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1. Introduction. It is an interesting problem in the non-commutative
integration theory to construct a “measurable operator” without using unbounded
linear operators. From this point of view, we shall extend Berberian’s result
on “The regular ring of a finite AW%*-algebra” to general AW%*-algebras.
S. K. Berberian defined a “closed operator” for a finite AW*-algebra in algebraic
fashion and studied the structure of the “closed operators” [1].

The plan of this paper is as follows. Section 3 is devoted to formulate
the notions of “strongly dense domains” and ‘“measurable operators” with
respect to a given AW#*-algebra M. Our definitions are closely related to that
of [1]. Along the same lines with [1], we shall construct the algebra C of
“measurable operators” for the general AW*-algebras and study some preliminary
algebraic properties of C. Section 5 deals with the spectral theorem for
“self-adjoint measurable operators” using the Cayley transform. Theorem 5.1
gives the necessary and sufficient condition for a unitary element in M to be
the Cayley transform of some “self-adjoint element” of (. In particular,
Lemma 4.1 and Theorem 5.1 play essential roles in our discussions. In section
6, Theorem 6.2 gives an alternative proof of ([5] Theorem): If C is regular
([10], Definition 2.2), then M is finite. Theorem 6.3 concerns with the polar
decomposition of a “measurable operator” which is one of the main theorems
in this paper. Moreover, we shall show that C is a Baer*-ring in the sense
of [6].

Before going into discussions, the author wishes to express his gratitude
to Prof. M. Takesaki for calling his attention to the reference [1], and he is
also grateful to Prof. J. Tomiyama for useful conversations with him.

2. Notations and Definitions. An AW*-algebra M is a C*-algebra
satisfying the following two conditions :

(@) In the set of projections any collection of orthogonal projections has
a least upper bound.

(b) Any maximal commutative self-adjoint subalgebra is generated by its
projections.
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Denote the set of all self-adjoint elements, projections, partial isometries
and unitary elements in M by M,,, M,, M, and M,, respectively.

Let M be the two sided ideal generated by all finite projections in M,
then M, contains only finite projections.

If {e,} is a sequence in M,, ¢, means ¢, =e,.,; if moreover sup {e,,
n=1} =e, we write ¢,7e. The notations e, | and e, | e have the dual
meanings.

The right projection of an element xe M is RP(x), LP(x) is the left
projection ; the relation RP(x) ~ RP(x) will be needed. For a subset Sc M,
S’ is the set of all elements of M which commute with each element of S.
If S is a self-adjoint subset, then S" is an AW#*-subalgebra of M(that is, S" is
itself an AW%*-algebra and the least upper bound of orthogonal projections
computed in S° is the same as computed in M). If S consists of a single
unitary element %, S’ is an AW%*-subalgebra of M and S” is a commutative

AW*-subalgebra of M.
3. Strongly dense domains and Measurable operators.

DEFINITION 3.1.([1], p.228). A sequence {e,} in M, is a strongly dense
domain (SDD), in case ¢, 11 and 1—e, < M.

An essentially measurable operator (EMO) is a pair of sequences {x,.e,}
with x, € M, {e,} an SDD, and such that m <»n implies x,e, = x,e, and

(xn)*em = (‘r"l)aeeﬂt'

For example if x< M, we can take x, = x and e, = 1 for all n; {x,, e,}
is an EMO, written briefly {z,1}.

To introduce the algebraic operations in EMO, we need the following
definition and lemma.

DEFINITION 3.2. If x<e M, and e< M,, we denote the largest projection
right-annihilating (1 — e)x by x7![e]; that is, 1—x'[e] is the right projection
of (1 — e)x.

LEMMA 3.1. Let {e,}, {fa}, - {ga} be SDD, and x be any element
of M, then {e, N\ fo A\ +++ A gn} and {x7'[e,]} are SDD.

PROOF. It is sufficient to consider the case of two SDD f{e,} and {f,}.
Putting g,=e, A fn, g=sup{g,, n=1}, h,=x'[e,] and h=sup{h,, n=1};
evidently ¢g,1¢g. Since 1—g=1-g, =(1—e,)V(1—f,), and 1—e,, 1—f, M,
by ([3], Theorem 6.2), we have (1—e,)V(1—f,)eM, 1l—g, and 1—ge M.
By Definition 3.2, (1—e,)h;=0 and A, is the largest such projection. If m <n,
then (1—e,)xh,=(1—e,)1—e,)xh,=0, hence h, = h,. Since 1—h,=1—x'[e,]
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=RP(1—e,)x) ~ LP(1—e,)x) =1—e,, 1—x7'[e,]< M for all n. Noting that
{l_em l_fn’ 1—-ga, 1-h,, 1—97 1-h; n=1,2,-- '} C ((1_el)v(1—f1)\/
1—=h) M((1—e)V(A—f)V(L—h,) (Note that this is a finite AW*-algebra),
by ([3], p.248), for the unique normalized center-valued dimension function

D(:) of (1—e)V(A—f)VA—h) M((A—=e)V(A—f)V(1—h)), we have

D(l - hn) é D<l - en)’
and

D(1—-g) = D(1—g,) = D(1—e,) + D(1—-f,);

D1 —h)=D1— g)=0 result from D1 —¢,)|0 and D — f,) 0. This
completes the proof of Lemma 3.1.

Suggested by ([9], Corollary 5.1), we introduce an equivalence relation

in the set of all EMO:

DEFINITION 3.3. ([1], Definition 2.2) Two EMO {x,, e,} and {y.,fx}
are equivalent, denoted by {x,, e,} = {¥., fa}, if there exists an SDD {g,}
such that £,9,=Y20n> (X)¥9n=(¥.)*gn, for all n. The SDD {g,} implements
the equivalence.

It is immediate that the relation just defined is indeed an equivalence
relation. The next remarks, which are easy to verify, will be used frequently.

REMARK. If {z,,e,} is an EMO and {f,} is any SDD, then {x,, e, Af.}
is an EMO, and {z,, €,} = {x,, e, Afn}. If an SDD {g,} implements {zx,,
en} = {yn?fn}’ and hn = €y /\fn A Gn> then {xn’ hn} and {yn’ hn} are EMO7
and SDD {h,} implements {x,, h,} = {y,, h,}.

DEFINITION 3.4. ([1], Definition 2.3) Let {x,, e,} be an EMO and [z,,
e,] be its equivalence class. [x,,e,] is said a “measurable operator” (MO).

