : CM-+CN and the ^-isomorphisms φ: M-^N
and the correspondence Φ —• φ is obtained by restricting Φ to M.

PROOF. We may suppose M (resp. N) to be a self-adjoint subalgebra of
CM (resp. CN). By Lemma 5. 3, any *-homomorphism Φ : CM-^CN necessarily
maps M into N. On the other hand for φ preserves the finiteness of projections,
any *--isomorphism φ : M —> N can be lifted to a ^-isomorphism Φ : CM —* CN\
Φ is the mapping [xn, en] —> [φ(ρcn), φ(en)]- This induced Φ is unique. For,
given any JC€ CM, we can find an SDD {en} in M such that xen € M for all
n then Φ(xen) = Φ (x) Φ(en), φ(xen) = Φ(JC) φ(en), and by Lemma 4. 5, we
see that Φ is determined by its values on M. This completes the proof of
Theorem 3. 2.

Next we investigate the connection between subalgebra eMe {e € Mp) of M
and subalgebras of C. Noting that for any e € Mp> eMe is also an AW^-algebra
([3]), we have

THEOREM 3.3. For any projection e in M, the algebra of all
measurable operators for eMe is *-isomorphic to eCe.

PROOF. We write {xn,en}e to indicate an EMO with respect to eMe in
particular xn £ eMe, en\ e and e — en£ΪOl. Setting e'n = en + \ — e, we have
e'n ΐ 1 and 1 — e'n = e — en^W, and it is easy to verify that the mappig [xn,en]e
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—* [xn>
e'n\ is a -*-isomorphism of the algebra of measurable operators for eMe

into eCe. It is sufficient to show that this mapping is onto. Suppose y is a
self-adjoint element of eCe, ΰ its Cayley transform (Section 5, Lemma 5.1)
and y = [yn> fn\ with 3 ^ / n ^ \u\" (Theorem. 5.2). Since e commutes with y,
e commutes with u (Remark following Lemma 5.1), hence e, yn, fn mutually
commute. If we set xn — yne, en — fne, then en\ e and e — en fg 1 — fn € Wl,
so [en] is an SDD in eMe. Moreover, an easy calculation shows that {xn,en}e

is an EMO in eMe and [xn, en ] = y. This completes proof of the theorem.

4. Preliminary algebraic properties of C.

LEMMA 4.1. Ifx= [xn, en] (x e C) and all the xn are invertible, then
x is invertible, and JC"1 — [(xn)~ι, hn] for a suitable SDD {hn}.

To prove this, we need the following lemma :

LEMMA. For any e in Mp and any invertible element s in M,

((s*r*Tι[l -e] = l - s-ι[e],

and if 1 — ez SDΪ, then s~ι [1 — e] is also in 9Jί.

PROOF. By Definition 3.2, the right annihilator of φ * ) " 1 (RA(e(s*yι))
= (((5*)-1)"1[l-^])M and the right annihilator of (l-e)s (RA(l-e)s)) =
(s~ι[e\)M. Since (1 — e)ss~ι e = 0, we have

- e)s),

and

thus we have

1 - s-1 [e] ̂  ((ί*)-1)"1 [1

On the other hand,

(l-e)s(s-1[e]) = 0,

s(s~ι [e]) = es(s-> [e]),

Hence we have

s-'MCO*)-1)-1 [1 - e]) - (5- [el)s*e(s*rι)(((s*)->yι [1 - e]) = 0

((5*)-1)-1 [1 - e] ^ 1 - srl[e].
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The lemma follows.

PROOF OF LEMMA 4.1. Let fn be the left projection of xnen we show
that {fn} is an SDD. If m<n, then fn(xmem) = fnxnem = fnxnenem = xnenem

— Xmem shows that 1 — fn ^ 1 — fm, that is, f.m ^fn. Since the invertibility
of xn implies that by the above lemma, 1 — fn = 1 — RP(en(xn)*) — {{xnY)~ι[l
— en] = 1 — ((Xn)'1)'1 [en] <• 1 — en, by the same way as that used in the
proof of Lemma 3.1, we have 1 — fn € 2)ΐ and fn T 1. Putting yn — (xn)~\
if m<n, then fnym = ymfm for

(yn - y,n) ocmem = o,

(yn - ym)fm = o.

Similarly on putting gn — LP\{xny
ken), we have that [gn] is an SDD and

(yn)*9m = (ym)*gm when m<n; hence if hn = fn A gny then {yn, hn} is an
EMO, and it is evident that # = [j>n, hn] satisfies xy — yx = 1. This completes
the proof.

LEMMA 4.2. If X * = J C , then we may -write x = [xn, en] with (xn)* = xn.

PROOF. If x - [yn9fnl then x = (1/2) (x + x*) - [ ( 0 0 * + xn)/29fn].

COROLLARY 4.1. If x*=x, then x + il is invertible.

PROOF. Let x = [xn, en] with (#»)*= ^n then x + i l = [̂ :n + zl, en] and
each j : n + zl is invertible. The assertion is clear from Lemma 4.1.