Denote the set of all MO by C and we use letters X, y, 2,+-- for the elements
of C.

After suitable operations are defined, C is the Baer*-ring promised in the
introduction, and x — [z, 1] is the imbedding of M in C.

Now we are in the position to define the operations in C. If {x,, e,} and
{Vus fn} are EMO, and N is a complex number, we define AM{x,,e,}={Nx,,e,},
{Zn, €a} + {Yn, fo} = (X0 + Yn, €a A\ fa} and {x,, €,}* = {(x,)¥, €,} ; the right-
hand members of these definitions are easily seen to be EMO. Set g,=e, Afa /A
(y) e A () '[fn]D); it is straightforward to verify that {g,} is an
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SDD, and that if m <n, then (x.¥,)9n = (Tuymn)gn and ((¥,)*(x)*)gn
= (Y)X(Xn)*)gm, that is, (2,¥.)¥gm = (XmYm)*¥gn. This implies that {x,y,,
gn} is an EMO, and this is our definition for {x,, ¢,}{¥y,, fn}. Mereover, if
{Zn, €} = {7, €2} and {y,, [} = {yn, f2), then Mz, e,} =M, €., {4, €,]
+ {yn fo} = {20, e} + {yn f2}, (X0, e1* = {x5, €}%, and  {x,, e,} {yn, fa}
= {x,, ex} {yn, fn}. Thus if x =[x, e,] and y = [y, fa], the definitions
AX = [an, en]’ X +ty= [xn + Vs €n /\fn]’ x*:[(xn)*7 en]’ and xy:[xnyn’ gﬂ]?
are unambiguous. With these definitions, C becomes an associative algebra
over the complex numbers, with involution *: x** = x, (x + y)* = x* + y¥*,
(AMx)* = Ax* and (xy)* = y*x* If x,ye M, and N is a complex number,
clearly {z, 1} + {y,1} = {x + y, 1}, Mz, 1} = {Ax, 1}, {x, 1}¥* = {2*, 1}, and
{x,1}{y,1} = {xy, 1}; passing from {-,-} to [-,-], [z, 1]+[y,1] = [x+y,1],
Mz, 1] = [Ax, 1], [z, 1]* = [x%, 1], and [z, 1][y, 1] = [xy, 1], thus the mapping
x— [z, 1] (xe M) is a #-isomorphism of M into C; for if [z, 1] = [y, 1], then
{x,1} = {y, 1}, so there exists an SDD {e,} such that (x — y)e, = 0 for all
n. The result follows from ([3], Lemma 2.2).
Summarizing the above results, we have

THEOREM 3.1. The set C of all MO is an associative algebra over the
complex numbers, with involution *, with respect to the operations

[I'n' e'n] + [yn’ fn] = [xn + Vns €n /\fn];

x[x’n’ en] = [an7 e'n]r

[, €x]* = [(x,)¥, €]
and
[xm en] [yna fn] = [xnym gn]>

where {g,} is the SDD such that g, = e, Afa AN(ya)7'[€a]) A ((22))'[fD)-
The mapping x (x€ M)— [x, 1] is a #-isomorphism of M into C, and [1, 1]
is a unit element for C.

To simplify the notations, we shall denote [x,1] by x; then 1 is the
unit element of C, which we condense further to 1. M is the image of M in

C.

REMARK. Let x = [x,,e,] be in C: for any fixed index m, [z,,e,len
=Znen. For (e,)"'[e,] is the largest projection right-annihilating (1 — e,)en,
noting that (1—e,)e e,=(1—e,)ee,=0, we have (e,) e, ] =e,, {z,, €,}{€n, 1}
= {Z.en, €,}. On the other hand, by Definition 3.1, we have for n > m,

Lplm€n = Lp€n€y,
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en(Zn)¥e, = (Tpen)¥e, = (Tnen)¥e, = e,(x,)%e,,
and for n =< m,
Xplnln = L€y = Tp€p = Lp€,n,
en(x,) ke, = en(xy)¥e,.

This implies that the SDD {e,} implements the equivalence {x,,e,}{en, 1}
= {Znen, 1}. It follows that if [x,, e,]=[y,, fo), then x,(€xASfrn)=Ym(€n ASn)
for all m, thus the equivalent “linear operators” {x,, e,} and {y,,f,} agree,
so to speak, on their largest possible common domain.

If M is a W*-algebra ([8]), it is easy to see from ([9], Corollaries 5.1
and 5.3) that the %-algebra ( just constructed is *-isomorphic with the %-algebra
of measurable operators in the sense of [9], in such a way as to preserve the
elements of M. Because of the inherent nature of the above construction, we
have as an immediate corollary a theorem of Ogasawara and Yoshinaga :

THEOREM 3.2 ([1], [7]). Let M and N be AWZ%*algebras, Cy, Cy, their
x-algebras of measurable operators. There exists a one to one correspondence
between the x-isomorphisms ®: Cy—Cy and the x-isomorphisms ¢: M—N
and the correspondence ® — ¢ is obtained by restricting ® to M.

PROOF. We may suppose M (resp. N) to be a self-adjoint subalgebra of
Cy (resp. Cy). By Lemma 5. 3, any #*-homomorphism ®: Cy—Cy necessarily
maps M into N. On the other hand for ¢ preserves the finiteness of projections,
any *-isomorphism ¢: M— N can be lifted to a *-isomorphism ®: Cy— Cy;
® is the mapping [x,, ¢,] = [¢(x,), ¢(e,)]. This induced @ is unique. For,
given any X< Cy, we can find an SDD {e,} in M such that xe,ec M for all
n; then ®(xe,) =®(x)- De,), p(xe,) = D(x) p(e,), and by Lemma 4.5, we
see that ® is determined by its values on M. This completes the proof of
Theorem 3. 2.

Next we investigate the connection between subalgebra eMe (e< M,) of M
and subalgebras of C. Noting that for any e< M,, eMe is also an AW*-algebra
([3]), we have

THEOREM 3.3. For anmy projection e in M, the algebra of all
measurable operators for eMe is x-isomorphic to eCe.