LEMMA 4.3. Let u = [un, en\ with uneMufor all n; then there is a
unique unitary element ue M such that u— ΰ.

PROOF. The proof is the same as that of ([1], Lemma 3. 3). But for the
sake of completeness, we sketch it. Put wn = unen : since (wn)*wn = en, wn

is a partial isometry, so fn — τvn(wn)* = unen{u^f is the left projection
of wn. As shown in the proof of Lemma 4.1, [fn] is an SDD. Set
vn = wn -wn-ι = unen - */»-!**_.! = unen - unen^ = un(en - en-x), where u
— Wo = e0 = 0 vn is a partial isometry with initial projection en — en-ly and the
final projection is un(en - en^)(un)* = unen(un)* - u^^e^^iu^^f = / Λ - / n - i ,
where f0 = 0. Since the vn have orthogonal initial projections and orthogonal
final projections, by ([4], Lemma 20) there is an element u £ Mpi such that

0
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(
= sup \ Σ {ei-ei^v), n ^

I

= 1, and u(en-en_x) = ?7n = tfn(έ?n —£ n _0.

By mathematical induction, uen — unen for all n. Then enuen = enunen, for
fixed m,n>m implies em{enuen) = em(enunen), emuen = emumen, (emu — emum)en

— 0, hence #*e m = (ttffl)*em, that is, [u, 1} = [un, en}. The Lemma follows.

LEMMA 4. 4. If x,y,- ,z e C and x*x + #*# + + z*z = 0,

PROOF. If x = [xn, en\ y = [^n,/n], and z = [zn, gn], then there
is an SDD {hn} such that en Λ /„ Λ gn ^ K and ((xn)*xn + ( ^ n ^ n + •
+ (zn)*Zn) hn = 0 hn, hn((xn)*xn + (yn)*yn + + (*»)**») ̂ n = 0, xnhn = 3̂ n/ιw
= = 2n/ιw = 0. Then, for fixed m, n> m implies hmxnhn = hmxmhn = 0,
Λmxm = 0, (xm)*hm = 0. Similarly (ymYhm = = (zm)*hm = 0, x = # =
= z = 0.

LEMMA 4. 5. Lei x = [xn,fn] £ C and for some SDD [en] xen — 0 for
all n then x — 0.

PROOF. By the Remark following Theorem 3.1, we have x(enf\fn)

xn(en Λ /») = *£w(>n Λ fn) = 0. Thus jrΛ(en Λ fn) = 0 for all w. For fixed
m,n>m, implies (βOTΛ/m) ^n(^n Λ/n) = OmΛ/m) J:OT(̂ n Λ/») = 0, and (em/\fm) xιn

= 0, that is, (xm)*(emf\fm) — 0. This implies x — 0. The lemma follows.

5. Spectral theory for C. The next lemma is elementary:

LEMMA 5.1. ([1], Lemma 4.1.) Let 3$ be an associative algebra with
unit 1 over the complex numbers, with involution *, and such that x + i\
is invertible if x* = x. Then the formulae

u = (x - il) (x + ίl)-i

Λ: = ί ( l + w) (1 - w)"1

define mutually inverse one to one correspondences between the self-adjoint
elements x (x* = x), and the unitary elements u (u*u = uu* = 1) such that
1 — u is invertible.

If x, u are related as in Lemma 5.1, we call u the Cay ley transform of
x; it is evident that an element of IB will commute with x if and only if it
commutes with u. We can apply Lemma 4.1 to the algebra C (Corollary 4.1),
as well as to the algebra M. Then we have the following :
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THEOREM 5.1. The formulae

u = (x - il) (x + il)-1

x = i(l + iι)(l - M)-1

define mutually inverse one to one correspondences between the self-adjoint
elements x £ C, and the unitary elements uz C such that 1 — u is invertible.
The unitary elements u which so occur are those of the form u = ΰ for
some uzMu. Moreover let uzMu, write {u}"'= C(Ω) with Ω a Stone space
([2]), and let Ωo be the open set Ωo = {ω ω € Ω, u(ω) Φl}. Then 1 — u is
invertible if and only if Ωo is dense in Ω and there exist clopen (open

and closed) sets Ωn such that\^J Ωn = Ω0, and the characteristic fu?ιctions of
71 = 1

(Ωn)
c (the complement of Ωn) are in 9J?.

PROOF. If x* = χ(zC, we can write x = [xn,en] with (xn)*=xn; then the
Cayley transform of JC is il = [(xn — il)(xn-\-il)~ί,fn\ where {fn} is a suitable
SDD. As each un — (xn — il) (xn + i l)" 1 is unitary, by Lemma 4. 3, we get
u — ΰ for some u e Mu. Conversely if u £ C is unitary and 1 — u is invertible,
then we can define x = i(l + II) (1 — il)"1 since il is the Cayley transform
of x, by the above argument we have that u = ΰ for some u £ Mu.