PROOF. We write {x,,e,}. to indicate an EMO with respect to eMe; in
particular x,<eMe, e, 1 ¢ and e—e,c M. Setting e, =e,+1—e, we have
e;11and 1—e,=e—e, <M, and it is easy to verify that the mappig [x,,e,].
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— [Zp,en] is a %-isomorphism of the algebra of measurable operators for eMe
into éCe. It is sufficient to show that this mapping is onto. Suppose y is a
self-adjoint element of éCe, @ its Cayley transform (Section 5, Lemma 5.1)

and y=[y,, fa] with y,, fn,€ {#}” (Theorem. 5.2). Since & commutes with y,
e commutes with # (Remark following Lemma 5.1), hence e, y,, f, mutually
commute. If we set x, = y,e, e, = fne, thene,Teand e —e¢, =1 — f,cM,
so {e,} is an SDD in eMe. Moreover, an easy calculation shows that {x,e,}.
is an EMO in eMe and [x,, ¢,] = y. This completes proof of the theorem.

4. Preliminary algebraic properties of C.

LEMMA 4.1. If x = [x,,e,] (X< ) and all the x, are invertible, then
X is invertible, and x~'=[(x,)"", h,) for a suitable SDD {h,}.

To prove this, we need the following lemma :

LEMMA. For any e in M, and any invertible element s in M,
(s*)™)'ML —el =1 — s[e],
and if 1 —ecIMM, then s7'[1 — e] is also in M.

PROOF. By Definition 3.2, the right annihilator of e(s¥*)™! (RA(e(s*)™"))
={((s*)")"'[1—e])M, and the right annihilator of (1—e)s (RA(1—e)s))=
(s~'e]) M. Since (1 — e)ss"'e = 0, we have

s~lee RA((1 — e)s),
and

(e(s)™) A — (s~ [e]) =0,
thus we have
1— 5[] = ((597) [1 — e].
On the other hand,
(1 —e)s(s™' [e]) =0,
s(s7 [e]) = es(s™" [e]),

s~ el = (s7) es(s™* [e]),

57 [e] = (57" [e]) s*e(s*) .
Hence we have

s7He] ((s*)™)7 [1 — e]) = (s7" [e]) s*e(s*)™) ((*) ™)' [L —e]) = 0
(™)' —el=1—s7"[e].
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The lemma follows.

PrROOF OF LEMMA 4.1. Let f, be the left projection of x,e,; we show
that {f,} is an SDD. If m<n, then f,(Znen) = f1Znem = frZn€nmn = Tn€nem
= x,e, shows that 1 — f, =1 — f,, that is, f, =f,. Since the invertibility
of x, implies that by the above lemma, 1 — f, =1 — RP(e,(x,)*) = ((x,)*)"'[1
—e, ] =1—((x,) ) 'lex] <1— ¢, by the same way as that used in the
proof of Lemma 3.1, we have 1 — f,<M and f,11. Putting y, = (x,)},
if m <<n, then foy, =y.fn; for

Ll = T p€,,,
YnZnlm = YnLnlmn = €n€pn = YnLm€p,
(yn - ym) Zne, =0,
Y —Yu) S = 0.

Similarly on putting g¢,=LP{(x,)*e,), we have that {g,} is an SDD and
(Vu)*gm = (Yn)*gm when m < n; hence if h, = f, A\ gn, then {y,, h,} 1is an
EMO, and it is evident that y=[y,, h,] satisfies xy = yx = 1. This completes
the proof.

LEMMA 4.2. If x¥*=x, then we may write X=[x,, e,] with (x,)*=x,.
PROOF. If x = [y,, fa], then x = (1/2)(x + x*) = [((x,)* + x,)/2, fn).

COROLLARY 4.1. If x*=x, then x+il is invertible.

PROOF. Let x =[z,, ¢,] with (z,)*= x,; then x + i1 =[x, + 71, e,] and
each x, + 71 is invertible. The assertion is clear from Lemma 4. 1.

LEMMA 4.3. Let u=[u,, e,), with u,< M, for all n; then there is a
unique unitary element u< M such that u= a.

PROOF. The proof is the same as that of ([1], Lemma 3.3). But for the
sake of completeness, we sketch it. Put w, = u,e,: since (w,)*w, = e,, w,
is a partial isometry, so f, = w,(w,)* = ue,(u,)* is the left projection
of w,. As shown in the proof of Lemma 4.1, {f,} is an SDD. Set
Vp = W, —Wpoy = Uplpy — Up_1€p-1 = Up€y, — Up€p-y = U, (€, — €,_1), where u,
= w,=¢,=0; v, is a partial isometry with initial projection e,—e,_,, and the
final projection is #,(e, — €,_1) @,)* = wpe,(u,)* — thy_1€y \(Un_)* = frn — fuz1s
where f, = 0. Since the v, have orthogonal initial projections and orthogonal
final projections, by ([4], Lemma 20) there is an element z< M,, such that
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n
w*u =sup{_ (e,—e;-), n=1t =1 uu*=1, and w(e,—e,_,) = v, = u,(e,—€,_)).
721
By mathematical induction, we, = u,e, for all n. Then e,ue, = e,u,e,, for
fixed m, n > m implies e,(e,ue,) = e (e une,), e ue, = e, U, e,, (€ u—e e,
=0, hence u*e,, = (u,)*e,, that is, {u, 1} = {u,,e,}. The Lemma follows.

LEMMA 4.4. If x,y.---,z¢(C and x*x + y*y + -+ + z%¥2 =0, then
x:y=“‘=Z=0.

PROOF. If x =[x,,€,), Yy =[YnSul+++ and z = [z,, g,], then there
is an SDD {h,} such that e, A fn++* A go =h, and (x,)*x, + (Va)*yn + +++
+ (zn)*zn) hn =0 hy,, hn((xn)*xn+(yn)* n et (zn)*zn) hy =0, x,h, = yoh,
=.++=g,h, =0. Then, for fixed m, n>m implies h,x,h, = hpTuh, =0,
hnxy, =0, (xn)*h, = 0. Similarly (y,)*h, =+ =) *h, =0, x =y =---
=2z =0.

LEMMA 4.5. Let x = [x,, f,]l< C and for some SDD {e,} xe, =0 for
all n; then x = 0.

PROOF. By the Remark following Theorem 3.1, we have x(e, A fn)
Zalen N fr) = xen(en N\ fn) =0. Thus x,(e, A fn) =0 for all n. For fixed

m,n>m, lmplles (em /\fm) xn(en /\fn) = (em /\fm) xm(en /\fn) =0, and (em /\fm) o
=0, that is, (z,)*(e,Afn) = 0. This implies x = 0. The lemma follows.