Next we suppose Ωo is dense in Ω and there are clopen sets Ωn such that

\J Ωn = Ω0, and the characteristic functions of (Ωn)
c are in 30Ϊ since we may

71 = 1

suppose Ωn increasing, if en is the characteristic function of Ωw, then
1 — en € 9DΪ and the density shows en j 1, thus {en} is an SDD. Define
numerical function G(ω) = (1 — u(ω))~ι(ω£ Ωo) G is continuous on Ωo. Setting
yn = Gen, we have clearly yn € {u}" and [yn, en} is an EMO. As (1—u)yn — en

— len, [yn, en] is the inverse of 1 — u. Conversely, if 1 — u is invertible, then
ΰ is the Cayley transform of the self-adjoint element x = i ( l + # ) ( l — ΰ)~ι ( £ Q,
and we can write JC = [xn,en] with (xn)* = xn and u = [(xn — il)(xnΛ-ίl)~ι,en\.
Taking an increasing sequence [rn] of positive numbers satisfying ||:rn|| < rn

and rn\ oo (n\ oo), we define clopen set Ωn = {ω; \u(ω)~l\ > 2/((rn)
2 + l)1 / 2}"

(where A' is the closure of a set A) ([2]). Noting that 2/((rn)
2 +1) 1 / 2 | 0(n | oo)

and

{ω; \u(ω) - 1| > 2/((rn)
2 + I)1/2} c {ω \u(ω) - 1| > 2/((rn)

2 + 1)^}~

C [ω; \u(ω) - 1| ^ 2/((rn)
2 + 1)^} C {ω

we have Ωn | and\^/Ω n = Ω0. If Ωo is not dense, Ω — Ω^ is a non-empty
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clopen set, whose characteristic function e is a non-zero projection. Since
uiω) — 1 for ω£ Ω —Ωo", we have ue = e, that is, {l—ΰ)e = 0, contradicting the
invertibility of 1— ΰ. Let fn be the characteristic function of (ίln)c. We show
that en Λ fn — 0. If the contrary holds,

while by Lemma 4. 3,

and noting that the numerical function f(jf) = 4/(τ/2 + l) is strictly monotone
decreasing for ?7 §: 0, we have

This implies that

Hence this is a contradiction. By ([3], Theorem 5.4), we have fn—fn —
en ^l — ene3)l, as desired.

REMARK. In finite case, as Berberian showed in ([1], Lemma 4.2), it is
sufficient for 1 — u to be invertible that Ωo is dense in Ω, but in infinite case,
as the following example shows, we cannot drop the last condition: there

exist clopen sets Ωn such that \^J Ωn = Ω0, and the characteristic function of
7i = l

(Ωn)c is in 9Jί. Let fp be an infinite dimensional separable Hubert space, [ξi}?=ι
an orthonormal basis for it, and M be the full operator algebra on ξ).
Then we know that Wlp is the set of all projections of finite rank. For a
sequence {λi}Γ=i of positive numbers (Xt f oo (/f oo)), setting 3)(T) = [ξ

t h e n ®(^) i s a d e n s e l i n e a r manifold in ξ). Define
£=1

linear operators T on 3)(T) and £ λ ( —oo<Λ,<oo) on ^ by



THE ALGEBRA OF MEASURABLE OPERATORS FOR ΛW*-ALGEBRA 259

and
Exξ = P[fl.ft...,ί..l]f ξe$

(where n is the minimal n such that \ n ^ λ, ξ0 = 0, and /%,,...,&,_,] is the
orthogonal projection on the linear manifold [ξu , fn-i]), then T is a
densely defined self-adjoint operator and {£λ}_oo<λ<00 is the resolution of unity
for T. If T is measurable in the sense of [9], then there exists a projection
? ζ ϋ/ such that TP is bounded and 1-PzSBl. Let |[7T| |<λ 0, we have that
P A (1—Eλo) = 0. If otherwise, there is a non-zero ξ z ξ) with (P A (1 — Eλo))ξ
= ξ. \\Tξ\\ = \\TPξ\\ <XQ\\ξl while \\Tξ\\ = \\Ta-Eλ9)ξ\\^Mξl This is a
contradiction. Since for every projection Q,ReM, Q—QAR^QWR—R, we
have 1-Eλo = (l-Eλo)-PA(l-Eλo)~~PV(l-Eλo)-P^l-Pz 2R, contradicting
the definition of Eχ0, that is, T is a non-measurable self-adjoint operator. Let
U be the Cayley transform of T, {U}" = C(ί2) with Ω a Stone space, and Ωo

be the set (ω C7(ω)^l}. For 1— ί/ is one to one, we have that Ωo is dense
in ίl. But 1—U is not invertible in C (The preceding Remark of Theorem
3.2). For if 1-U is invertible in C, then T = £(H-C/χi —C7)"1 is in C,
contradicting the above argument.

The rest of our discussions in this section is the slight modifications of
([1], sections 4,5 and 6), but for the sake of completeness, we sketch them.

As a spectral theorem for a self-adjoint MO, we have :

THEOREM 5. 2. Let x be a self-adjoint element of C, u — u its Cayley
transform. We can write x — [xn, en] with xn,en£ {u\\ (xn)*=xn, xnen = xn

and (xnγ t

PROOF. Write {u}" = C(Ω), where Ω is a Stone space, by Theorem 5.1,
oo

there exists an increasing family of clopen sets {Ωn} such that \J ΩΛ = (ω
w = l

=ίl , and the characteristic function of (Ωn)
c is in

9)ί, thus the family [en] of the characteristic functions of Ωn is an SDD.
Let F and G be the numerical functions defined for ω € Ωo by

G(ω) = (l-u(ω)Γ

F(ω) = i

it is clear that F is real valued. Put xn — Fen, and yn = Gen, then (xn)*= xn
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= xnen, {xn, en] and {yn,en} are EMO, and [yn, en] is the inverse of 1 — u.
As xn = Fen = i(l+u)Gen — i(l+u)yn, we have [xn, en] — i(l-\-u)(l — ΰ)~ι = x.
If m<n, then (xm)2 = (xnem)2 = {xn)^emxn :g (xn)*(xn) = (xn)

2. This completes
the proof of Theorem 5. 2.

Next, we characterize M as a subalgebra of £7, in terms of the algebraic
structure of C.

THEOREM 5. 3. Ifx = [xn, en], τvith \\xn\\ ^ k for all n, then there is
a unique element xe M (\\x\\ ^ k) such that x = x.

PROOF. Considering that ||(l/2)((.rw)*+:rn)|| ^ k, we may assume x*=x.
It u = ΰ is the Cayley transform of x, then by Theorem 5.2, we can write
x = [yn>fn\ with yn,fnz {u}'\ (yn)* = yn and (yn)

21 . Now we show that
Il3^n | |=^ f° r a ^ n- Since {yn>fn\ Ξ {xn>en}> there exists an SDD{^n]
such that yngn = x n ^ n for all n then also gn(yn)

2gn = gn(Xn)*Xngn- The
assumption (xn)*xntk#Λ implies gn{^nY^n9n^k2gn, and then gn(yn)*gn

^k2gn. For fixed m, n>m implies ( y J 2 ^ ( ^ n ) 2 , 9n{ymfgn^9n{ynfgn^k2gn,
gn(k2Λ-(ym)2)gn^0; we may write {#-1 - (y*)1}" as the algebra C(Γ) of
continuous complex-valued functions on a Stone space Γ ([2], section 4). Assume
that (k2 l—(ym)2)(V)<0 for some γ ^ Γ ; choose a non-zero projection gz {k2Ί
— (ymyY'9 and a real number δ<0 such that g(k2Ί — (ym)2)^Sg. Since
(A2 l—(^m)2)"1^] i s t n e largest projection right-annihilating (1-^X^ l - ( ^ m ) 2 ) ,
clearly g ^ (A -l - (ym)2Yι[gl Put / ; = ^ n Λ ((k2Λ - (y j 1 )" 1 ^]), so that
(1 - <7)(£2 1 - (ym)2)fn = 0, (P 1 - (j/w)2)/; = ^ 2 1 - (ym)2)f'n, fn(k2.1 -
CVm)2)f'n = fng(k2Λ-(ym)2)fn. Since 0 ^fn(gn(k2Λ - (ym)2)gn)f'n = fn(k2 l -
CyJ 2 )/;^δ/;^/;^0,necessary 8f'ngf'n - 0, gf'n=0, 0 = gAfn = gAgn for all n.
By ([3], Theorem 5. 4), g = g-g Agn~~ gny g~ gn^±-gn^Wl. By the same
argument used in the proof of Lemma 3.1, we have that g = 0, contradicting
the above result # ^ 0 . &2 l-(;ym)2 ^ 0 follows, thus \\yn\\ ^ k for all n.

Let 3̂ n —^nrw be the polar decomposition of yn where, zvn, rn€ [u}">
(wn)*wn = wn(τυn)* = RP(yn)9 rn = (yn)

1/2([ll], Lemma 2.1). The uniqueness of this
decomposition, together with the fact that ynem = ym when m<n, shows that
Wnfm^Wm and rnfm = rm; thus {τvn,fn} and {rn,/n} are EMO, and we have
[yn>fn\ — [tVn>fn] \?n->fΛ Thus it is sufficient to show that [wn, fn] = w and
[rn,fn] = f with w,r^M. Modifying the proof of Lemma 4.3, we have that
there exists a partial isometry w z \u}" such that [ivn,fn] = w. Finally since
rn t and r n ^ kl, by [2], we can find r=sup [rn, n ^ 1} in the quasi complete
lattice of self-adjoints of {u}" since we may write \u\" as the algebra C(Ω)
of continuous complex-valued functions on a Stone space, and rn(ω) \ r{ω)
except on a set of first category, we have rfn = rΛ, [rn,fn] = f with ||r|| ^ k.
This completes the proof.
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COROLLARY 5.1. If x = [xn,en] with \\enxnen\\ ^=k for all n, then x = x

for some xz M with \x\ ^ k.