5. Spectral theory for C. The next lemma is elementary :

LEMMA 5.1. ([1], Lemma 4.1.) Let B be an associative algebra with
unit 1 over the complex numbers, with involution*, and such that x + il
is invertible if x* = x. Then the formulae

u = (x —il)(x + 1)~

z=1i14+u)1 —u?

define mutually inverse one to one correspondences between the self-adjoint
elements x (x* = x), and the unitary elements w(u*u = uu* = 1) such that
1 — u is invertible.

If x, u are related as in Lemma 5.1, we call « the Cayley transform of
x; it is evident that an element of B will commute with x if and only if it
commutes with #. We can apply Lemma 4.1 to the algebra C (Corollary 4.1),
as well as to the algebra M. Then we have the following :
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THEOREM 5.1. The formulae
u=(x—11)(x + 1)
x=i{1l+uw)d —u

define mutually inverse one to one correspondences between the self-adjoint
elements x € C, and the unitary elements u< C such that 1 — u is invertible.
The unitary elements w which so occur are those of the form u=1u for
some ue M,. Moreover let ue M,, write {u}”"= C(Q) with Q a Stone space
([2]), and let Q, be the open set Qy = {0; © € Q, u(w) ~=1}. Then 1 — % is
invertible if and only if Q, is dense in Q and there exist clopen (open

and closed) sets Q, such that UQ,,=QO, and the characteristic functions of

n=1

Q,)° (the complement of Q,) are in M.

PROOF. If x*=x¢€ (, we can write x=[xz,, e,] with (x,)*=x,; then the
Cayley transform of x is u = [(x,—171) (x,+:1)7', f,] where {f,} is a suitable
SDD. As each u, = (x, — il) (x, + 71)"! is unitary, by Lemma 4.3, we get
u =% for some uw< M,. Conversely if w< C is unitary and 1 —u is invertible,
then we can define x =#(1 + u) (1 — u)™'; since u is the Cayley transform
of x, by the above argument we have that u =% for some u< M,.

Next we suppose (), is dense in Q and there are clopen sets Q, such that

UQ,,ZQO, and the characteristic functions of (Q,)° are in M ; since we may
n=1

suppose £, increasing, if e, is the characteristic function of ,, then
1—e,€M and the density shows e,11, thus {e,} is an SDD. Define
numerical function G(e) = (1 — #(@))"((w <€ Q,); G is continuous on £, Setting
¥.=Ge,, we have clearly y, < {#}” and {y,, e,} is an EMO. As 1—uw)y,=e,
= le,, [V., €,] is the inverse of 1 — %. Conversely, if 1 — % is invertible, then
# is the Cayley transform of the self-adjoint element x =:i(1+%z)(1—%)'(< (),
and we can write x =[x, ¢,] with (z,)* =z, and u = [(x,—11) (x,+271)7", ,].
Taking an increasing sequence {r,} of positive numbers satisfying [z.| <7,
and 7, 1 oo (n1 o0), we define clopen set Q, = {0; |u(lw)—1| > 2/((r,)*+1)"2}~
(where A~ is the closure of a set A)([2]). Noting that 2/((r,)*+1)"2 | 0(n ] o0)
and

{o; [Wle) — 1] > 2/((7a) + 1)} C {@; |w(w) — 1| > 2/((ra)" + 1)"*}"
Clo; |wlo) = 1] Z2/(ra)* + DV} C {o; [w(e) — 1] > 2/((rpn)” + DV,

we have Q, 1 andUQ,,=Q.,. If Q, is not dense, Q—Q, is a non-empty
n=1



258 K.SAITO

clopen set, whose characteristic function e is a non-zero projection. Since
u(w) =1 for e Q—Q;, we have ue = ¢, that is, (1—%)e = 0, contradicting the
invertibility of 1—%. Let f, be the characteristic function of (Q,)¢. We show
that e, A f, = 0. If the contrary holds,

IL=w)(fu/en)l = (A=) falfa el
= [A—w) fal =2/ + 1),

while by Lemma 4.3,

(I—u)falen) = (1—u)e(fu/\€n)
= {1—(xn_11)(xn+zl)_l} en(fn/\en)

and noting that the numerical function f() = 4/(n*+1) is strictly monotone
decreasing for 7 =0, we have

4(6,, /\fn) = (en /\fn){l_(xn_11)(x+11>-1}%{1_<xn_ll)(xn+ll)_l}(en/\fn)
= 4/(lza]*+1)ea Afa)-

This implies that

IA=w)en ANf)ll = [{1—(z0—il)(@xn+21) " }(ea A S W)l
= 2/(lza|* + 1) >2/((ra)* + 1),

Hence this is a contradiction. By ([3], Theorem 5.4), we have f,=f,—e,\fn
~e,Vfn—€y =1—e,cM, as desired.

REMARK. In finite case, as Berberian showed in ([1], Lemma 4.2), it is
sufficient for 1—u« to be invertible that Q, is dense in Q, but in infinite case,
as the following example shows, we cannot drop the last condition: there

exist clopen sets £, such that Uﬂnzﬂo, and the characteristic function of

(Q,)° is in M. Let  be an inﬁ;lite dimensional separable Hilbert space, {£;}:,
an orthonormal basis for it, and M be the full operator algebra on .
Then we know that M, is the set of all projections of finite rank. For a
sequence {A;}i; of positive numbers (A; 1 oo (i1 o)), setting D(T)= {&;
ST(W(E E)|2<oo}, then D(T') is a dense linear manifold in . Define
i=1

linear operators 17" on (7") and E, (—co<A<0) on P by;
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TE= Y ME X EeDT)

and
E\E = Py p,...e. € £ed

(where n is the minimal n such that A, =2\, & =0, and P,..,,, is the
orthogonal projection on the linear manifold [£,---,&,.,]), then T is a
densely defined self-adjoint operator and {E3}_..<ic. is the resolution of unity
for T. If T is measurable in the sense of [9], then there exists a projection
Pe M such that TP is bounded and 1—Pe M. Let [TP|<N,, we have that
P AN (1—E,) =0. If otherwise, there is a non-zero £ €  with (P A (1—Ey,))¢
=§ |TE| = |TPE|l <N|&], while |T¢| = |[T\1—EyEll = Nol£ll. This is a
contradiction. Since for every projection Q,Re M, Q—QAR~ QVR—R, we
have 1— E,, = 1—E,,)—PAN(1—E,)~PV(1—E,)— P = 1— P< M, contradicting
the definition of E,, that is, T is a non-measurable self-adjoint operator. Let
U be the Cayley transform of 7, {U}” = C(Q) with Q a Stone space, and Q,
be the set {o; U(w)##1}. For 1—U is one to one, we have that , is dense
in Q. But 1-U is not invertible in € (The preceding Remark of Theorem
3.2). For if 1-U is invertible in C, then 7 =:i{1+U)1-U)" is in C,
contradicting the above argument.

The rest of our discussions in this section is the slight modifications of
([1], sections 4,5 and 6), but for the sake of completeness, we sketch them.
As a spectral theorem for a self-adjoint MO, we have:

THEOREM 5.2. Let x be a self-adjoint element of C, u=wu its Cayley
transform. We can write x=[x,, e,] with x,, e, < (¢}, (£,)*=2,, Toe, =T,

and (x,)? 7.

PROOF. Write {u}"=C(Q), where Q is a Stone space, by Theorem 5.1,

there exists an increasing family of clopen sets {Q,} such thatUQ,, = {w;

n=1

ulw) + 1}(= Qo),(U.Q,,) =0, and the characteristic function of (Q,)° is in
n=1

M, thus the family {e,] of the characteristic functions of Q, is an SDD.
Let F and G be the numerical functions defined for o< Q, by

G(o) = (1—u(w))™
Heo) = i1+ u(e))1—u(e))™;

it is clear that F is real valued. Put x,=Fe,, and y,=Ge,, then (x,)*= x,
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= X,en, {Zn e,} and {y,, e,} are EMO, and [y,, e,] is the inverse of 1—u.
As x,=Fe,=i(1+u)Ge, = i(1+u)y,, we have [x,,e,] =i1+7)1—u)" = x.
If m<n, then (x,)? = (x,e,)? = (x,)*enx, = (2,)%(x,) = (x,)?. This completes
the proof of Theorem 5. 2.

Next, we characterize M as a subalgebra of C, in terms of the algebraic
structure of C.

THEOREM 5.3. If x = [z, e,], with |z,| =k for all n, then there is
a unique element x< M (|x| = k) such that x=17.

PROOF. Considering that [[(1/2)(x,)*+x,)| =k, we may assume XxX*=x.
It u=u is the Cayley transform of x, then by Theorem 5.2, we can write
X = [Ya fn] with vy, foe {u}”, (y2)* =y, and (y,)’1. Now we show that
ly.] =% for all n. Since {y,,fn}= {x,, e,}, there exists an SDD{g,}
such that y,g, = x.g. for all n; then also g.(y.)’¢n = gn(x.)*x,g,. The
assumption (x,)*x, = k*1 implies g,(x,)*r,9, = k*g,, and then g¢.(v,)’g.
= k’g,. For fixed m, n>m implies (y,)’=(¥2), 9a(Yn)In=9n(¥n)'gn =K gn,
9Bl — (y))g, =0; we may write {£*1 — (y,)?}" as the algebra C(I') of
continuous complex-valued functions on a Stone space I' ([2], section 4). Assume
that (k%-1—(y,))(7)<<O0 for some y<I'; choose a non-zero projection g e {k*1
—(yn)’}”, and a real number 8<0 such that g(k*-1—(y,)*)=23g. Since
(B 1—(ym)*)'[g] is the largest projection right-annihilating (1— g)(£*-1 — (yn)),
clearly g =(k-1—(y.))'lgl. Put fo =g, A((F1—(yn))'[g]), so that
(1= g)&-1— (yu))f2 =0, (B-1—(yu))Sfn=9&1— (yu))frn [ak-1~—
(Yn)) fn = FrgB1=(yn)®) fn. Since 0= fr(gn(k>1— (¥0))gn) fr = fr(k?-1—
Wn)) fa=08frgfrn=0,necessary 8f,9fn=0, gf»=0,0=gA\frn=gAg, for all n.
By ([3], Theorem 5.4), g=9g—gAga~gnVg—9gn=1—g, <M. By the same
argument used in the proof of Lemma 3.1, we have that g =0, contradicting
the above result g+0. k*1—(y,)? =0 follows, thus |y,| =% {for all n.

Let y,=w,r, be the polar decomposition of y, where, w,, r,< {u}”,
(wWo)*w, =w,(w,)*=RP(y,), r,=(¥,)"*((11], Lemma 2.1). The uniqueness of this
decomposition, together with the fact that y,e, =y, when m<n, shows that
Wofm=Wy and 7, fn=7n; thus {w,, f,} and {r,, f,} are EMO, and we have
[Vns fal = (W, fal [7ns fr]. Thus it is sufficient to show that [w,, f,]=w and
[7n, fn]=7 with w,r< M. Modifying the proof of Lemma 4.3, we have that
there exists a partial isometry w e {«#}” such that [w,, f,]=w. Finally since
r.1 and r, = k1, by [2], we can find r=sup {r,, =1} in the quasi complete
lattice of self-adjoints of {#}”; since we may write {#}” as the algebra C(Q)
of continuous complex-valued functions on a Stone space, and r,(®) 1 (@)
except on a set of first category, we have rf, = r,, [ra.fa]l =7 with ||r| = k.
This completes the proof.
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COROLLARY 5.1. If x=[x,,e,] with |e,x,e,| =k for all n, then x==x
for some xe M with |x| = k.

PROOF. Setting y, = €,Tnen, and f, = e, A((22)7 e, ]) A ((22)%) ' [e,]),
{yn, fn} is an EMO equivalent to {z,, e,}; hence x = [y,, f,] with [y, =k
for all n. This completes the proof of Corollary 5. 1.

Next we introduce the partial ordering of self-adjoints.

DEFINITION 5.1. An element x e is positive (x =0), if x = y*y for
some y<C. If x, yeC are self-adjoint, write X = y in case y—x =0.

LEMMA 5.2. If x*x =1, then x = Z for some x< M and ||x| = 1.

PROOF. By assumption, x*x+y*y=1 for some y< C. Thus there exists
an SDD {g,} such that (£,)*Zn +(¥2)*Y0)gn = 1gn; Ga(Zn)*Tngn = gn(Tn)*T0ngn
+ gn(Yn)*Yngn = gn =1, |Xngnl =1, [|gnTagnll =1. Since by remarks following
Definition 3.3, we may suppose {z,, g,} is an EMO, our assertion follows
from Corollary 5.1.