PROOF. Setting yn = enxnen, and fn = en Λ ( W ^
{yn,fn} is an EMO equivalent to [xn9 en] hence x = [yn,fn] with \\yn\\ ^k
for all n. This completes the proof of Corollary 5.1.

Next we introduce the partial ordering of self-adjoints.

DEFINITION 5.1. An element JC^Cis positive (x ^ 0), if x = y*y for
some y € C. If x, y £ C are self-ad joint, write x ^ y in case y — x §: 0.

LEMMA 5. 2. / / x * x ^ 1, ί/ιe;z x = x for some xzM and \\x\ ̂  1.

PROOF. By assumption, x*x+y*y = l for some y^C. T h u s there exists
an SDD {gn} such that ((xn)*xn + (yn)*yάgn = lgn\ gn(xn)*Xn9n^9n(Xn)*Xn9n
+ 9n{ynYyngn:= 9n^h \\xn9n\\ ^h \\9nXn9nII ^ I . Since by remarks following
Definition 3.3, we may suppose (:rn, <7n} is an EMO, our assertion follows
from Corollary 5.1.

An element e € C is a projection if e* = e = e2 u?£ C is a partial isometry
if w*w is a projection. The following theorem shows that C contains no new
projections.

THEOREM 5.4. In C, every partial isometry has the form w — w with
xv £ Mpi. In particular every projection e has the form e — e with e € Mp.
Hence the projection of C form a complete lattice which is isomorphic to
the projection lattice of M via the mapping e —> e.

PROOF. Suppose weC, w*w = e, e a projection. Then 1 — w*w = l — e
= (1 —e)*(l —e), hence w*w^l. The assertion is clear from Theorem 3.1 and
Lemma 5. 2.

In the numerical Cayley transform oc=z'(l + λ)(l—λ)"1, λ = (<2— i)(ct + i)~l

9

( 1 ) tf=0 when λ = - l ,

( 2 ) α > 0 when λ<Ξ {eiθ: -τr<θ<0},

( 3 ) a<0 when Xz [eίθ: 0<θ<π}.

This is the basis of our theory of order in C. If x ^ 0, and a g: 0 is a real
number, then ax ^ 0. If x ^ 0 and — x ^ 0, x = 0 for if x = y*y and
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— χ — z^zy then y*y + z*z = Oy by Lemma 4.4, # = 0, that is, x = 0. If x §: 0
and z € C is arbitrary, then z*xz ^ 0. To show that the self-adjoint elements
of C form a partially ordered real linear space with respect to the ordering
defined in Definition 5.1, we have only to see: if x ^ 0 and y ^ 0, then
JC+#i^O. This is clear from condition (2) of the following:

THEOREM 5.5. Let x be a self-adjoint element of C, u— Hits Cayley
transform. Then the following four conditions are equivalent:

(1 ) * i Ξ θ ;

( 2 ) we can write x = [yn,fn] with yn^0;

( 3 ) the spectrum of u is contained in {eίΘ: — n ^ θ^ 0}

( 4 ) we may write x = [xny en] with xn, ene {u}'\ xn^0 and xnen — xn.

PROOF. (1) -> (2) is clear from Definition 5.1.
(2)—>(3). Suppose \ — eiθ with 0<θ<π; we must show that u— λ l has

an inverse in M. Write λ = (Λ—/XΛ+./)"1, and tf<0, a=i(l + X)(l-Xy\ An
easy calculation shows that u — λ l = (1 — λ)(x — 1)(JC + il)"\ thus u — λ l =
(l-λ)[(3/w-tfl)(3;Λ + z Ί ) Λ # J for a suitable SDD {gn}. As 3 ^ ^ 0 for all n,
each 3>w — Λl is invertible in M; by Lemma 4.1 u—λl is invertible in C, and
(u-Xiyi=(l-\yi[(yn-hH)(yn-aiyi, hn] for a suitable SDD {hn}. The
numerical function /(^) = (^2 + l)(^—cί)~2 defined for η^O is bounded, say
f(η) ^ k; look at the functional representation for yn, and we have that
\\{yn + Λ)(yn-°A-YΎ^k for all n. By Theorem 5. 3, ( i i - λ l ) - 1 ^ for some
x^M, thus u — λ l is invertible in M.

(3) —> (4). By assumption (3) and the proof of Theorem 5. 2, the assertion
is clear.

(4)—> (1). Put zn — {xn)
l/2\ if m<n then xnen — x.m, from the unicity of

positive square roots we have znem — zm. Hence {zn,en} is an EMO, and
putting y — Vz^e^ we show that y^ — y, x — y2', thus x^O. This completes
the proof.

COROLLARY 5.2. If x^ 0, then there is a unique y^0 such that
x = y2; we have ye {x}".