An element e < C is a projection if e*=e=e?; we C is a partial isometry
if w*w is a projection. The following theorem shows that C contains no new
projections.

THEOREM 5.4. In C, every partial isometry has the form w=+w with
we M. In particular every projection e has the form e=é with e< M,.
Hence the projection of C form a complete lattice which is isomorphic to
the projection lattice of M via the mapping e — é.

PROOF. Suppose we(, w*w=e, e a projection. Then l1—w*w=1—e
=(1—e)*(1—e), hence w*w = 1. The assertion is clear from Theorem 3.1 and

Lemma 5. 2.

In the numerical Cayley transform a=i(1+A)1—2A)"!, A=(a—i)a+i)},

(1) a=0 when AN=-1,
(2) a>0 when MNe {e: —m<6<0},
(3) a<0 when Ne {e¥: 0<O<n}.

This is the basis of our theory of order in C. If x =0, and @ =0 is a real
number, then ax=0. If x=0 and —x =0, x =0; for if x = y*y and
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—x=2z%z, then y*y+2%¥z=0, by Lemma 4.4, y=0, that is, x=0. If x=0
and z € C is arbitrary, then z¥xz = 0. To show that the self-adjoint elements
of C form a partially ordered real linear space with respect to the ordering
defined in Definition 5.1, we have only to see: if x =0 and y =0, then
x +y=0. This is clear from condition (2) of the following :

THEOREM 5.5. Let x be a self-adjoint element of C, u= uits Cayley
transform. Then the following four conditions are equivalent :

(1) x=0;
(2) we can write x =[y,, f,] with y,=0;
(3) the spectrum of u is contained in {€’: —n = 0=0};

(4) we may write x=[x,, e,] with x,, e, < {u}"’, £,=0 and z,e,=x,.

PROOF. (1) — (2) is clear from Definition 5. 1.

(2)— (3). Suppose A=¢€ with 0<6<m; we must show that «—Al has
an inverse in M. Write A=(a—i)(a+7)™', and a<0, a=i(1+AN)(1—2A)"'. An
easy calculation shows that u— Al =1 — A)x—1)x +71)"%, thus u— Al =
A=M[(y,—al)y,+i1)L, g,] for a suitable SDD {g,}. As y,=0 for all #,
each y,—al is invertible in M; by Lemma 4.1 u—2l is invertible in C, and
(u—AD)'=A—N)""N(Wy,+11)(y,—al)™', h,] for a suitable SDD {h,}. The
numerical function f(7)=(n*+1)(n—a)* defined for %=0 is bounded, say
f(n) =k; look at the functional representation for y,, and we have that
I(yn+il)y,—al)!|* =<k for all n. By Theorem 5.3, (u—A1)"'=Zz for some
x € M, thus u—2Al is invertible in M.

(8)— (4). By assumption (3) and the proof of Theorem 5.2, the assertion
is clear.

(4)— Q). Put z,=(x,)"*; if m <n then x,e,=x,, from the unicity of
positive square roots we have z,¢,==z,. Hence {z,.e,} is an EMO, and
putting y=I[z,, €,] we show that y*=y, x=g?; thus x=0. This completes
the proof.

COROLLARY 5.2. If x =0, then there is a unique y =0 such that
x=y?; we have ye< {x}".

PROOF. From the above proof of (4)— (1), we have x = y* with y =0,
and ye {x}” follows from Theorem 5.2. Thus assuming z =0, we must
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show that y=z. Clearly xz=2zx, thus also yz=zy; then (y+2z)y—2)
=y'—2z2=0, (W—2)Yy+2 (y—2)=0. Write y =r¥*r, z = s*s for some
r,sc(, and we have 0= (y—2z)r*r +s*s)y—=z) = {r(y — 2)}*{r(y — 2)} +
{s{y—2z)}*{s(y—=2z)}. By Lemma 4.4, r(y—z)=8(y—2z)=0, thus r*r(y—2z)
=8*s(y—2)=0, yly—2)=2(y—2)=0, (y—2)<y—2)=0.

DEFINITION 5.2. If x=0 write y=x'"? for the unique y =0 such that
x=y% For xeC, write |x|=(x*x)".

REMARK. Let x be a positive element of C, and, % the unique Cayley
transform of x. Then by Theorem 5.2, we can write x=[x,,e,], with
Zn, €, € {u}”, and we have x=[x,e,,¢,]. Looking at the functional representation
of the elements of {u}”, m < n implies (x,e,)?e, = (xne.)’e, for an arbitrary
non-negative real number p Set y=[(x,e,)", e,] and if x=[(x,), (e,)] with
(x,), (en) € {#}”, then x,e.(e,N(e,))=(x,)(e,) (e, N(e,)). By the same reason
as above, we have that (x,e,)?(e,/\(e,))=((x,)(e,))"(e,/\(e,)), and hence
[(xn€n)", ex]1=[((x,) (€,))?, (e,)], that is, y is independent of the representation
of x in {#}” and is therefore unambiguously defined. We denote y by x?
(Note that x?e {x}").

6. Algebraic structure of C.

THEOREM 6.1. Let x<(, x =0, and u be the Cayley transform of x,
writing {u}”, as the algebra C(Q) of continuous complex-valued functions
on a Stone space Q ([2]), Qf be the set {0; w<Q, i(1+u(w)(l—u(e)) >0}
={wcQ; uw)=eY, —n<0<0}. Then there is an element y<C and a
projection é< C, such that

(1) xy=e, ex=x, ey=y,
(2) y.e<{x}’, y=0,

if and only if there exists a family of clopen sets {I',} such thatU r,

n=1
=Qf and the characteristic function of (Qf) —1', is an element of M for
all n (where E~ is the closure of a set E).

PrROOF. Let x=[z,, e,], notation as in the proof of Theorem 5.2. If
f (resp. f) is the characteristic function of I',(resp. (U I‘n) =(Q¢)7), we have
n=1

folfand f—foe M. Put g,=f,+(1—f), so that g,71 and 1—g,=f—fr< M.
Define z,=Ff,; since Flo)=0 for Q, ﬂ Q—(Q3)), we easily see that {z,,
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g»} is an EMO, and that the SDD {e,g,} implements {x,.e,} = {z,, 9.}, thus
X = [2,, gn]l- As z,(0)>0 for weTl, (compact set), there exists a unique
Yo € {u}” such that z,y,=f, ¥.fn =y.. By the unicity we show that
Yadm = Yn When m <n, hence {y,, g,} is an EMO. Then y=I[y,, g.] and
e=f satisfy (1) and (2).