PROOF. From the above proof of (4) —> (1), we have x = y2 with y ^ 0,
and y € {JC}" follows from Theorem 5.2. Thus assuming z}^:0, we must
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show that y = z. Clearly xz = zx, thus also yz=zy; then (y+z)(y — z)
= y" — z2 = 0, (y — z)(y + z){y — z) = 0. Write y = r*r, z = 8*8 for some
r,sz C, and we have 0 = (y — z)(r*r + s*s)(y — z) = {r(y — z)}*{r(y — z)} +
{s(# — z)]*{8(y — z)}. By Lemma 4.4, r(y — z) = s(y — z) = 0, thus r*r(y — z)

= s *s(y-*) = 0, y(y-z) = z(y-z) = θ, (y-z)*(y-z) = o.

DEFINITION 5.2. If x ^ O write # = JC1/2 for the unique y^O such that
x = y2. ForxzC, write | x | =(jc"x"x)1/2.

REMARK. Let x be a positive element of C, and, ΰ the unique Cayley
transform of x. Then by Theorem 5.2, we can write x = [xn> en], with
;rn,£n€ {w}", and we have x = [xnen,en]. Looking at the functional representation
of the elements of [u}'\ m < n implies {xne^)vem — (xmem)pem for an arbitrary
non-negative real number p. Set ί/ = [(^n^n)/?> en\ a n <i if x — Y^n)^ (en)'] with
(xn)',(en)'€ [u}'\ then V n ( ^ λ W ) = W ( ^ ) V n A W ) BY t h e s a m e reason
as above, we have that (Λ / O ' ^ n Λ W ^ ί W W T ^ n Λ W ) , and hence
[(^n)p» ^n] = K W ( O ' ) P ) WΊ> t n a t is, y is independent of the representation
of x in \u\" and is therefore unambiguously denned. We denote y by xp

(Note that xp€ {x}")

6. Algebraic structure of C.

THEOREM 6.1. Let xe C, x ^ 0, and ΰ be the Cayley transform of x,
"writing {u}", as the algebra C(Ω) of continuous complex-valued functions

on a Stone space ί l ([2]), ίl0

+ be the set {ω ω € Ω, z*( l+w(ω)Xl-M(ω))~ 1 >0}

= { ω ^ Ω ; u(ω) = eίθ, —7τ<(9<0} . T/iew ί/ierβ z*5 an element y^C and a

projection e £ C, such that

(1) xy = e, ex = x, ey = y,

(2) y,e*{χ}", y^0,

oo

if and only if there exists a family of do pen sets {Γw} such that

=ΩJ" and the characteristic function of (Ω )̂~ —Γn is an element of 9JΪ for

all n {where E~ is the closure of a set E).

PROOF. Let x — [xn,en], notation as in the proof of Theorem 5.2. If

( \-
\J Tn\ =(ΩoO~), we have

fnϊf and f-fn€Wl. Put tfn=/n + ( l - / ) , so that gn 11 and l-gn=f-fn* 9K

Define zn = Ffn; since F(ω) = 0 for Ωo f \ (Ω— (ΩJ")"), we easily see that {zΛ,
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gn] is an EMO, and that the SDD {engn} implements [xn,en] = [zn, gn}, thus
x — [zn, 9n\- As zn(ω) > 0 for ω € Γn (compact set), there exists a unique
yn£ {u}" such that znyn = fn, ynfn=yn' By the unicity we show that
yn9m=ym when m < n, hence {yn, gn] is an EMO. Then y = [yn, gn] and
e—f satisfy (1) and (2).

Conversely, suppose that there are y and e satisfying (1) and (2). Let ΰ
be the Cayley transform of x, and setting w = ((x-\-il)/2)y, an easy calculation
shows that

ew — we — wy w£ {x}",

117(1+w) = (l+u)w = e,

and e is the characteristic function of {ω (l+w)(ω) Φ 0}~. Setting M?̂  = u?^n,
we have

u?Λ^ = ewn = ιvn

and

Let U7n = [WTO, <7m], and ||xfml!<^m where r^ is a real number such that
r£ f °°(w t °°) Noting that

{ω; |(l+«Xω)| > 1/Π} C {ω |(l+u)(ω)| > 1/(Π+1)},

the set ί/ i={ω; |(l+«)(ω)| > l/r^}~ is a clopen set ([2]) and putting Hi, (~\Sϊn

= Ωm, an easy calculation shows that

oo oo

\J \J Ωl = {» (1+«X«) ^ 0} /°\ {ω (1-«X«) ^ 0}

Set hm is the characteristic function of (Ωm)c> and by the equation (*), we can
choose an SDD [gm}Z=i such that

l = enegn

m.

If MΛglAhl^fD^O. then

and we have
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and since

we get \\iVm\\ ^ m̂ This is a contradiction and so (enehV) Λ 9m = 0. Thus
«?nέΛi = enehl-(enehl)Λgl - (enehl)\/gl-gl ^l-gl^Wl, and £-<v<l-/A)
= e - e e n + e e n t t ^ l - e n + e e n t t e I ([3], Theorem 4. 2). {ί2™}n,m=i meets all
requirements.