Conversely, suppose that there are y and é satisfying (1) and (2). Let %
be the Cayley transform of x, and setting w=((x+71)/2)y, an easy calculation
shows that

ew=we=w, weix}’

w(l+z) = 1+z)w = e,

and e is the characteristic function of {@; (1+u)w) =~ 0}~. Setting w, = we,,
we have

w,e = ew, = w,
and
(%) w,(1+z)=1+%)w, = ¢,¢.

Let w, = [wh, gnl], and [[wh| <75 where 7 is a real number such that
7m 1 oo(m 1 o). Noting that

{o; [QA+u)o)] > 1/m} C {o; |((1+u)o)| > 1/(m)},
the set Hy={w; |(1+u)w)| > 1/r%}" is a clopen set ([2]) and putting H7, ﬂQn

= QF, an easy calculation shows that

O ij = {o; 1+u@) = 0} [N {0; (1—w)w) #~ 0}

n=1 m=1
= 04.

Set h% is the characteristic function of (Q%)°, and by the equation (¥), we can
choose an SDD {g»}m_, such that

wn(l+u)gn = l+uw)whgn = eegm.
If (exe) \gnAhn(=fn)# 0. then

w1+ 5 = QA+w)wpfr = fm,
and we have

1= |A+wwnfrl = [wil+u) fol = [lwal A +2) f2l,
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and since
(L +w) frl = A +w)h frll =1/rn,

we get ||wp| =7n. This is a contradiction and so (e,eh%) A g% = 0. Thus
enehn, = e ehn—(eqehp) N\ gn ~ (e.hn)V gn—gs =1—grc M, and e—e,e(1—hD)
= e—ee,+eehy, =1—e,+eehy,c M ([3], Theorem 4.2). {Q%}5 .-1 meets all
requirements.

THEOREM 6.2. C is regular in the sense of ([10), Part II, Chap. 1I,
Definition 2.2) if and only if M is finite.

PROOF. Suppose M is finite, then by ([1], Corollary 7.1), C is regular.
But for the sake of completeness, we sketch the proof. Since M is finite,
for |x| (x< (), the condition of Theorem 6.1 is always satisfied and hence
there exist § =0, and a projection e, such that |x|s=e, e|x|=|x|, and
es=8. Since e=8’|x|?=(8’x%*)x, we have Ce Cc Cx; conversely |x|e = |x]|,
|x|*(1—e) =0, x*x(1—e)=0, (1—e)x*x(1—e)=0, x(1—e)=0, xe =x,
thus Cx c Ce.

Conversely suppose that € is regular. By ([3], Theorem 4. 2), there exists
a central projection e such that M{(1—e) is finite algebra, ¢ = 0, or Me is a
properly infinite algebra and M=Me® M(1—e). If e#0, then Me is properly
infinite and by ([3], Lemma 4.4), there is a family of increasing projections
{e;}izi(C M,) such that 1—e; &M and e, 71. Taking an increasing sequence
{M 35, of positive real numbers such that A; 1 oo (1 o0), we define s, by ;

n

sa= 2 (/M) ei—e)+(A/Mey (€ M).
i=2
Then, as ;T oo(Z1 o), s, =A/A)1 for all n, and {s,} is the family of
mutually commuting increasing positive elements majorized by (1/A))-1.
Considering a maximal commutative subalgebra A (=C(A), the algebra of all
continuous complex-valued functions on a Stone space A [2]) generated by {e,},
{s.} has the least upper bound s in A, and the right projection of s is 1; for
if se=0, e< M,, then ¢ commutes with s and e< A, and since s,(8) 1 s(d)
without on a set of first category, we have that

e,se = ee,s = es, =0,
and
1/Npee, = es, = 0, that is, ee, = 0 for all 7.

By Lemma ([3], Lemma 2.2), ¢ = 0. By the regularity of C, we can choose
a projection e(e€ M,) such that Cs = Ce. An easy computation shows that
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e=1 and § is invertible in C. Let y be the inverse of §, we can write
y=[x,, fu] with (x,)* = x,. Then there exists an SDD {g,} such that

ZpSPn = $Tpgn = gn  for all n.

Taking an increasing sequence {u,}y-, of positive real numbers such that
|, <pn and u, T oo (n1 o), let m, be the largest integer £ such that A,=u,.
If 1—en)N 9,70, then by the same reason as above, we have

ZnS(L—€m,) A\ gn) = Zalsup { Zn A/N)(e—e-) +(1/Men =1L —em, A\ ga)

i=2

= x,[sup { Z 1/N) e —e;i-y), p= mn+l}] ((1—en)ANgn)

i=my+1
= (l'__em,.)/\ 9ns
and

lzallllsup { 2= (1/Ni)e:—e;-1) p= m,+1}|

t=Mp+1

= Hx,,[sup { Z (/N )e;—e;-y), = mn+1}]]l

T=mMmp+1

= 1.

Noting that 0 < (g,A(l—en,))[sup { i (I/N)(ei—ei- )} (gaA(1—en,))

i=Mp+1

= 1/ M) (gn AN(1—en,)), we have that

lzall = 1/l [sup { 20 (A/N)ei—e-), p=m,+13 (1 —en) A ga)l

i=ma+1

= N1 = s

and contradicting the inequality |x,|<<w,. Thus (1—en.)A 9,=0. (1—en,)
=A—en)—1—en)Ngn ~ gV —€n)—gs =1—g,<M, and contradicting the
choice of {e,}, that is, M is a finite algebra. This completes the proof of
Theorem 6. 2.

The polar decomposition of measurable operators is one of the important
tools in the construction of non-commutative integration theory, and next we
show that the decomposition is true in C.

THEOREM 6.3. Let x < C, u(resp. v), the Cayley transform of x*x(resp.
xx¥), e=LP(1+u) and f=LP1+v). Then we can write x=w|x| with
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w a partial isometry such that w*w=e, ww*=f. In particular e~f.