THEOREM 6.2. C is regular in the sense of ([10], Pαrί //, Chap. lly

Definition 2.2) if and only if M is finite,

PROOF. Suppose M is finite, then by ([1], Corollary 7.1), C is regular.
But for the sake of completeness, we sketch the proof. Since M is finite,
for I JC I (xzC), the condition of Theorem 6.1 is always satisfied and hence
there exist s g: 0, and a projection e, such that | x 18 = e, e | x j = | x I, and
es = s. Since e = s2\x\2 = (s2x*)x, we have Ce c Cx conversely | x | e = | x | ,
|jc|2(l-«?) = 0, Λ ( l - e ) = 0, ( l - e ) x * x ( l - e ) = 0, x ( l - e ) = 0, xe = x,
thus Cx c Ce.

Conversely suppose that C is regular. By ([3], Theorem 4. 2), there exists
a central projection e such that M{1—e) is finite algebra, e = 0, or Λfe is a
properly infinite algebra and M=Me@MKl—e). If e ^ 0 , then Me is properly
infinite and by ([3], Lemma 4. 4), there is a family of increasing projections
{ei}7=i(o Mp) such that 1—e^SSR and £f f 1. Taking an increasing sequence
{λί}Γ=i of positive real numbers such that λ> ] oo (i ] oo), we define sn by;

Then, as Xt ΐ oo(£ | oo), 5Λ rg (l/λi)l for all n, and {5n} is the family of
mutually commuting increasing positive elements majorized by (1/Xχ) l.
Considering a maximal commutative subalgebra A ( = C(Δ), the algebra of all
continuous complex-valued functions on a Stone space Δ [2]) generated by {en}9

{sn} has the least upper bound s in A, and the right projection of 5 is 1 for
if 5£ = 0, ezMp, then e commutes with s and ezA, and since sn(S)] s(S)
without on a set of first category, we have that

ense = eens = esn = 0,

and

(1/Xn)een ^ esn = 0, that is, een — 0 for all n.

By Lemma ([3], Lemma 2. 2), e = 0. By the regularity of C, we can choose
a projection e (e € Mp) such that βf = Ce. An easy computation shows that
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e — 1 and s is invertible in C. Let y be the inverse of s, we can write
y = [xn,fn] with (xn)* = xn. Then there exists an SDD [gn] such that

xnsgn = sxngn = gn for all w.

Taking an increasing sequence {μn}n=ι of positive real numbers such that
ll ̂ πll </iw a n d Hn ΐ °° (n ΐ °°)> l e t w/> be the largest integer k such that A^̂ /Up.
If (1 —tfmjΛ^n^O, then by the same reason as above, we have

xns((l-emn)Agn) = .rjsup { Σ (l/\)(ei-ei^)+(l/\ι)el9n^ 1}\(1-emj\gn)
i = 2

and

^ ||xn[sup {

= 1.

Noting that 0 < (0«Λ(l-*».))[sup { E

^mn))»
 w e have that

l̂ nll ^ l/ll [sup { Σ
i = mn+l

^ λ W n + i > μn,

and contradicting the inequality \\xn\\<Cμn. Thus ( l - e m J Λ ^ n = 0. (1 —emj
= (l — emm)—(l — emu)/\gn — ^ n V(l — O — ̂ n = 1 —^n ζ 2W, and contradicting the
choice of [en], that is, M is a finite algebra. This completes the proof of
Theorem 6.2.

The polar decomposition of measurable operators is one of the important
tools in the construction of non-commutative integration theory, and next we
show that the decomposition is true in C.

THEOREM 6.3. Let xz'C9.u(resp. v), the Cayley transform of x*x(resp.
jcjc*), e — LPilΛ-u) and f=LP(l + v). Then -we can write JC = U; |X | with
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w a partial isometry such that w*w = e, ww*=f. In particular e—f.

PROOF. The proof is a modification of the argument used in ([11],
Lemma 2.1). By [2], we can write {w}"(resp. {v}") as the algebra C(ίl)(resp.
C(Γ)) of continuous complex-valued functions on a Stone space Ω(resp. Γ). Then
an easy calculation shows that e (resp. / ) is the characteristic function of the
set [ω u(ω) Φ — l}~(resp. {γ v(y) Φ —1}~). By Theorem 5.2, we may
write x*x = [yn, en], ynyenzC(Ω\ [en] an SDD, 0 ^yn ^yn+l9 and ynem

—yirβm—ym^ when ΎΠ < 7i. For Ύi, ΎΠ — 1, 2, , there are positive elements c™
and projections βm ( € C(ίϊ)) with the following properties :

( 1 ) yn(cm)2 is a projection ^ een, yn(cl)2 = βm

( 2 ) yn ^ (l/m)el, and yn ^ (l/m)(e-el) in (e-el)en.

( 3 ) cΐ ^ct^cl^ . for all w and cn

m^{c^-cn

m_λ) = 0

for w = 2, 3, for all w.

( 4 ) cl^cl^ci^ - for all m and d e , = ̂ ( K ^ ) m = l , 2 , . . . .

( 5 ) ^m î=^m if j>i for all m.

Because, setting ^ is the characteristic function of the set {ω ω € ί l i ?

3/i(ω)> (1/m)}- and c*ι(ω) = (l/^ i(ω))1/2^(ω), {^, c }̂ meets all requirements.
By the Remark following Theorem 3.1, we have

{xcl)%xcn

m) = c»x*x& = x*x(ciy = [yi9 e^Kc^Y, 1]

= [yi,et][eniϊ\[(c!ίιγ,ί\ (by (5))

= [ynen,

and by Theorem 5.3, there is a partial isometry Wm(^ Mpi) such that
and (τe;^)*ιe;^ = ̂ . Since

we have fx = x and putting

and
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fl-Jl = xic^fx

thus we have fm-i^fm^f. Set fn = sup{/£, m^l] and noting that
(elf rg (cL)\i < j), we see fn ] , and we write / ' = sup [fn, n ̂  1}( ^ / ) . Put

Vm^WmieZ—em-i), where f% = eo = v% = zv% = O for all n> and considering that

wΐeZΓi = xclέb-! = xcZ.! = w^u we have

(vn )*vn — en — en ,

= = J m Jm-1'

By ([4], Lemma 20), we can choose a partial isometry w n € Mpi such that

-Λ-i) = (O*,

and

Since wrlnen-ιe = τv1}n1

9 w e have

em—em-l =

By ([3], Lemma 2.2) we have

-Wfβn-xe = wn_xen.xe.

Set vn = wn(en—en-^e, it follows that

(vn)*vn = 0 Λ -*„_!>>

vn(vn)* = wn{en-en^)e{τvnγ = wnene(xvn)*-wnen_xe(wn)*

= <wnene{<wn)*-'wn_λen-ιe(wn-ι)* =/«-/»_!.
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Again by ([4], Lemma 20), there is a partial isometry w £ Mpi such that

£ne, n ̂  1} = e,

ww* — sup{/n, n §: 1} = / ' ,

w(en — en^)e = wn{en-en.ι)e where e0 = 0,

and

«>*</»-/»-i) = (w»)*(/n-/n-i) where / 0 - 0.

By mathematical induction we have ze;£ne — zvnene.
Next we show x = w \ x \. By Lemma 4. 5, it is sufficient to prove that

(x — w\x\)en = 0 for all n. Since

(x-tD|jc|)7n = {x-~w^\x\ +~wϊ,\x\--w\x\jen

Then,

(by I x |7 n = 7 n I x I and t«C

= x(β - ei)7n + (wΐ -τvn) \x\e~n.

and noting that zvneZ. = τv^eZ = w^, we have

{(zvl-zvn)\x\en}*{(wl-wn)\x\en} = en\x\(en-e£)\x\ = x*x(ene-el).

By Theorem 5.3 and (2), we see that there exist elements x(m)y y{m)(m —
1, 2, ) such that ( x - w | x | ) 7 n = [Xim)+y{m)9 1] and | |J: ( T O ) | | ^ (l/m)1/2,
11̂ (̂ )11 ^ (l/m)1/2(m = 1,2, •)• By Theorem 3.1, we can easily show that

( x - w | x | j 7 n = 0.
To see that / ' = f, by the same way as in the case of x*~x, choosing

for XX* families {(<:£)'} {(/£)'} satisfying the conditions (1) —(5), we have
only to show that fXfm)' = (f%)' for all m, n. Considering that xx*(f)=xx*,
the assertion is clear. Hence f TEif, that is, f = f.

Finally we shall prove the uniqueness. Let x = wxy with y^O,
(w1)^rw1 = e, ey = y, then x*x = yey = y2 and by Corollary 5.2, | f = | x | , and

117x1x1=11)1x1 implies wί\x\c^ι = w\x\cZ, wιe^ι = we1^L for all m, n, wιe=we,
that is, Wι = w. This completes the proof of Theorem 6.3.
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THEOREM 6.4. C is a Baer*-ring in the sense of ([6], Definition 2),
that is, if S is any subset of C, the right annihilator of S has the form
eC, e a projection.

PROOF. For x £ S, using the same notation as in the proof of Theorem
6.3, X*JC(1 — e) = 0, that is, x = xe. Thus the right annihilator of x includes
(l-e)C. Conversely if xy = 0, then x*xyy* = 0, (%,x*xyy* = 0, eiyy* = 0
for all m, n. Choosing a family {d^, g'L 9 where dm ̂  0, g^ and g are
projections] for yy* satisfying the conditions (1) —(5), e^g^^O for all n,m,n
and m, e^l-g, {l-e)y = (l—έjgy = ]/y = y, and y € (l-e)C. Since the
right annihilator of S is the intersection of all the right annihilator of x € S,
an easy calculation shows that the annihilator of S—eC for some projection e.
This completes the proof of Theorem 6. 4.

REMARK. By above Theorem 6.4, the projection β(resp. / ) defined in
Theorem 6.3 is the right (resp. left) projection of x in the sense of ([3],
p.244), and RP(x) — LP(x) for all x £ C.
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