PROOF. The proof is a modification of the argument used in ([11],
Lemma 2.1). By [2], we can write {#}"(resp. {v}”) as the algebra C(Q)(resp.
C(I")) of continuous complex-valued functions on a Stone space Q(resp. I'). Then
an easy calculation shows that e (resp. f) is the characteristic function of the
set {o; u(w)#= —1} (resp. f{v; v(y) # —1}7). By Theorem 5.2, we may
write X*X=[Vn, €], Ya, €, € C(Q), {e,} an SDD, 0 =7y, = y.:1, and y.enm
=Yuln=2Yn, when m <n. For n,m=1,2,---, there are positive elements c¥,
and projections e (€ C(Q)) with the following properties :

(1) v.(ch)? is a projection = ee,, y,(ch)? = e&.
(2) Vo= (1/m)e?, and vy, = (1/m)e—e?) in (e—e)e,.
(3) = =ct=---for all n and ¢}_(ci,—crh_1) =0

for m = 2,3,--- for all =n.
(4) Cm

(5) ehe;=ej, if j>1 for all m.

IA

ch=c =--- for all m and cke,=cle bk <nym=1,2,---.

Because, setting e), is the characteristic function of the set {w; @<,
yi(@) > (1/m)}~ and ch(w0)=(1/y())'?ei(w), {eh, ci} meets all requirements.
By the Remark following Theorem 3.1, we have

(xcp)(xch) = cnx*xch = x*x(ch)® = [yi, &;][(ch), 1]
= [y;, e:llens 1l(cn)’, 11 (by (5))
= [ya€n, 1ll(ch)?, 1]
= [ya(cn)t 11 = [en, 11=en,

and by Theorem 5.3, there is a partial isometry w?(< M,,) such that xc%=w2
and (w?)*w?=e?. Since

xx*(1—f)=i(1+2)(1-2)" (1~ f)=i(l+o)1~2)"' =0,
we have fx=ux and putting wi(w2)*=fn(< M,),

FFa = Fx(@yxt = x(c)yx* = wi(wi)* = fa,

and
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S = x(cp_)Px*x(chy’x* = x(ch_)enx*
= X(Cm-1)’X* = fr_y,
thus we have frno,=fn=/f. Set f,=sup{fm, m=1} and noting that
() = ()i < ), we see f,1, and we write f =sup {f, n=1}(=f). Put

vh=whk(er—er_;), where fr=e,=vi=wp=0 for all n, and considering that

Whem-1 = XCm€m-1 = XCn_1 = Whp_;, We have

(vn)*vh, = en—en_y,
vn(vn)* = wh(en—en_(wi)*
= when(wi)* — when-(wn)*
= fa—fa-1
By ([4], Lemma 20), we can choose a partial isometry w, € M, such that
(Wa)*w, = eq.e,  wy(w,)* =f,
w(en—en-1) = U,
(W) *(f =S m-1) = (VL)%
and
wy(en—er_)=wh(er—em_y).

Since wle,_,e=wk', we have

wyen '—enty) = whlen—enTy)  (en—en = en'—eny
= wy en ' —enh
= w,_ (e —enTh).
By ([3], Lemma 2.2) we have
Wplp-1€ = Wy_1€,_,€.
Set v, = wy(e,—e,-1)e, it follows that
(vn)*vn = (en—en—l)e:
‘Z),‘('()n)* = wn(en_en—l)e(wn)* = wnene(wn)*_ wnen—le(wn)*

= wnene(wn)*_ Wp-1€p- le(wn—l)* = fn _f'n—l-
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Again by ([4], Lemma 20), there is a partial isometry w € M, such that

w¥w = supfee, n =1} = e,
ww* = sup{fn, n=1} =f,

w(e,—e,-1)e = wyle,—e,_)e where e, =0,
and

w*(fn_fn—l) = (wn)*(fn—fn—1) Where fo = O

By mathematical induction we have we,e = w,e,e.
Next we show x = w|x|. By Lemma 4.5, it is sufficient to prove that
(x—w|x|)e, =0 for all n. Since

(x—wm|x|)e, = (x—wp| x| +wh|x|—@|x)|)e,
= (x—wh|x|)e, +H(wh—@)| X e,
= x(e—cn|x ey +(wn—w@,)| x e,
(by |x[e, =e,|x| and w} = xcp)
= x(e—en)en +(wn—w,)| X e,
Then,
{x(e—en)e.}*{x(e—en)e,} = (e—en)e.x*x(e—er)
= x*x(eqe—en)=[ya(e.e—ep), 1]
and noting that w,el = wper = wp, we have

{(wh—wy) | x|e}*{(wh—w,) | x|e.} = e, x[(en—ep)| x| = x*x(e,e—en).

By Theorem 5.3 and (2), we see that there exist elements x(,, Y, (m =
1,2,--+) such that (x—w@|x|)e, = [Twm+Ym, 1] and |zl =@/ m)2,
lyml = @/m)*(m = 1,2,--+). By Theorem 3.1, we can easily show that
(x—w|x|)e, = 0.

To see that f'=f, by the same way as in the case of x*x, choosing
for xx* families {(c2)'}{(fr)} satisfying the conditions (1)—(5), we have
only to show that f'(fa)=(f2) for all m, n. Considering that xx*()=xx%*,
the assertion is clear. Hence f" = f, that is, f" = f.

Finally we shall prove the wuniqueness. Let x = w,;y with y=0,
(w)*w,=¢, ey=y, then x*x=yey=y* and by Corollary 5.2, y=|x|, and
w,|x|=w|x| implies w,|x|ch=w|x|c: w.e.=we: for all m,n, w.e=we,
that is, w,=w. This completes the proof of Theorem 6. 3.
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THEOREM 6.4. C is a Baer*-ring in the sense of ([6], Definition 2),
that is, if S is any subset of C, the right annihilator of S has the form
eC, e a projection.

PROOF. For x¢.S, using the same notation as in the proof of Theorem
6.3, x*x(1—e)=0, that is, x=xé. Thus the right annihilator of x includes
(1—e)C. Conversely if xy =0, then x*xyy* =0, cax*xyy* =0, e.yy*=0
for all m,n. Choosing a family {dp, gr, g where d;, =0, g and g are
projections} for yy* satisfying the conditions (1)—(5), enrgn =0 for all n,m,»n’
and m', e=1—g, l—-e)y=(01A—-8&gdy=9gy =y, and y<(1—e&)C. Since the
right annihilator of S is the intersection of all the right annihilator of x ¢S,
an easy calculation shows that the annihilator of S=eéC for some projection e.
This completes the proof of Theorem 6. 4.

REMARK. By above Theorem 6.4, the projection e(resp. f) defined in

Theorem 6.3 is the right (resp. left) projection of x in the sense of ([3],
p.244), and RP(x) ~ LP(x) for all x<C.
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